
Functional-Structural Plant Modelling
with GroIMP and XL
Tutorial and Workshop at Agrocampus Ouest, Angers,
5-7 May, 2015

Winfried Kurth

University of Göttingen,
Department Ecoinformatics, Biometrics and Forest Growth

Graph rewriting, interpretive rules,
instantiation rules

The formal background of the programming language XL:

Relational Growth Grammars (RGG)

= a special form of parallel graph grammars

see

Ole Kniemeyer: Design and Implementation of a Graph Grammar Based
Language for Functional-Structural Plant Modelling. Ph.D. thesis,
University of Technology at Cottbus (2008); chapters 4 and 5
[http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:kobv:co1-opus-5937]

The step towards graph grammars

Drawback of L-systems:

• in L-systems with branches (by turtle commands)
only 2 possible relations between objects:
"direct successor" and "branch"

extensions:

• to permit additional types of relations
• to permit cycles

→ graph grammar

a string:
a very simple graph

� a string can be interpreted as a 1-dimensional

graph with only one type of edges

� successor edges (successor relation)

ABA AAC CAB

in GroIMP, all is represented in a graph:

(Smoleňová 2010)

graph grammars

example
rule:

to make graphs dynamic, i.e., to let them change over
time:

A relational growth grammar (RGG)
(special type of graph grammar) contains:

� an alphabet
– the definition of all allowed

• node types
• edge types (types of relations)

� the axiom
– an initial graph, composed of elements of the

alphabet
� a set of graph replacement rules.

How an RGG rule is applied

� each left-hand side of a rule describes a

subgraph (a pattern of nodes and edges,

which is looked for in the whole graph), which

is replaced when the rule is applied.

� each right-hand side of a rule defines a new

subgraph which is inserted as substitute for

the removed subgraph.

Example:

rule:

application:

a complete RGG rule can have 5 parts:

(* context *), left-hand side, (condition)

==>

right-hand side { imperative XL code }

in text form we write (user-defined) edges as

-edgetype->

edges of the special type "successor" are usually written as
a blank (instead of -successor->)

also possible: >

Further special edge types with special notation:

"branch" edge: +> (also generated after "[")

"decomposition" edge: />

example: graph grammar in XL for the Koch curve

public void derivation()
[
Axiom ==> RU(90) F(10);
F(x) ==> F(x/3) RU(-60) F(x/3) RU(120) F(x/3) RU(-60) F(x/3);
]

L-systems as a special case of graph grammars:

● the symbols of the L-system alphabet become vertices

● concatenation of symbols corresponds to successor edges

vertex of the
graph

edge (type „successor“)

a “proper“ graph grammar (not expressible as L-system):

rule:

application:

rule in text form: i -b-> j -a-> k -a-> i ==> j

a “proper“ graph grammar (not expressible as L-system):

rule:

application:

what happens if there are two nodes on
the right-hand side instead of one?

2 types of rules for graph replacement in XL:

● L-system rule, symbol: ==>

provides an embedding of the right-hand side into
the graph (i.e., incoming and outgoing edges are
maintained)

● SPO rule, symbol: ==>>

incoming and outgoing edges are deleted (if their
maintenance is not explicitely prescribed in the rule)

„SPO“ from „single pushout“ – a notion from universal algebra

a:A ==>> a C (SPO rule)

B ==> D E (L-system rules)

C ==> A

start
graph: A B C

example:

a:A ==>> a C (SPO rule)

B ==> D E (L-system rules)

C ==> A

A B C

D E A

a:A ==>> a C (SPO rule)

B ==> D E (L-system rules)

C ==> A

A B C

D E A

a:

a:A ==>> a C (SPO rule)

B ==> D E (L-system rules)

C ==> A

A AD Ea:

C
= final result

test the example sm09_e27.rgg :

module A extends Sphere(3);

protected void init()
[Axiom ==> F(20, 4) A;]

public void runL()
[

A ==> RU(20) F(20, 4) A;
]

public void runSPO()
[

A ==>> ^ RU(20) F(20, 4, 5) A;
]

(^ denotes the root node in the current graph)

Representation of graphs in XL
● vertex types must be declared with „module“

● vertices can be all Java objects

● notation for vertices in a graph:
Node_type, optionally preceded by: label:
Examples: A, Meristem(t), b:Bud

● notation for edges in a graph:

-edgetype-> (forward), <-edgetype- (backward),

-edgetype- forward or backward,

<-edgetype-> forward and backward

● special edge types:
successor edge: -successor->, > or (blank)
branch edge: -branch->, +> or [
refinement edge: />

Notations for special edge types

> successor edge forward

< successor edge backward

--- successor edge forward or backward

+> branch edge forward

<+ branch edge backward

-+- branch edge forward or backward

/> refinement edge forward

</ refinement edge backward

--> arbitrary edge forward

<-- arbitrary edge backward

-- arbitrary edge forward or backward
(cf. Kniemeyer 2008, p. 150 and 403)

Notations for special edge types (overview)

forward backward forward or backward forward and backward

successor

branch

refinement

arbitrary

user-defined edge types

const int xxx = EDGE_0; // oder EDGE_1, ..., EDGE_14

...

usage in the graph: -xxx->, <-xxx-, -xxx-, <-xxx->

Notation of graphs in XL

example:

is represented in programme code as

(the representation is not unique!)

