
Functional-Structural Plant Modelling
with GroIMP and XL
Tutorial and Workshop at Agrocampus Ouest, Angers,
5-7 May, 2015

Winfried Kurth

University of Göttingen,
Department Ecoinformatics, Biometrics and Forest Growth

Introduction to rule-based programming,
L-systems and the language XL

Paradigms of programming

Robert Floyd 1978:

Turing Award Lecture

"The Paradigms
of Programming"

Robert W. Floyd (1936-2001)

Paradigms of programming

„Paradigm“: a basic model, a way of thinking,
or a philosophical approach towards reality,
often expressed by examples...

processes

Usage for simulating an ecosystem:

processes

calculate effects

Usage for simulating an ecosystem:

for numerical simulation of processes:

imperative paradigm
(also: von-Neumann paradigm,
control flow paradigm)

John von Neumann (1903-1957)

imperative programming:

computer = machine for the manipulation of values of
variables

(these manipulations can have side effects).

programme = plan for the calculation process with
specification of the commands and of the control flow
(e.g. loops).

example:

x = 0;
while (x < 100)

x = x + 1;

(one) drawback of the imperative paradigm:

simultaneous, parallel assignment is not supported

Example (Floyd 1978):

predator-prey system (population sizes A, B), described by

Anew = f(A, B),
Bnew = g(A, B)

beginners‘ mistake in programming:

for (i = ...) {
A = f(A, B);
B = g(A, B);

}

(one) drawback of the imperative paradigm:

simultaneous, parallel assignment is not supported

Example (Floyd 1978):

predator-prey system (population sizes A, B), described by

Anew = f(A, B),
Bnew = g(A, B)

beginners‘ mistake in programming:

for (i = ...) {
A = f(A, B);
B = g(A, B);

}

(one) drawback of the imperative paradigm:

simultaneous, parallel assignment is not supported

programming languages which support imperative
programming:

Fortran, Pascal, C, ..., parts of Java, ...,
command language of turtle geometry

organisms

Simulating an ecosystem:

organisms

describe structure

Simulating an ecosystem:

object-oriented paradigm

computer = environment for virtual objects

programme = list of (object) classes, i.e. general
specifications of objects, which can be created and
destroyed at runtime.

programming languages: Smalltalk, Simula, C++, Java, ...

Inheritance of
attributes and
methods from
superclasses to
subclasses

example:

public class Car extends Vehicle
{
public String name;
public int places;
public void show()

{
System.out.println("The car is a " + name);
System.out.println("It has " + places + "places.");
}

}

typical:

classes (Car) with data (name, places) and methods
(show)

usefulness of object hierarchies in biology

for example:

organ

leaf flower internode root segment

broad
leaf

needle coarse
r.s.

fine
r.s.

behaviour
(under certain
conditions)

Simulating an ecosystem:

behaviour
(under certain
conditions)

determine laws (rules)
controlling behaviour

Simulating an ecosystem:

rule-based paradigm

computer = machine which transforms structures

There is a current structure (e.g., a graph) which is
transformed as long as it is possible.
Work process: search and application.
matching: search for a suitable rule,
rewriting: application of the rule, thereby transformation of the structure.

rule-based paradigm

computer = machine which transforms structures

There is a current structure (e.g., a graph) which is
transformed as long as it is possible.
Work process: search and application.
matching: search for a suitable rule,
rewriting: application of the rule, thereby transformation of the structure.

programme = set of transformation rules

to find a programme: specification of rules.

programming languages: L-system languages, AI languages,
Prolog, ...

Example:

a graph grammar

rule:

Example:

a graph grammar

rule:

application:

rule systems for the replacement of
character strings

in each derivation step parallel
replacement of all characters for
which there is one applicable rule

by A. Lindenmayer (botanist)
introduced in 1968 to model growth
of filamentous algae

L-systems (Lindenmayer systems)

Aristid Lindenmayer (1925-1989)

Dynamical description of structures

L-systems:

some results

L-systems mathematically:

a triple (Σ, α, R) with:

Σ a set of characters, the alphabet,

α a string with characters from Σ, the start word (also
"Axiom"),

R a set of rules of the form

character →→→→ string of characters;

with the characters taken from Σ.

A derivation step (rewriting) of a string consists of the
replacement of all of its characters which occur in left-hand
sides of rules by the corresponding right-hand sides.

Convention: characters for which no rule is applicable stay
as they are.

