GroIMP

Functional-Structural Plant Modelling
with GrolIMP and XL

Tutorial and Workshop at Agrocampus Ouest, Angers,
5-7 May, 2015

Winfried Kurth

University of Goéttingen,
Department Ecoinformatics, Biometrics and Forest Growth

More advanced XL programming
(Queries etc.)

il

The language XL

e extension of Java

o allows also specification of L-systems and RGGs
(graph grammars) in an intuitive rule notation

procedural blocks, like in Java: {...}

rule-oriented blocks (RGG blocks): [...]

Features of the language XL.:

e nodes of the graph are Java objects (including geometry objects)

example: XL programme for the Koch curve (see part 1)

public void derivation()

[
Axi om ==> RU(90) F(10);
F(x) ==> F(x/3) RU(-60) F(x/3) RU(120) F(x/3) RU(-60) F(x/3):
| /
nodes of the edges (type ,successor")
graph

special nodes:

geometry objects
Box, Sphere, Cylinder, Cone, Frustum, Parallelogram...
access to attributes by parameter list:
Box(x, vy, z) (length, width, height)

or with special functions:
Box(...).(set Col or (0Ox007700)) (colour)

special nodes:

geometry objects
Box, Sphere, Cylinder, Cone, Frustum, Parallelogram...
transformation nodes

Transl ate(x, y, z), Scale(cx, cy, cz), Scale(c),
Rotate(a, b, c),RU(a),RL(a),RH(a), RV(c), RG, ...

light sources

PointLight, DirectionalLight, SpotLight, AmbientLight

Features of the language XL.:

e rules organized in blocks [...], control of application
by control structures

example: rules for the stochastic tree
Axi om ==> L(100) D(5) A

A ==> FO LMul (0.7) Dwul (0.7)
I f (probability(0.5))
([RUS0) A] [RU-10) A])
el se
([RI-50) A] [RU(10) AT);:

Features of the language XL.:

e parallel application of the rules

(can be modified: sequential mode can be switched on, see below)

Features of the language XL.:

e parallel execution of assignments possible (deferred assignment)

special assignment operator := besides the normal =

guasi-parallel assignment to the variables x and y:

f(x, y);
a(x, y);

X .
y .

Features of the language XL.:

e Execution rules

» Used to execute imperative statements for searched organs or

update their attribute values, without changes in the (graph)
structure

» XL syntax: ::>
ModuleName ::> { imperative code; }

Example:
l:Leaf ::> { l.photosynthesis(); }

L-system rule Execution rule
Internode (length, radius) ==> i:Internode ::> |{
Internode (length+0.1, radius+0.01) i[length] += 0.1;

i[radius] += 0.01;

execution rule

A ::> { imperative code };

Test the examples snD9_e25.rgg, snD9 _el6. rgqg,
snmd9 el/7.gsz,snd9 el8.rgg

and concerning the access to node attributes: sn09_ e26. r gg

Features of the language XL.:

e set-valued expressions (more precisely: producer instead of sets)

e graph queries to analyze the actual structure

example for a graph query:

binary tree, growth shall start only if there is enough distance

to other F objects
Axi om ==> F(100) [RU(-30) A(70)] RU(30) A(100);
a: A(s) ==>1if (forall(distance(a, (* F *)) > 60))
(RH(180) F(s) [RU(-30) A(70)] RU(30) A(100))

without the ,if* condition with the ,if* condition

query syntax:

a query is enclosed by (* *)

The elements are given in their expected order, e.g.:
(* A A B *) searches for a subgraph which consists of a

sequence of nodes of the types A A B, connected by
successor edges.

Queries as generalized contexts:

test the examples snD9 e28.rgg, sn09 e29.rqgg,
snD9 e30.rgg

Examples

» Find all internodes, and print them out
println((x Internode x));

» Find all newly created internodes (with age 0)
(+ i:Internode, (i[age] == 0) =*)
» Search for all internodes with diameter > 0.01
(* i:Internode, (i[diameter] > 0.01) %)
» Find all pairs with distance < 1
(#« £:F, g:F, ((f '= g) && (distance(f, g) < 1)) =)
» Find all nodes B, connected to A with a branching edge

(» A +> B)

Features of the language XL.:

e aggregating operators (e.g., ,sum®, ,mean®, ,empty*, ,forall®,
,selectWhereMin®)

can be applied to set-valued results of a query

Queries and aggregating operators

provide possibilities to connect structure and
function

example: search for all leaves which are successors of node
c and sum up their surface areas

I—query |
sum((x ¢ (>)+ Leaf *) .area) _l

I_ _ result can be
transitive closure transferred to an

Imperative calculation

aggregation operator

Aggregate methods

» Collect multiple values and return one single value as result

» Standard aggregate operations:
count, sum, empty, exist, forall, first, last, max,
min, mean, selectRandomly, selectWhereMin,
selectWhereMax, ...

