il

GroIMP

Functional-Structural Plant Modelling
with GrolIMP and XL

Tutorial and Workshop at Agrocampus Ouest, Angers,
5-7 May, 2015

Winfried Kurth

University of Goéttingen,
Department Ecoinformatics, Biometrics and Forest Growth

Solving ordinary differential equations In
XL

The Problem

* Development of structures often described by L-systems or
graph grammars (in discrete time)

« functional parts often described by ordinary differential
equations (ODEs) (in continuous time)

e examples: biosynthesis and transport of hormones,
photosynthesis, carbon transport, xylem sap flow

 ODEs often not analytically solvable

» thus numerical solutions needed (numerical integrators)

mathematical formalism:

initial value problem:

dy

=4/ (t) = f(t.y(®): ylto) = wo

ODE initial condition

e performance of an integrator is measured w.r.t. number of
evaluations of f to obtain a requested accuracy

e stability is needed to get reliable results

mathematical formalism:

initial value problem:

dy
= y'(t) = f(t,y(t): y(to) = yo

ODE initial condition

e performance of an integrator is measured w.r.t. number of
evaluations of f to obtain a requested accuracy

e stability is needed to get reliable results

simplest discrete solution scheme:

Euler integrator
Yn+1 = Yn h - f(t: yn) //\
\— step size

mathematical formalism:

initial value problem:

dy
= y'(t) = f(t,y(t): y(to) = yo

ODE initial condition

e performance of an integrator is measured w.r.t. number of
evaluations of f to obtain a requested accuracy

e stability is needed to get reliable results

simplest discrete solution scheme:
Euler integrator

Yn+1 — Yn h - f(t: yn) %\
\— step size T

Reasons why people use Euler integration:
e simple and intuitive
e unintentionally
e unaware of the unsuitability of Euler integration

e unaware of other superior integration schemes

Problems with Euler integration: 2 examples

Exponential growth:

o o o o

dry mass W (g)

o

W i
d;f =W (>0

h

Euler 1.00
Euler 0.10
EBuler 0.01 - - - -

GBS

2 < 6 8 10
time (days)

—s Inaccurate

Exponential decay:

dC’ ,
— = —kC'" (k>0
dt
8 h
Euler 1.0
6 - Euler 0.9
Euler 5 = =~]
4 - GBS ——— .
e O -\V*‘* =
_2 il ay -,Ilr I,-I
4 - i
'6 I | I |
0 2 4 3 10
time (s)
— unstable

(Reference: GBS = Gragg-Bulirsch-Stoer integrator, a more accurate method)

12

Better integration methods exist —

for example: the Runge-Kutta method

Yn41

IL'-nr—|— 1

Yn T %]I(Ll + 2ko + 2k3 + A_U
tn, + h

f ‘(tﬂ-f Yn)

F(tn + 5h,yn + 5hk1)
F(ta + Lh. g + Lhks)
f(tn + h,yn + hks3)

Better integration methods exist —

for example: the Runge-Kutta method

Ynt1 = Yn + ghks + 2ko + 2ks + ky)
tyii = th+h

ki = f(tn,Un)

ka = f(th + %h. Un + %Mrl)

ks = ftn + 5h,yn + shks)

ks = [f(tn +h,yn+ hks)

But: this requires much efforts to implement it in Java or XL
within a plant model

An example occurring in plant models
Model of diffusion

version without rate assigment operator

dcarbon] = d [A[carbon]

ek cb:
// step size for integration ca: @Cb;

1.2
" 1.34

double h = 0.1:
// diffusion coefficient

double d = 0.7:
// application rule to calculate diffusion
ca:.C —— ¢cb:C ::1> {

double rate = d % (ca[carbon] — cb[carbon]);
ca[carbon] :(—= h * rate;
cb[carbon] :+= h % rate; /I Euler method

(Hemmerling 2010)

}

e example implements Euler integration
e combines low accuracy with low stability
e should be avoided if possible

e many other integration methods available

The rate assignment operator

Syntax in XL:

node_type[attribute_name] ‘= value
example:

c:C ::>{ c[carbon] : * = productionRate; }

(Hemmerling 2010)

What does the operator in the background?

e collect all occurrences of :'= during compilation

e use that information at runtime to calculate
size of rate/state vector

e ...and to create a mapping between node properties and
elements of the rate/state vector

e accumulate rates and pass them to integrator

What does the operator in the background?

e collect all occurrences of :'= during compilation

e use that information at runtime to calculate
size of rate/state vector

e ...and to create a mapping between node properties and
elements of the rate/state vector

e accumulate rates and pass them to integrator

The integrator itself is not fixed.