Result:

Derivation chain of strings, developed from the start word
by iterated rewriting.

α → σ1 → σ2 → σ3 →

Example:

alphabet {A, B}, start word A
set of rules:

A → B
B → AB

A

Example:

alphabet {A, B}, start word A
set of rules:

A → B
B → AB

B

Example:

alphabet {A, B}, start word A
set of rules:

A → B
B → AB

AB

parallel replacement

Example:

alphabet {A, B}, start word A
set of rules:

A → B
B → AB

BAB

Example:

alphabet {A, B}, start word A
set of rules:

A → B
B → AB

BAB

Example:

alphabet {A, B}, start word A
set of rules:

A → B
B → AB

ABBAB

Example:

alphabet {A, B}, start word A
set of rules:

A → B
B → AB

derivation chain:
A → B → AB → BAB → ABBAB → BABABBAB

→ ABBABBABABBAB → BABABBABABBABBABABBAB
→ ...

Example:

alphabet {A, B}, start word A
set of rules:

A → B
B → AB

derivation chain:
A → B → AB → BAB → ABBAB → BABABBAB

→ ABBABBABABBAB → BABABBABABBABBABABBAB
→ ...

geometrical visualization:

required for modelling biological structures in space:
a geometrical interpretation

Thus we add:

• a function which assigns to each string a subset of 3-D space

„interpreted“ L-system processing

α → σ1 → σ2 → σ3 →

↓ ↓ ↓
S1 S2 S3

S1, S2, S3, ... can be seen as developmental steps of an
object, a scene or an organism.

For the interpretation:

turtle geometry

the turtle command set becomes a subset of the
character set of the L-system.

Symbols which are not turtle commands are ignored by
the turtle.

→ connection with imperative paradigm

A “botanical“ example:

rule:

a bud (B) is replaced by a shoot (F0),
2 lateral buds and an apical bud

Description by L-system:

B → F0 [RU(-30) B] [RU(+30) B] B

imperative object oriented rule based

Java

XL

The programming language XL:
a synthesis of three paradigms

„eXtended L-system language“

programming language which makes parallel graph-
grammars (extended L-systems) accessible in a simple way

let‘s come back to turtle geometry...

Turtle geometry

„turtle": virtual device for drawing or construction
in 2-D or 3-D space

• able to store information (graphical and non-
graphical)

• equipped with a memory containing state
information (important for branch construction)

• current turtle state contains e.g. current line
thickness, step length, colour, further properties
of the object which is constructed next

Turtle commands in XL (selection):

F0 "Forward", with construction of an element
(line segment, shoot, internode...),
uses as length the current step size
(the zero stands for „no explicit specification of length")

M0 forward without construction (Move)

L(x) change current step size (length) to x

LAdd(x) increment the current step size to x

LMul(x) multiply the current step size by x

D(x), DAdd(x), DMul(x) analogously for current
thickness

P(c) change current colour to c (= 0 .. 15)
F(x), F(x,d), F(x,d,c) forward and construct cylinder

with x = length, d = thickness, c = colour
RU(a) rotate right by a degrees

Repetition of substrings possible with "for"

e.g., for ((1:3)) (A B C)

yields A B C A B C A B C

what is the result of the interpretation of

L(2) for ((1:6))
(F0 RU(90) LMul(0.8)) ?

L(2) for ((1:6))
(F0 RU(90) LMul(0.8))

How to execute a turtle command sequence
with GroIMP

write into a GroIMP project file (or into a file with filename
extension .rgg):

protected void init()

[

Axiom ==> turtle command sequence ;

]

Turtle geometry with GroIMP

Example: Drawing a triangle

protected void init()
[Axiom ==> RU(30) F(10) RU(120) F(10) RU(120) F(10)]

see file sm09_e01.rgg

Variations of the spiral pattern

Variations of the spiral pattern

...and more...:
for ((1:20)) (for ((1:36))

(F0 RU(165) F0 RU(165)) RU(270))

...and more...:
for ((1:20)) (for ((1:36))

(F0 RU(165) F0 RU(165)) RU(270))

How to draw a “circle“

How to draw a “circle“

Result?