(>: successor edge, +: branch edge)

how can the following graph be described in XL code?

(the solution is not unique)

X

Bud

Leaf
+

>

0 1

Interpretive rules

insertion of a further phase of rule application
directly preceding graphical interpretation (without
effect on the next generation)

application of
interpretive rules

interpretation by turtle

Example:

{interpretive
rule

Each occurrence of the interpreted vertex (here: Flower) is
individually represented in the graph.

A special (internal)
edge type and special
vertices are used to
link the interpretation
results with the rest of
the graph:

public void run()
{

[
Axiom ==> A;
A ==> Scale(0.3333) for (int i:(-1:1))

for (int j:(-1:1))
if ((i+1)*(j+1) != 1)

([Translate(i, j, 0) A]);
]
applyInterpretation();

}

public void interpret()
[
A ==> Box;
]

further example:

generates the so-called „Menger sponge“ (a fractal)

public void run()
{ [

Axiom ==> A;
A ==> Scale(0.3333) for (int i:(-1:1))

for (int j:(-1:1))
if ((i+1)*(j+1) != 1)

([Translate(i, j, 0) A]);
]
applyInterpretation();

}

public void interpret()
[
A ==> Box;
]

(a)

(b) (c)A ==> Sphere(0.5); A ==> Box(0.1, 0.5, 0.1)
Translate(0.1, 0.25, 0) Sphere(0.2);

Development:

what is generated by this example?

public void run()
{

[
Axiom ==> [A(0, 0.5) D(0.7) F(60)] A(0, 6) F(100);
A(t, speed) ==> A(t+1, speed);
]
applyInterpretation();

}

public void interpret()
[
A(t, speed) ==> RU(speed*t);
]

a very similar type of rules in XL:
instantiation rules

purpose: replacement of single modules by more complicated
structures, only for visual representation
(similar as for interpretive rules)

• but: less data are stored (less usage of memory)

• only one vertex in the graph for the instantiated structure

• in contrast to interpretive rules, no turtle commands
with effect on other nodes can be used

further, arising possibility: “replicator nodes“ for copying and
relocation of whole structures

instantiation rules: syntax

no new sort of rule arrow

specification of the instantiation rule directly in the declaration
of the module which is to be replaced

module A ==> B C D;

replaces (instantializes) everywhere A by B C D

the flower example again:

{instantiation
rule

the resulting graph:

const int multiply = EDGE_0; /* user-defined edge type */

module Johnny ==> F(20, 1)
[M(-8) RU(45) F(6, 0.8) Sphere(1)]
[M(-5) RU(-45) F(4, 0.6) Sphere(1)] Sphere(2);

Johnny is
instantiated with
the red structure

another example:
Usage of instantiation rules for multiplyer objects

sm09_e43.rgg

const int multiply = EDGE_0; /* user-defined edge type */

module Johnny ==> F(20, 1)
[M(-8) RU(45) F(6, 0.8) Sphere(1)]
[M(-5) RU(-45) F(4, 0.6) Sphere(1)] Sphere(2);

module Replicator ==> [getFirst(multiply)] Translate(10, 0, 0)
[getFirst(multiply)];

inserts all what comes after the „multiply“
edge

Johnny is
instantiated with
the red structure

another example:
Usage of instantiation rules for multiplyer objects

sm09_e43.rgg

const int multiply = EDGE_0; /* user-defined edge type */

module Johnny ==> F(20, 1)
[M(-8) RU(45) F(6, 0.8) Sphere(1)]
[M(-5) RU(-45) F(4, 0.6) Sphere(1)] Sphere(2);

module Replicator ==> [getFirst(multiply)] Translate(10, 0, 0)
[getFirst(multiply)];

public void run()
[
Axiom ==> F(2, 6) P(10) Replicator -multiply-> Johnny;
]

inserts all what comes after the „multiply“
edge

Johnny is
instantiated with
the red structure

another example:
Usage of instantiation rules for multiplyer objects

sm09_e43.rgg

result:

Example: Inflorescence architecture

XL code

Example: Inflorescence architecture

generated graph and 3-d result

Example: Inflorescence architecture

Frangipani example

(by M. Henke)

Suggestions for team session

1. Generate a plant with parameterized leaves (parameters:
length, width, ratio petiole/blade length, ...)
- with interpretive rules,
- with instantiation rules.

2. Create a model for a circular arrangement of mushrooms
(“witches ring“). Use an instantiation rule for the
multiplication and arrangement.

