

Abteilung Ökoinformatik. Biometrie und Waldwachstum

Tabellenkalkulation und Datenbanken

1. Semester Bachelorstudiengang Forstwissenschaften und Waldökologie

Winfried Kurth

(Abteilung Ökoinformatik, Biometrie und Waldwachstum) mit

Thomas Hay, Jonas Gajowski, Max Gehrmann, Jan-Hendrik Schattenberg

unter Verwendung von Vorarbeiten von Dirk Lanwert

Teil des Moduls "Angewandte Informatik (inclusive GIS)":

- Tabellenkalkulation und Datenbanken (diese Veranstaltung)
- Raumbezogene Informationssysteme (beginnt am 5. 11., 14:15, ebenfalls im MN08)

Termine: 05.11., 12.11., 26.11., 03.12., 10.12. 2025

gemeinsame Prüfung (90 Min. eKlausur im "Blauen Turm"): 16. 3. 2026

Gliederung

- Begriff "Informatik"
- Inhalte
- Organisation
- Das Lehrmaterial
- Übungen

- Wissenschaft von den informationsverarbeitenden Systemen
- engl.: "computer science"
- entstanden aus Mathematik, Ingenieurwissenschaften und Linguistik
- als eigene Wissenschaft seit ca. Mitte 20. Jh.
 (Alan Turing, John von Neumann)

Abteilung Ökoinformatik. Biometrie und Waldwachstum

Gegenstände:

- Theorie der Berechenbarkeit
- Abschätzung von Berechnungsaufwand für Probleme ("Komplexität")
- Formale Sprachen, Programmierung
- Softwaretechnik
- Rechnerarchitektur, Schaltungslogik, Entwurf von Chips
- Aufbau von Betriebssystemen
- Aufbau von Datenbanken
- Rechnernetze, Webtechnologien
- Maschinelles Lernen
- Sicherheit von Systemen

Abteilung Ökoinformatik. Biometrie und Waldwachstum

• weitere Gegenstände:

- Mobilkommunikation
- Sensornetze
- neuronale Netze
- Computergrafik
- Bildanalyse / Computersehen
- Sprachverstehen durch Computer
- Robotik
- virtuelle Realität
- Künstliches Leben
- Künstliche Intelligenz (KI)

- in dieser Veranstaltung: (fast) *nichts von alledem!*
- Ausbildung in der Anwendung spezieller Software-Werkzeuge für die Praxis
- Tabellenkalkulation: MS-Excel
- Datenbank: MS-Access
- → damit lassen sich in der Praxis schon sehr viele Aufgaben lösen!

Inhalte

Abteilung Ökoinformatik. Biometrie und Waldwachstum

- Microsoft Excel (Tabellenkalkulationssystem)
- Microsoft Access (Datenbanksystem)

Microsoft Office Lizenz für Studierende: siehe

https://www.uni-goettingen.de/de/624709.html

Das Prinzip: Selbstbestimmtes Lernen

- Wir empfehlen, "was"
- Sie bestimmen, "wann"
- Sie bestimmen, "wo"
- Wir helfen!
- Wichtig: Wenn Sie nicht fragen, können wir keine Antwort geben!
- Wichtig: Bereiten Sie sich rechtzeitig vor.

Gründe für Einsatz von E-Learning

- mehr Flexibilität durch selbstbestimmtes Lernen
- e-Learning-Erfahrung als Zusatzkompetenz
- besondere Eignung des Stoffes in diesem Kurs: Kein tieferes theoretisches Verständnis erforderlich, keine Außenarbeiten, keine Teamarbeit...