One more example:
L(100) D(3) RU(-90) F(50) RU(90) M0 RU(90) D(10) F0 F0

D(3) RU(90) F0 F0 RU(90) F(150) RU(90) F(140) RU(90)

M(30) F(30) M(30) F(30) RU(120) M0 Sphere(15)

generates

Extension to 3-D graphics:

turtle rotations by 3 axes in space

head

left

up

Extension to 3-D graphics:

turtle rotations by 3 axes in space

RHRL

RU

Extension to 3-D graphics:

turtle rotations by 3 axes in space

3-D commands:

RU(45) rotation of the turtle around the "up" axis by 45°

RL(...), RH(...) analogously by "left" and "head" axis

up-, left- and head axis form an orthogonal spatial coordinate
system which is carried by the turtle

RV(x)rotation "to the ground" with strength given by x

RG rotation absolutely to the ground (direction (0, 0, -1))

Branches:
realization with memory commands

[put current state on stack
(last-in-first-out storage)

] take current state from stack
and let it become the current state
(thus: end of branch!)

rule systems for the replacement of
character strings

in each derivation step parallel
replacement of all characters for
which there is one applicable rule

interpreted L-systems:

turtle command language is subset
of the alphabet of the L-system

L-systems (Lindenmayer systems)

Aristid Lindenmayer (1925-1989)

Remember:

Example:

rules
A ==> F0 [RU(45) B] A ;
B ==> F0 B ;

start word A

(A and B are normally not interpreted geometrically.)

interpretation
by
turtle geometry

example space filling curve:

Axiom ==> L(10) RU(-45) X RU(-45) F(1) RU(-45) X;

X ==> X F0 X RU(-45) F(1) RU(-45) X F0 X

traditional Indian kolam
„Anklets of Krishna“

example for a fractal:

Koch curve
Axiom ==> RU(90) F(10);

F(x) ==> F(x/3) RU(-60) F(x/3) RU(120) F(x/3) RU(-60) F(x/3)

.

cf. sample file sm09_e02.rgg :

closed Koch curve, developed from triangle

protected void init()
[Axiom ==> RU(50) F(10) RU(120) F(10) RU(120) F(10);]

// public method for interactive usage in GroIMP
// (via button):
public void application()
// rules must be set in [] and finished with ;
[

// each F() is replaced by 4 smaller F()
// the length of the F on the left-hand side is taken over
// by x to the right-hand side

F(x) ==> F(x/3) RU(-60) F(x/3) RU(120) F(x/3) RU(-60) F(x/3);
]

example with branching:

F0 ==> F0 [RU(25.7) F0] F0 [RU(-25.7) F0] F0;

Result after 7 steps:

(start word L(10) F0)

sample file sm09_e02b.rgg

F0 ==> F0 [RU(25.7) F0] F0 [RU(-25.7) F0] F0;

branching, alternating branch position and shortening:

Axiom ==> L(10) F0 A;

A ==> LMul(0.5) [RU(90) F0] F0 RH(180) A;

in XL, A must be declared
as module before:

module A;

sample file sm09_e02c.rgg

Declaration of new modules (which are not visible):

module A;
module B;
protected void init()

[Axiom ==> L(1) A;]
public void run()

[A ==> F0 [RU(45) B] A;
B ==> F0 B;]

sample file sm09_e02d.rgg

How to declare new modules with geometrical interpretation:

module A extends Sphere(0.1);
module B extends Sphere(0.08);
protected void init()

[Axiom ==> L(1) P(14) A;]
public void run()

[A ==> F0 [RU(45) B] A;
B ==> F0 B;]

sample file sm09_e02e.rgg

extension of the concept of symbol:

allow real-valued parameters not only for turtle commands like
"RU(45)" and "F(3)", but for all characters

→ parametric L-systems

• arbitrarily long, finite lists of parameters
• parameters get values when the rule matches

Example:

rule A(x, y) ==> F(7*x+10) B(y/2)

current symbol is e.g.: A(2, 6)
after rule application: F(24) B(3)

parameters can be checked in conditions
(logical conditions with Java syntax):

A(x, y) (x >= 17 && y != 0) ==>

sample file sm09_e03.rgg :

// Example of a simple tree architecture (Schoute architecture)

//----------- Extensions to the standard alphabet ----------
//Shoot() is an extension of the turtle-command F() and stands for an annual shoot
module Shoot(float len) extends F(len);

// Bud is an extension of a sphere object and stands for a terminal bud
// Its strength controls the length of the produced shoot in the next timestep
module Bud(float strength) extends Sphere(0.2)
{{ setShader(RED); setTransform(0, 0, 0.3); }};
//---

protected void init ()
[// start structure (a bud)

