
Functional-Structural Plant Modelling
with GroIMP and XL
Tutorial and Workshop at Agrocampus Ouest, Angers,
5-7 May, 2015

Winfried Kurth

University of Göttingen,
Department Ecoinformatics, Biometrics and Forest Growth

Solving ordinary differential equations in
XL

The Problem

• Development of structures often described by L-systems or
graph grammars (in discrete time)

• functional parts often described by ordinary differential
equations (ODEs) (in continuous time)

• examples: biosynthesis and transport of hormones,
photosynthesis, carbon transport, xylem sap flow

• ODEs often not analytically solvable

• thus numerical solutions needed (numerical integrators)

mathematical formalism:

ODE initial condition

mathematical formalism:

ODE initial condition

simplest discrete solution scheme:
Euler integrator

step size

mathematical formalism:

ODE initial condition

simplest discrete solution scheme:
Euler integrator

step size h

Problems with Euler integration: 2 examples

h h

(Reference: GBS = Gragg-Bulirsch-Stoer integrator, a more accurate method)

(r > 0) (k > 0)

Better integration methods exist –

for example: the Runge-Kutta method

Better integration methods exist –

for example: the Runge-Kutta method

But: this requires much efforts to implement it in Java or XL
within a plant model

An example occurring in plant models
Model of diffusion

version without rate assigment operator

(Hemmerling 2010)

d[carbon]

dt
= d ⋅ ∆[carbon]

// Euler method

The rate assignment operator

Syntax in XL:

node_type[attribute_name] :‘= value

example:

c:C ::> { c[carbon] : ‘ = productionRate; }

(Hemmerling 2010)

What does the operator in the background?

What does the operator in the background?

The integrator itself is not fixed.

It can be chosen by the user from numerics libraries: e.g.,
setSolver(new org.apache.commons.math.ode.nonstiff. AdamsBashforthIntegrator
(3, 0, 1, 1E-4, 1E-4));

The diffusion example again, with rate assignment operator:

(Hemmerling 2010)

another example:

(Hemmerling 2010)

extension by the use of monitor functions:

- e.g., to plot data about the state in regular intervals

- or to stop integration once a condition is fulfilled

A monitor function maps the states to real numbers.
Root finding algorithms are used to find its zeros, i.e.,
exact event time

(Hemmerling 2010)

const double uRate = 0.1 ;
const double vRate = 0.2 ;
const double wRate = 1 ;
const double threshold = 10.0;
const double periodLength = 1.0;

/* growing structure with several variables which are controlled
by ODEs: */

module C(double len) extends Cylinder(len, 0.05)
{
double u = 1;
double v = 0;
double w1 = 0;
double w2 = 1;
};

/* stable structure which is not influenced by ODEs: */

module S(double len) extends Cylinder(len, 0.05);

double time;

const DatasetRef diagram = new DatasetRef("function plot");

Example simpleode.rgg : Declarations

Initializations:

protected void init()
[
Axiom ==> C(1);

{
time = 0;
/* optionally, some preferred ODE solver can be specified: */
// setSolver(new org.apache.commons.math.ode.nonsti ff.EulerIntegrator(0.1));
// setSolver(new org.apache.commons.math.ode.nonsti ff.ClassicalRungeKuttaIntegrator(0.1));
// setSolver(new org.apache.commons.math.ode.nonsti ff.GraggBulirschStoerIntegrator(0, 0.01, 1E-4, 1E-4));
// setSolver(new org.apache.commons.math.ode.nonsti ff.AdamsBashforthIntegrator(3, 0, 1, 1E-4, 1E-4));
// setSolver(new org.apache.commons.math.ode.nonsti ff.DormandPrince54Integrator(0, 1, 1E-4, 1E-4));

diagram.clear();
chart(diagram, XY_PLOT);
}

]

The central part: rate assignment

protected void getRate()
[
{ time :'= 1; }

/* apply differential increments to the variables of the C nodes.
ODE for u: u'(t) = uRate * u(t) (=> solution u = exp t)
ODE for v: v'(t) = vRate (=> solution v = c*t)
ODE for w1: w''(t) = -w(t) (=> solution w = cos t) */

c:C ::> {
c[u] :'= uRate * c[u];
c[v] :'= vRate;
c[w1] :'= wRate * c[w2];
c[w2] :'= -wRate * c[w1];
}

]

plotted diagram after 1 step:

u

v

w

Translation to 3-d structure
and step control by monitor functions:

public void develop()
[
/* set monitor to stop integration when variable u reaches

threshold value and to trigger structural changes: */
a:C ::> monitor(void=>double a[u] - threshold, new Runnable() {

public void run() [
a ==> s:S RU(10) M(-1) c:C(1)

{
c[u] = 1;
c[v] = 0;
c[w1] = 0;
c[w2] = 1;
s[length] = a[u];
s[radius] = 3 + a[w1];
println("stopped!");
};

]
}) ;

Translation to 3-d structure
and step control by monitor functions (continued):

/* perform integration
and trigger visualization and plotting periodically: */

{
println("<");

/* visualize current state in regular intervals: */
monitorPeriodic(periodLength, new Runnable() {

public void run() {
print(".");
[
c:C ::> {

c[length] = c[u];
c[radius] = 3 + c[w1];
diagram.addRow().set(0, c[u]).set(1, c[v]).set(2, 3+c[w1]);
}

]
derive(); /* necessary here for update! */
}

}) ;
integrate();
println("time = " + time);
}

] see simpleode.rgg

Arabidopsis example (from Hemmerling & Evers 2010):

rate assignment operator / conclusion:

(Hemmerling 2010)