Online-Material finden Sie hier:

- https://studip.uni-goettingen.de
 - dieser Kurs / Lernmodule Angewandte Informatik / Tabellenkalkulation und Datenbanken

Organisation: Termine

- 1. Vorlesung (heute)
- Selbststudium mit Online-Material
 - 2 Übungstermine Mo 11:15-13:00, Do 11:15-13:00 Präsenz-Angebot in den CIP-Räumen (Büsgenweg 4) mit Betreuung (wichtig nur wenn jemand Fragen hat!)
 - beschränkte Kapazität
- Prüfung (zusammen mit "Raumbezogene Informationssysteme")
 - 1. Anmelden im FlexNow
 - 2. Zuordnung zu Prüfungsgruppen (Raum / genaue Zeit)
 - ca. 7 Tage vor der Prüfung, kann sich auch noch kurzfristig ändern!
 - 3. 90-min. ePrüfung am Computer, 16. März 2026
 - in der entsprechenden Prüfungsgruppe

Übungsgruppen:

- 2 Übungsgruppen
 - Montag 11:15-13:00, Donnerstag 11:15-13:00
- Beantwortung individueller Fragen
- bringen Sie Ihren Laptop mit! Keine Rechner mehr vorhanden.
- mindestens 1 Betreuer (Tutor) anwesend
- Beginn: Mo, 3. 11. 2025
- eigenständige Übungen auch zu anderen Zeiten und zu Hause möglich!
- zu Lizenzen siehe Hinweis im StudIP

Übungsgruppen:

Abteilung Ökoinformatik. Biometrie und Waldwachstum

• **Vorläufige** Aufteilung auf die Übungsgruppen: nach Anfangsbuchstabe des Nachnamens

- A - L: Montag 11:15-13:00

- M - Z: Donnerstag 11:15-13:00

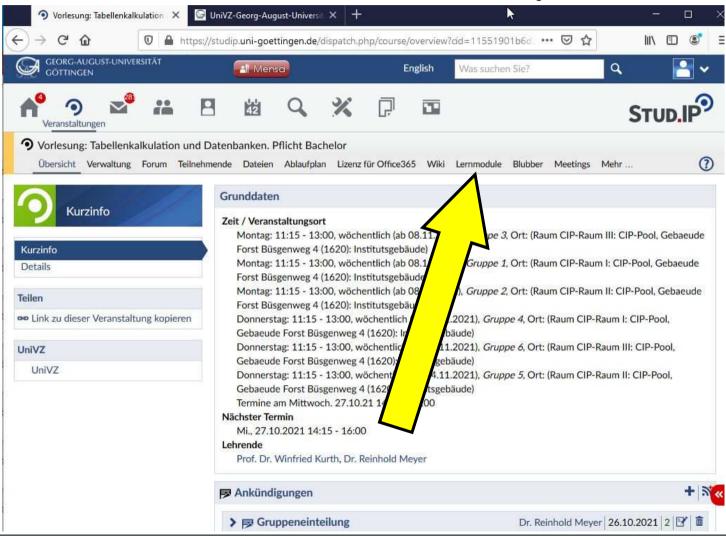
Änderungen (Tausch) möglich!

Bitte nutzen Sie die betreuten Zeiten nur bei tatsächlichem Bedarf!