Axiom ==> Bud(5);
]

public void run ()
[

// a square bracket [] will indicate a branch
// (daughter relation)
// Rotation around upward axis (RU) and head axis (RH)
// Decrease of strength of the Bud (each step by 20%)

Bud(x) ==> Shoot(x) [RU(30) Bud(0.8*x)] [RU(-30) Bud(0.8*x)];
]

Test the examples

sm09_e04.rgg two blocks of rules, conditions

sm09_e05.rgg alternating positions of branches,
object (bud) with 2 parameters

sm09_e07.rgg colour specifications for single objects,
how to give names to objects

How to define colours with XL

• Turtle command P

• method setShader

• method setColor

Test the examples

sm09_e08.rgg using your own modules as abbreviations

sm09_e21.rgg different ways to position lateral branches

A further parametric L-system with conditions:

Context-sensitive L-systems

Often, the development of some object is influenced
by a neighbour object

Context sensitivity:

• checking for a context (in the representing string
code) which must be present in order for the rule to be
applicable

• in XL, the context is given in (* ... *)

Examples:

// left context

Examples:

see also sm09_e14.rgg, sm09_e15.rgg

// left context

// right context

Further example for context sensitivity
const int green = 2, blue = 3, red = 4;
module A(int age);
module B(super.length, super.color) extends F(length, 3, color);
Axiom ==> A(0);
A(t), (t < 5) ==> B(10, green) A(t+1);
A(t), (t == 5) ==> B(10, red);
B(s, green) (* B(r, red) *) ==> B(s, red);
B(s, red) ==> B(s, blue) [RH(random(0, 360)) RU(30) F(30, 1, 14)];

Usage of imperative code in XL programmes

Commands like the assignment of values to variables,
additions, function calls, output (print commands) etc. are
specified in the same way like in Java and enclosed in braces
{ ... } .

Examples:

int i; // declaration of an integer variable with name i

float a = 0.0; // declaration and initialization of a floating-point var.

int[] x = new int[20]; // declaration of an array
// of length 20; access: x[0], ..., x[19]

float[] y = { 0.1, 0.2, 0.7, -1.4 };

// declaration and initialization of an array

i = 25; // assignment

i++; // i is incremented by 1

i--; // i is decremented by 1

Nesting of rule-oriented blocks [...] and imperative blocks { ...}

=

Nesting of rule-oriented blocks [...] and imperative blocks { ...}

// alternatively:

=

usage of imperative code (continued)

i += 5; // i is incremented by 5

i -= 5; // i is decremented by 5

i *= 2; // i is doubled

i /= 3; // i gets the value i/3

n = m % a; // n gets assigned the rest of m from integer division by a

x = Math.sqrt(2); // x gets assigned the square root of 2

if (x != 0) { y = 1/x; } // conditional assignment of 1/x to y

while (i <= 10) { i++; } // loop: as long as i ≤ 10,
// i is incremented by 1

for (i = 0; i < 100; i++) { x[i] = 2*i; } // imperative
// for-loop

if (i == 0) { ... } // test for equality („=“ would be assignment!)

The most important primitive data types:

int integers

float floating-point numbers

double floating-point numbers, double precision

char characters

void void type (for functions which return no value)

More detailed overview:

type range of values

mathematical constants:

Math.PI π

Math.E e

logical operators:

&& and

|| or

! not

mathematical functions:

Math.abs absolute value Math.sqrt square root

Math.acos arcus cosine Math.tan tangens

Math.asin arcus sine Math.toDegrees

Math.atan arcus tangens Math.toRadians

Math.cos cosine conversion degrees ↔ radians

Math.exp exponential function ex

Math.log natural logarithm

Math.max maximum of two numbers

Math.min minimum of two numbers

Math.round functin for rounding

Math.sin sine

sm_progbsp01.rgg: writes the numbers from 1 to 10
to the GroIMP console

protected void init()

{

int i;

for (i=1; i<= 10; i++)

println(i);

println("end.");

}

sm_progbsp02.rgg: writes odd square numbers

protected void init()

{

int a, b;

for (a = 1; a <= 10; a++)

{

b = a*a;

if (b % 2 != 0) println(b);

}

println("end.");

}

sm_progbsp03.rgg: writes the Fibonacci numbers

protected void init()

