Large Functional-Structural Crop Models in XL

Design – Maintenance – Pitfalls

Gerhard Buck-Sorlin

gerhard.buck-sorlin@wur.nl

Dept. Biometris Wageningen University and Research Centre

22. September 2010

ndling Big XI Models

G. Buck-Sorlin

Introduction

Design

Modularisat

Validation – Verification

Validation – Scenarios

Maintenance
Boolean flags

Modularisation Calibration – Verification Validation – Scenarios

Boolean flags

Summary and Outlook

1 Introduction

- Design
 - Modularisation
 - Calibration Verification
 - Validation Scenarios
- Maintenance
 - Boolean flags

Introduction

Design

Calibration – Verification Validation – Scenarios

Boolean flags

Summary and Outlook

1 Introduction

- 2 Design
 - Modularisation
 - Calibration Verification
 - Validation Scenarios
- 3 Maintenance
 - Boolean flags

Introduction

Design

Calibration – Verification Validation – Scenarios

Boolean flags

Summary and Outlook

1 Introduction

- 2 Design
 - Modularisation
 - Calibration Verification
 - Validation Scenarios
- Maintenance
 - Boolean flags

Design

Calibration – Verification

Validation – Scenarios

Boolean flags

- Breaking long model code down to chewable pieces.
- Natural correspondence of modules to objects (plant organs)

Introduction

Design Modularisation

Validation - Scenarios

Maintenance
Boolean flags

Summary and

Definition

Model calibration is the process of modifying the input parameters to a model until the output from the model matches an observed set of data.

- Which parameters should be calibrated?
- Which parameters should be left?
- In which sequence should parameters be calibrated?

Design Modularisation

Validation - Scenarios

Maintenance Boolean flags

Summary and

Definition

Model calibration is the process of modifying the input parameters to a model until the output from the model matches an observed set of data.

- Which parameters should be calibrated?
- Which parameters should be left?
- In which sequence should parameters be calibrated?

Design Modularisatio

Validation – Scenarios

Maintenance
Boolean flags

Summary and Outlook

Definition

Model calibration is the process of modifying the input parameters to a model until the output from the model matches an observed set of data.

- Which parameters should be calibrated?
- Which parameters should be left?
- In which sequence should parameters be calibrated?

Definition

Model verification

Verification is done to ensure that:

- The model is programmed correctly
- The algorithms have been implemented properly
- The model does not contain errors, oversights, or bugs
- Verification ensures that the specification is complete and that no mistakes have been made in implementing the model
- Verification does not ensure the model:
 - Solves an important problem
 - Meets a specified set of model requirements
 - Correctly reflects the workings of a real world process

Introduction

Design Modularisation

Calibration - Verificati

Validation – Scenarios

Maintenance
Boolean flags

Definition

Model verification

- Verification is done to ensure that:
 - The model is programmed correctly
 - The algorithms have been implemented properly
 - The model does not contain errors, oversights, or bugs
- Verification ensures that the specification is complete and that no mistakes have been made in implementing the model
- Verification does not ensure the model:
 - Solves an important problem
 - Meets a specified set of model requirements
 - Correctly reflects the workings of a real world process

Introduction

Design Modularisation

Calibration - Verificati

validation - Scenarios

Maintenance Boolean flags

Model verification

- Verification is done to ensure that:
 - The model is programmed correctly
 - The algorithms have been implemented properly
 - The model does not contain errors, oversights, or bugs
- Verification ensures that the specification is complete and that no mistakes have been made in implementing the model
- Verification does not ensure the model:
 - Solves an important problem
 - Meets a specified set of model requirements
 - Correctly reflects the workings of a real world process

Introduction

Design Modularisation

Calibration – Verifica

Validation – Scenarios

Maintenance Boolean flags

Model verification

- Verification is done to ensure that:
 - The model is programmed correctly
 - The algorithms have been implemented properly
 - The model does not contain errors, oversights, or bugs
- Verification ensures that the specification is complete and that no mistakes have been made in implementing the model
- Verification does not ensure the model:
 - Solves an important problem
 - Meets a specified set of model requirements
 - Correctly reflects the workings of a real world process

Introduction

Design

Calibration – Verificat

Validation - Scendilos

Boolean flags

Model verification

- Verification is done to ensure that:
 - The model is programmed correctly
 - The algorithms have been implemented properly
 - The model does not contain errors, oversights, or bugs
- Verification ensures that the specification is complete and that no mistakes have been made in implementing the model
- Verification does not ensure the model:
 - Solves an important problem
 - Meets a specified set of model requirements
 - Correctly reflects the workings of a real world process

Introduction

Design Modularisati

Validation - Scenarios

Maintenance Boolean flags

Model verification

- Verification is done to ensure that:
 - The model is programmed correctly
 - The algorithms have been implemented properly
 - The model does not contain errors, oversights, or bugs
- Verification ensures that the specification is complete and that no mistakes have been made in implementing the model
- Verification does not ensure the model:
 - Solves an important problem
 - Meets a specified set of model requirements
 - Correctly reflects the workings of a real world process

