
Functional-Structural Plant Modelling
with GroIMP and XL
Tutorial and Workshop at Agrocampus Ouest, Angers,
5-7 May, 2015

Winfried Kurth

University of Göttingen,
Department Ecoinformatics, Biometrics and Forest Growth

More advanced XL programming
(Queries etc.)

The language XL

• extension of Java

• allows also specification of L-systems and RGGs
(graph grammars) in an intuitive rule notation

procedural blocks, like in Java: { ... }

rule-oriented blocks (RGG blocks): [...]

example: XL programme for the Koch curve (see part 1)

public void derivation()
[
Axiom ==> RU(90) F(10);
F(x) ==> F(x/3) RU(-60) F(x/3) RU(120) F(x/3) RU(-60) F(x/3);
]

Features of the language XL:

● nodes of the graph are Java objects (including geometry objects)

nodes of the
graph

edges (type „successor“)

special nodes:

geometry objects

Box, Sphere, Cylinder, Cone, Frustum, Parallelogram...

access to attributes by parameter list:

Box(x, y, z) (length, width, height)

or with special functions:

Box(...).(setColor(0x007700)) (colour)

special nodes:

geometry objects

Box, Sphere, Cylinder, Cone, Frustum, Parallelogram...

transformation nodes

Translate(x, y, z), Scale(cx, cy, cz), Scale(c),
Rotate(a, b, c), RU(a), RL(a), RH(a), RV(c), RG, ...

light sources

PointLight, DirectionalLight, SpotLight, AmbientLight

Features of the language XL:

● rules organized in blocks [...], control of application
by control structures

example: rules for the stochastic tree
Axiom ==> L(100) D(5) A;

A ==> F0 LMul(0.7) DMul(0.7)
if (probability(0.5))
([RU(50) A] [RU(-10) A])

else
([RU(-50) A] [RU(10) A]);

Features of the language XL:

● parallel application of the rules

(can be modified: sequential mode can be switched on, see below)

Features of the language XL:

● parallel execution of assignments possible (deferred assignment)

special assignment operator := besides the normal =

quasi-parallel assignment to the variables x and y:

x := f(x, y);
y := g(x, y);

Features of the language XL:

● execution rules

execution rule

A ::> { imperative code };

Test the examples sm09_e25.rgg, sm09_e16.rgg,
sm09_e17.gsz, sm09_e18.rgg

and concerning the access to node attributes: sm09_e26.rgg

Features of the language XL:

● set-valued expressions (more precisely: producer instead of sets)

● graph queries to analyze the actual structure

example for a graph query:

binary tree, growth shall start only if there is enough distance
to other F objects

Axiom ==> F(100) [RU(-30) A(70)] RU(30) A(100);
a:A(s) ==> if (forall(distance(a, (* F *)) > 60))

(RH(180) F(s) [RU(-30) A(70)] RU(30) A(100))

without the „if“ condition with the „if“ condition

query syntax:

a query is enclosed by (* *)

The elements are given in their expected order, e.g.:
(* A A B *) searches for a subgraph which consists of a
sequence of nodes of the types A A B, connected by
successor edges.

Queries as generalized contexts:

test the examples sm09_e28.rgg, sm09_e29.rgg,
sm09_e30.rgg

Features of the language XL:

● aggregating operators (e.g., „sum“, „mean“, „empty“, „forall“,
„selectWhereMin“)

can be applied to set-valued results of a query

Queries and aggregating operators

provide possibilities to connect structure and
function

example: search for all leaves which are successors of node
c and sum up their surface areas

transitive closure

aggregation operator

result can be
transferred to an
imperative calculation

query

Queries in XL

test the examples

sm09_e31.rgg,
sm09_e35.rgg,
sm09_e36.rgg

for light interception / photosynthesis:

a simple model of overshadowing
using a query referring to a geometric region in space

model approach (strongly simplifying):
overshadowing of an object occurs when there are further
objects in an imagined cone with its apex in the object, opened
into z direction (to the sky).

example:

sm09_e42.rgg competition of three 2-dimensional model
plants for light

module Segment(int t, int ord) extends F0;
module TBud(int t) extends F(1, 1, 1);
module LBud extends F(0.5, 0.5, 1);

Vector3d z = new Vector3d(0, 0, 1);

protected void init()
[
Axiom ==> P(2) D(5) V(-0.15) [TBud(-4)] RU(90) M(600) RU(-90)

[TBud(0)] RU(-90) M(1200) RU(90)
[TBud(-8)];

]

public void run()
[
TBud(t), (t < 0) ==> TBud(t+1);
x:TBud(t), (t >= 0 && empty((* s:Segment, (s in cone(x, z, 45)) *))) ==>

L(random(80, 120)) Segment(0, 0)
[MRel(random(0.5, 0.9)) RU(60) LBud]
[MRel(random(0.5, 0.9)) RU(-60) LBud] TBud(t+1);

y:LBud,
(empty((* s:Segment, (s in cone(y, z, 45)) *))) ==>
L(random(60, 90) Segment(0, 1) RV0 LBud;

Segment(t, o), (t < 8) ==> Segment(t+1, o);
Segment(t, o), (t >= 8 && o == 1) ==>> ; /* removal of the whole branch */
]

Representation of graphs in XL
● node types must be declared with „module“

● nodes can be all Java objects.
In user-made module declarations, methods (functions) and
additional variables can be introduced, like in Java

● notation for nodes in a graph:
Node_type, optionally preceded by: label:
Examples: A, Meristem(t), b:Bud

● notation for edges in a graph:

-edgetype->, <-edgetype-

● special edge types:
successor edge: -successor->, > or (blank)
branch edge: -branch->, +> or [
refinement edge: />

Notations for special edge types

> successor edge forward

< successor edge backward

--- successor edge forward or backward

+> branch edge forward

<+ branch edge backward

-+- branch edge forward or backward

/> refinement edge forward

</ refinement edge backward

--> arbitrary edge forward

<-- arbitrary edge backward

-- arbitrary edge forward or backward
(cf. Kniemeyer 2008, p. 150 and 403)

user-defined edge types

const int xxx = EDGE_0; // oder EDGE_1, ..., EDGE_14

...

usage in the graph: -xxx->, <-xxx-, -xxx-

Notation of graphs in XL

example:

is represented in programme code as

(the representation is not unique!)

(>: successor edge, +: branch edge)

Derived relations

Relations between nodes connected by more than 1 edge

E.g.: Relation between nodes connected by several edges
(one after the other) of the same type:

„transitive closure“ of the original relation (edge)

The current graph
GroIMP maintains always a graph which contains the
complete current structural information. This graph is
transformed by application of the rules.

Attention: Not all nodes are visible objects in the 3-D view of
the structure!

- F0, F(x), Box, Sphere: yes

- RU(30), A, B: normally not (if not derived by „extends“
from visible objects)

The graph can be completely visualized in the 2-D graph
view (in GroIMP: Panels - 2D - Graph).

Load an example RGG file in GroIMP and execute some
steps (do not work with a too complex structure).

Open the 2-D graph view, fix the window with the mouse in
the GroIMP user interface and test different layouts (Layout
- Edit).

Keep track of the changes of the
graph when you apply the rules
(click on „redraw“)!

which parts of the current graph of GroIMP are visible
(in the 3-d view) ?

all geometry nodes which can be accessed from the root
(denoted ^) of the graph by exactly one path, which consists
only of "successor" and "branch" edges

How to enforce that an object is visible in any case:

==>> ^ Object