{

int i;

int[] fibo = new int[20]; /* array declaration */
fibo[0] = fibo[1] = 1;

for (i=2; i <= 19; i++)

fibo[i] = fibo[i-1] + fibo[i-2];

for (i=0; i <= 19; i++)

println(fibo[i]);

println("end.");

}

sm_progbsp04.rgg: Usage of a function

/* a simple imperative programme:
A function written by the user calculates x2 + 1;
this is evaluated for x from 0 to 1 in steps by 0.1.
Be aware of rounding errors and of the correct upper limit for x. */

public float function(float x)

{

return x*x + 1;

}

protected void init()

{

float a = 0.0; /* floating point number */
while (a <= 1.00001)

{

println(function(a)); /* apply function and print */

a += 0.1; /* increment a */
}

println("end.");

}

test the examples

sm09_e20.rgg usage of arrays

sm09_e22.rgg for-loop for lateral branches

Remember:

parameters can be checked in conditions
(logical conditions with Java syntax):

A(x, y) (x >= 17 && y != 0) ==>

test the examples

sm09_e11.rgg conditions for rule applications

sm09_e13.rgg connection of two conditions
with logical “and“ (&&)

Stochastic L-systems
usage of pseudo-random numbers

Example:
deterministic stochastic

Axiom ==> L(100) D(5) A;

A ==> F0 LMul(0.7) DMul(0.7)
[RU(50) A] [RU(-10) A];

Axiom ==> L(100) D(5) A;

A ==> F0 LMul(0.7) DMul(0.7)
if (probability(0.5))
([RU(50) A] [RU(-10) A])

else
([RU(-50) A] [RU(10) A]);

XL functions for pseudo-random numbers:

Math.random() generates floating-point random number
between 0 and 1 (uniformly distributed)

random(a, b) generates floating point random number
between a and b (uniformly distributed)

irandom(j, k) generates integer random number
between j and k (uniformly distributed)

normal(m, s) generates normally-distributed random
numbers with mean m and standard
deviation s

probability(x) gives 1 with probability x,
0 with probability 1–x

XL functions for pseudo-random numbers:

Math.random() generates floating-point random number
between 0 and 1 (uniformly distributed)

random(a, b) generates floating point random number
between a and b (uniformly distributed)

irandom(j, k) generates integer random number
between j and k (uniformly distributed)

normal(m, s) generates normally-distributed random
numbers with mean m and standard
deviation s

probability(x) gives 1 with probability x,
0 with probability 1–x

setSeed(n) determines a start value for the
pseudo-random number generator

XL functions for pseudo-random numbers:

Math.random() generates floating-point random number
between 0 and 1 (uniformly distributed)

random(a, b) generates floating point random number
between a and b (uniformly distributed)

irandom(j, k) generates integer random number
between j and k (uniformly distributed)

normal(m, s) generates normally-distributed random
numbers with mean m and standard
deviation s

probability(x) gives 1 with probability x,
0 with probability 1–x

test the example

sm09_b19.rgg stochastic L-system

How to create a random distribution in the plane:
Axiom ==> D(0.5) for ((1:300))

([Translate(random(0, 100), random(0, 100), 0)

F(random(5, 30))]);

view from above oblique view

How to create a GroIMP project with textures from graphics files
(e.g., photos of leaves or bark)

1. File → New → RGG Project

2. insert name of the RGG file (text file)

3. delete the default programme from the GroIMP editor, write new
programme or insert it from another source file

4. store file in the editor (automatic compilation must be successful)
- textured objects are still shown in simplified form (without textures)

5. Panels → Explorers → 3D → Shaders → Object → New → Lambert

6. click twice on the name „Lambert“ (with delay between the clicks) (or F2),
overwrite it with the name which is foreseen in the programme (argument
of the function „shader(...)“), finish with <return> (don‘ forget this!!)

7. doubleclick on sphere icon → Attribute Editor opens

8. click there on: Diffuse colour → Surface Maps → Image

9. click there on: Image [?] → From File

how to create a project
(continued)

10. choose image file, „open“

11. „Add the file“: OK

12. store editor file again / compile

- textured objects are now shown with texture

13. to store the complete project:

File → Save, write name of the project (must not necessarily coincide
with the name of the RGG source code file).

test the example

sm09_e10.gsz usage of a surface texture
(leaf texture)

A simple GroIMP project with textures:

Suggestions for team session:

Create the following simple branching patterns with XL
and add colours to their elements

Suggestions for team session (2):

Create the following patterns as textured structures with XL