Introduction

Design

Validation - Scenarios

Maintenance Boolean flags

Model verification

- Verification is done to ensure that:
 - The model is programmed correctly
 - The algorithms have been implemented properly
 - The model does not contain errors, oversights, or bugs
- Verification ensures that the specification is complete and that no mistakes have been made in implementing the model
- Verification does not ensure the model:
 - Solves an important problem
 - Meets a specified set of model requirements
 - Correctly reflects the workings of a real world process

Introduction

Design

Validation - Scenarios

Maintenance Boolean flags

Model verification

- Verification is done to ensure that:
 - The model is programmed correctly
 - The algorithms have been implemented properly
 - The model does not contain errors, oversights, or bugs
- Verification ensures that the specification is complete and that no mistakes have been made in implementing the model
- Verification does not ensure the model:
 - Solves an important problem
 - Meets a specified set of model requirements
 - Correctly reflects the workings of a real world process

Introduction

Design

Validation - Scenarios

Maintenance
Boolean flags

Model verification

- Verification is done to ensure that:
 - The model is programmed correctly
 - The algorithms have been implemented properly
 - The model does not contain errors, oversights, or bugs
- Verification ensures that the specification is complete and that no mistakes have been made in implementing the model
- Verification does not ensure the model:
 - Solves an important problem
 - Meets a specified set of model requirements
 - Correctly reflects the workings of a real world process

Introduction

Design

Validation - Scenarios

Maintenance Boolean flags

Design

Modularisation

Calibration – Verification

Maintenance
Boolean flags

Summary and

- Validation ensures that the model meets its intended requirements in terms of the methods employed and the results obtained
- The ultimate goal of model validation is to make the model useful in the sense that the model
 - addresses the right problem,
 - provides accurate information about the system being modeled,
 - ensure subsequent use of the model

Modularisation

Calibration – Verification

Maintenance Boolean flags

Summary and Outlook

Running GroIMP headles:

Introduction

Design

Modularisation

Calibration – Verification

Maintenance Boolean flags

Summary and Outlook

Running GroIMP headless

Design

Modularisation

Calibration – Verification

Maintenance Boolean flags

Introduction

Design

Calibration – Verification

Maintenance Boolean flags

Introduction

Design

Calibration – Verification

Maintenance Boolean flags

Design

Modularisation

Validation – Scenarios

Maintenance

- Pro's
 - Allow simple execution of scenarios
 - Allow simple execution of scenarios
- Con's
 - Can lead to mysterious behaviour if undocumented

Introductio

Design

Modularisation
Calibration – Verification
Validation – Scenarios

Maintenance Boolean flags

Design

Modularisation

Calibration – Verific

Maintenance Boolean flags

Summary and

Summary

- Big models are ok, but they need to be modular / refactorized / documented
- Prevent inflation of global parameters: assign parameters to objects where possible
- Use Boolean flags for certain scenarios, but use them wisely

- Modularization helps structuring.
- Is Bigger Better??

G. Buck-Soriii

Introduction

Design

Calibration - Verification

Maintenance Boolean flags

Summary and

Summary

- Big models are ok, but they need to be modular / refactorized / documented
- Prevent inflation of global parameters: assign parameters to objects where possible
- Use Boolean flags for certain scenarios, but use them wisely

- Modularization helps structuring.
- Is Bigger Better??

Design

Modularisa

Validation – Verification

Maintenance Boolean flags

Summary and Outlook

Summary

- Big models are ok, but they need to be modular / refactorized / documented
- Prevent inflation of global parameters: assign parameters to objects where possible
- Use Boolean flags for certain scenarios, but use them wisely

- Modularization helps structuring.
- Is Bigger Better??

Design

Modularisa

Validation – Verification

Maintenance Boolean flags

Summary and Outlook

Summary

- Big models are ok, but they need to be modular / refactorized / documented
- Prevent inflation of global parameters: assign parameters to objects where possible
- Use Boolean flags for certain scenarios, but use them wisely

- Modularization helps structuring.
- Is Bigger Better??

Design

Modularisa

Validation – Scenarios

Maintenance Boolean flags

Summary and Outlook

Summary

- Big models are ok, but they need to be modular / refactorized / documented
- Prevent inflation of global parameters: assign parameters to objects where possible
- Use Boolean flags for certain scenarios, but use them wisely

- Modularization helps structuring.
- Is Bigger Better??

Design

Modularisa

Validation – Scenarios

Maintenance Boolean flags

Summary and Outlook

Summary

- Big models are ok, but they need to be modular / refactorized / documented
- Prevent inflation of global parameters: assign parameters to objects where possible
- Use Boolean flags for certain scenarios, but use them wisely

- Modularization helps structuring.
- Is Bigger Better??