» Can be applied to set-valued results of a query

count ((» Leaf))

first((*x l:Leaf, (l[order] == 1 && l[rank] == 1) x))
selectRandomly ((* F *))

selectWhereMax((x £:F %), (f[diameter]))

Examples

» Count all segments F, longer than 1

count ((* £:F, (f[length] > 1) %))

» Search for all leaves and sum up their surface areas

sum((* Leaf %) [area])
sum((* Leaf %) .area) [/

i
-
(ai
(T
‘-r
(U
f

» Sum up potentional growth rate of all growing leaves

sum((* l:Leaf, (l.isGrowing()) *).pgr())

Queries in XL

test the examples

snd9 e31.rgg,
sndD9 e35.rgg,
snD9 e36.rgg

for light interception / photosynthesis:

a simple model of overshadowing

using a query referring to a geometric region in space

model approach (strongly simplifying):
overshadowing of an object occurs when there are further

objects in an imagined cone with its apex in the object, opened
Into z direction (to the sky).

example:

snmD9 e42.rgg competition of three 2-dimensional model
plants for light

nodul e Segnent(int t, int ord) extends FO;
nmodul e TBud(int t) extends F(1, 1, 1);
nodul e LBud extends F(0.5, 0.5, 1);

Vector3d z = new Vector3d(0, 0, 1);

protected void init()
[
Axi om ==> P(2) D(5) V(-0.15) [TBud(-4)] RU(90) M 600) RU(-90)
[TBud(0)] RU(-90) M 1200) RU(90)
[TBud(-8)];
]

public void run()
[
TBud(t), (t < 0) ==> TBud(t+1);
x: TBud(t), (t >= 0 && enmpty((* s:Segnent, (s in cone(x, z, 45)) *))) ==>
L(randon(80, 120)) Segnent (0, 0)
[MRel (randon(0.5, 0.9)) RU(60) LBud]
[MRel (randon(0.5, 0.9)) RU(-60) LBud] TBud(t+1);
y: LBud,
(empty((* s:Segnent, (s in cone(y, z, 45)) *))) ==>
L(randon(60, 90) Segnent (0, 1) RVO LBud;
Segnent (t, o), (t < 8) ==> Segnent(t+1, o0);
Segnent (t, o), (t >=8 & 0 == 1) ==>> ; /* renoval of the whole branch */
]

Representation of graphs in XL

e node types must be declared with ,nodul e*

e nodes can be all Java objects.
In user-made nodul e declarations, methods (functions) and

additional variables can be introduced, like in Java

e notation for nodes in a graph:
Node t ype, optionally preceded by: | abel :
Examples: A, Meri sten(t), b: Bud

e notation for edges in a graph:
- edgetype- >, <- edgetype-

e special edge types:
successor edge: -successor->, > or (blank)
branch edge: - branch->, +>or |
refinement edge: />

Notations for special edge types
> successor edge forward

< successor edge backward
--- successor edge forward or backward
+> branch edge forward

<+ branch edge backward

- +- branch edge forward or backward

[> refinement edge forward

</ refinement edge backward

--> arbitrary edge forward

<-- arbitrary edge backward

- - arbitrary edge forward or backward
(cf. Kniemeyer 2008, p. 150 and 403)

user-defined edge types

const int xxx = EDGE O; [// oderEDGE 1, ..., EDGE 14

usage in the graph: - xxx- >, <- XXX-, - XXX-

Notation of graphs in XL

example:
B]—(d]
QT IS represented in programme code as
a:A [-e—> B C] [<-f- D] -g-> E [a]
0] —"~(A)==(g :

(the representation is not unique!)
(>: successor edge, +: branch edge)

Derived relations

Relations between nodes connected by more than 1 edge

E.g.: Relation between nodes connected by several edges
(one after the other) of the same type:

o—0—0—0—0

Jransitive closure” of the original relation (edge)

XL notation

» 1-to-nrepetitions: +
A (—edgetype->)+ B

» 0-to-nrepetitions: *
A (—edgetype->)* B

» Minimal elements (stop searching once a match has been found):
A (—edgetype->)+ : (B)
A (—edgetype—->)x* : (B)

Examples

» Find all/the first internode connected to the leaf

(* Leaf (<—-)+ Internode =x)

(» Leaf (<—-)+ :(Internode) x)

ancestor - nearest preceding node of a certain node type
minDescendants - nearest successors of a certain node type

(nodes of other types are skipped)
descendants - all successors of a certain node type

o l —> Successor edge
4 ancestor

——> branch edge

minDescendants™

i.'-

// all modules extend the module Internode
Axiom ==>

InternodeFirst [RU(30) BranchFirst]
InternodeSecond [RU(-30) BranchSecond]

InternodeThird

'

// queries and their outputs:

(* InternodeFirst —-minDescendants-> Internode =*)
BranchFirst
InternodeSecond

(* InternodeFirst -descendants—-> Internode =*)
InternodeSecond
InternodeThird
BranchSecond
BranchFirst

(* InternodeThird -ancestor-> Internode =)
InternodeSecond

(* InternodeThird (—ancestor->)+ Internode %)
InternodeSecond
InternodeFirst

The current graph

GrolMP maintains always a graph which contains the
complete current structural information. This graph is
transformed by application of the rules.

Attention: Not all nodes are visible objects in the 3-D view of
the structure!

- FO, F(x) , Box, Spher e: yes

- RU(30) , A, B: normally not (if not derived by ,ext ends*
from visible objects)

The graph can be completely visualized in the 2-D graph
view (in GrolMP: Panels - 2D - Graph).

Load an example RGG file in GroIMP and execute some
steps (do not work with a too complex structure).

Open the 2-D graph view, fix the window with the mouse in
the GrolMP user interface and test different layouts (Layout
- Edit).

Keep track of the changes of the
graph when you apply the rules
(click on ,redraw")!

which parts of the current graph of GrolMP are visible
(in the 3-d view) ?

all geometry nodes which can be accessed from the root
(denoted) of the graph by exactly one path, which consists
only of "successor" and "branch" edges

How to enforce that an object is visible in any case:

==>> " (bj ect