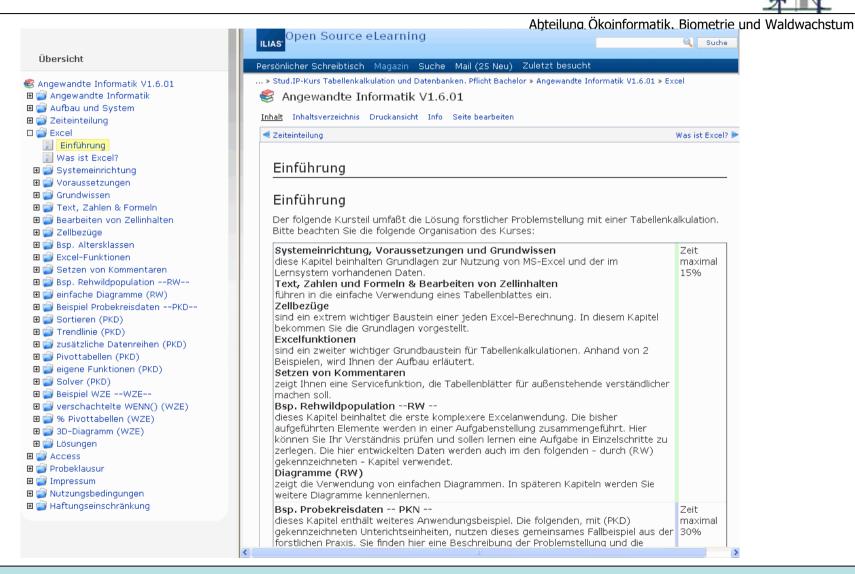
Prüfung

- Nach Semesterende als praktische Prüfung: 90 Minuten
 *** gemeinsame ePrüfung mit Teilmodul
 "Raumbezogene Informationssysteme" ***
- Anmelden im FlexNow-Prüfungsverwaltungssystem
- eventuelle Zuordnung zu Gruppen erfolgt durch uns

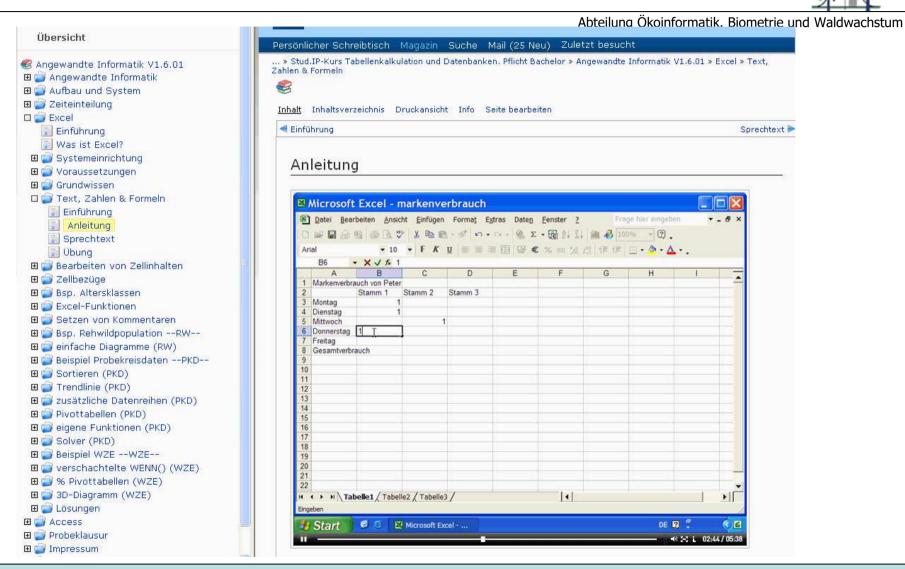
Wichtig für die Prüfung!