It can be chosen by the user from numerics libraries: e.g.,

setSolver(new org.apache.commons.math.ode.nonstiff. AdamsBashforthintegrator
(3,0, 1, 1E-4, 1E-4));

The diffusion example again, with rate assignment operator:

-

F// before without :’=
ca:.C —> cb:C ::> {

double rate = ...;
ca[carbon] :(—= h = rate;
cb[carbon] :+= h x rate;

// diffusion coefficient }
double d = 0.7;)

// application rule to calculate diffusion
ca.C —— cb:C ::1> {
double rate = d % (ca[carbon] — cb[carbon]);
ca[carbon] :’'= —rate;
cb[carbon] :’= +rate;

}

(Hemmerling 2010)

another example:

2020
L0

protected void getRate ()
[
X:S —EDGE 0— y:S —EDGE 0— 2:S ::>» {
float rate = x[c] > 0.001 ?7 0 : 0.4 = y[c]:
y[c] :'= —rate;
z[c] :'= +rate;
}
]

(Hemmerling 2010)

extension by the use of monitor functions:
- e.g., to plot data about the state in regular intervals
- or to stop integration once a condition is fulfilled

A monitor function maps the states to real numbers.
Root finding algorithms are used to find its zeros, i.e.,
exact event time

// install monitor on every instance of C
c:C ::> monitor(

// monitor function g

void=>double c[carbon] — C MAX,

// event handler

hew Runnable() {

public void run() [
// replace node by something else

C ==>

): (Hemmerling 2010)

Example simpleode.rgg : Declarations

const double uRate =0.1 ;
const double vRate = 0.2 ;
const double wRate =1 ;
const double threshold = 10.0;
const double periodLength = 1.0;

[* growing structure with several variables which are controlled
by ODEs: */

module C(double len) extends Cylinder(len, 0.05)
{

double u =1;
double v = 0;
double w1l = 0;
double w2 = 1;

¢
[* stable structure which is not influenced by ODEs: */
module S(double len) extends Cylinder(len, 0.05);
double time;

const DatasetRef diagram = new DatasetRef("function plot");

Initializations:

protected void init()

[

Axiom ==> C(1);
{
time = 0;

[* optionally, some preferred ODE solver can be specified: */

/I setSolver(new org.apache.commons.math.ode.nonsti
/I setSolver(new org.apache.commons.math.ode.nonsti
/I setSolver(new org.apache.commons.math.ode.nonsti
/I setSolver(new org.apache.commons.math.ode.nonsti
/I setSolver(new org.apache.commons.math.ode.nonsti

diagram.clear();
chart(diagram, XY_PLOT);
}

ff.Eulerintegrator(0.1));
ff.ClassicalRungeKuttalntegrator(0.1));
ff.GraggBulirschStoerintegrator(0, 0.01, 1E-4, 1E-4
ff. AdamsBashforthintegrator(3, 0, 1, 1E-4, 1E-4));
ff. DormandPrince54Integrator(0, 1, 1E-4, 1E-4));

)8

The central part: rate assignment

protected void getRate()

[
{time :'=1;}

[* apply differential increments to the variables of the C nodes.
ODE for u: u'(t) = uRate * u(t) (=> solutionu =expt)
ODE for v: v'(t) = vRate (=> solution v = c*t)

ODE for wl: w"(t) = -w(t) (=> solution w = cos t) */

c:C:>{
c[u] :'= uRate * c[u];
c[v] :'= vRate;
c[wl] :'= wRate * c[w2];
c[w2] :'= -wRate * c[wl];

}

el
a
[=]

plotted diagram after 1 step:

- [] [N = o [«1] -] o [=]

Translation to 3-d structure
and step control by monitor functions:

public void develop()
[
[* set monitor to stop integration when variable u reaches
threshold value and to trigger structural changes: */
a.C:> monitor(void=>double afu] - threshold, new Runnable() {
public void run() [
a ==>s:S RU(10) M(-1) c:C(1)
{
clu] =1,
c[v] =0;
c[wl] = 0;
c[w2] = 1;
s[length] = a[u];
s[radius] = 3 + a[w1l];
printin("stopped!);
¢

1)

Translation to 3-d structure
and step control by monitor functions (continued):

[* perform integration
and trigger visualization and plotting periodically: */

{
printin("<");

[* visualize current state in regular intervals: */
monitorPeriodic(periodLength, new Runnable() {
public void run() {
print(".");
[
c.C:.>{
c[length] = c[u];
c[radius] =3+ c[wl];
diagram.addRow().set(0, c[u]).set(1, c[v]).set(2, 3+c[w1l]);

}
]
derive(); /* necessary here for update! */
}
1)
integrate();
printin("time =" + time);

} .
] see simpleode.rgg

Arabidopsis example (from Hemmerling & Evers 2010):

// cytokinin biosynthesis in root system
r:Roots ::> { rleyt] :'=P —Q % r[aux]; }

// auxin export rule
.Internode > m: Menstem o

double rate = - m[aux]
mlaux] :'= —rate
| [aux] :'= +rate;

e

rate assignment operator / conclusion:

e combination between discrete (graph rewriting rules) and
continuous (ODE) processes

e user does not have to reimplement numerical integrators
e numerical integration method can be exchanged easily
e enhanced accuracy and stability

e separation between integration of ODEs
and structural changes in the graph

e little change compared to Euler integration in terms of usage

e but big change in terms of results (accuracy & stability)

(Hemmerling 2010)