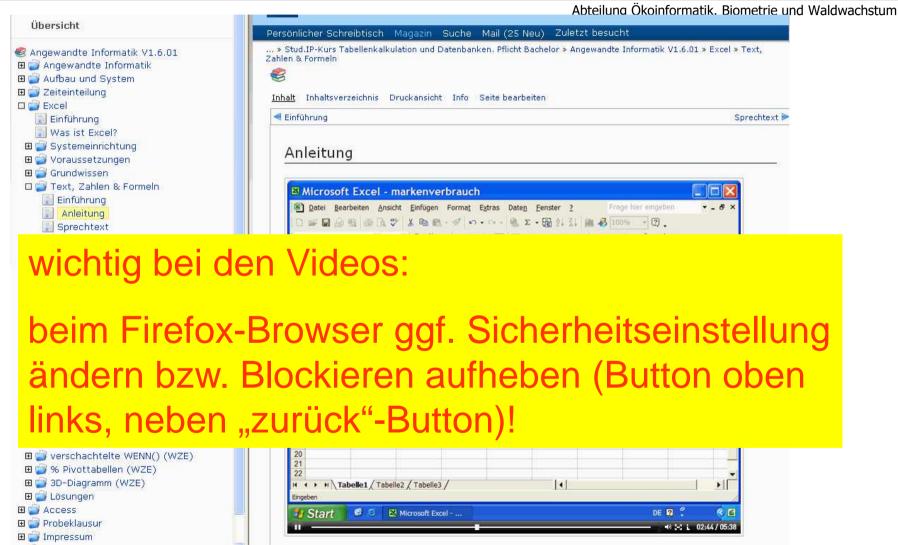


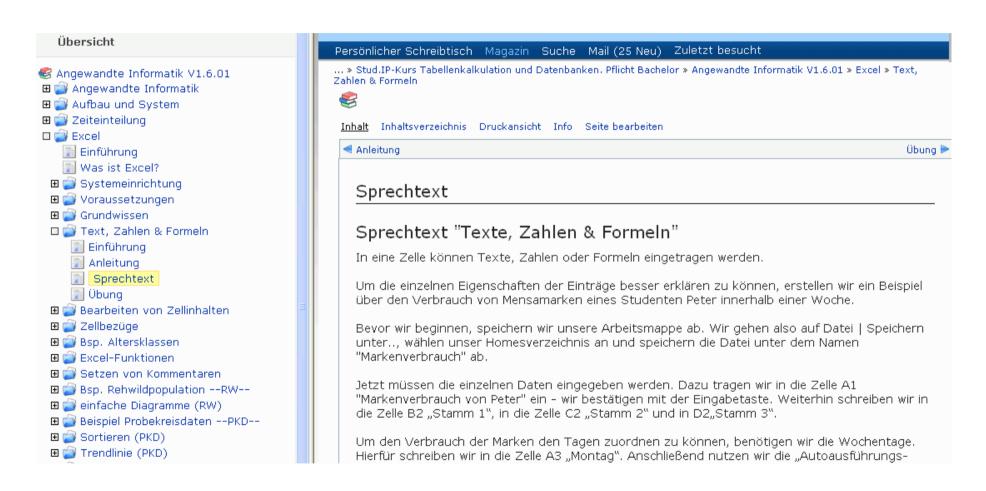
- Benotete Klausur
- Wir stellen eine Probeklausur für den Teil "Tabellenkalkulation und Datenbanken" (unter der Bezeichnung "Angewandte Informatik") ins Netz (auf StudIP)

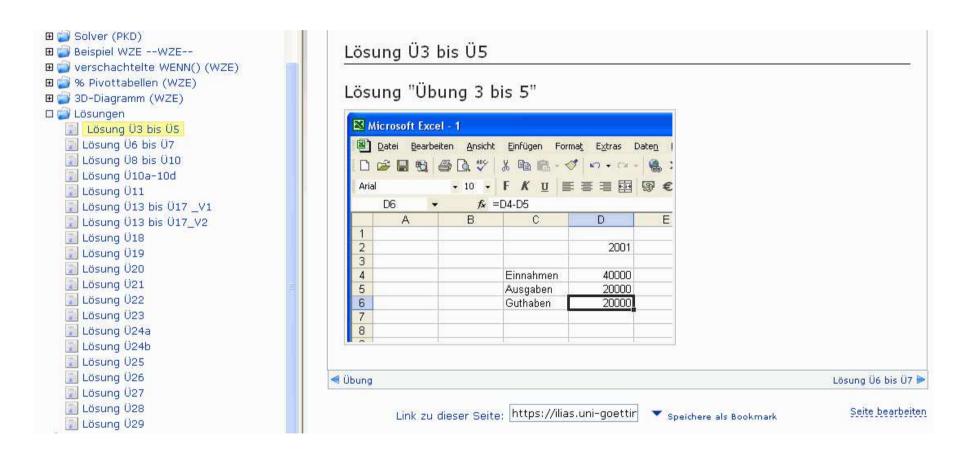


- E-Learning-Kurs mit
 - Texten
 - Filmen
 - Übungsaufgaben
 - Lösungen
- https://studip.uni-goettingen.de
- Wichtig: Headset besorgen!







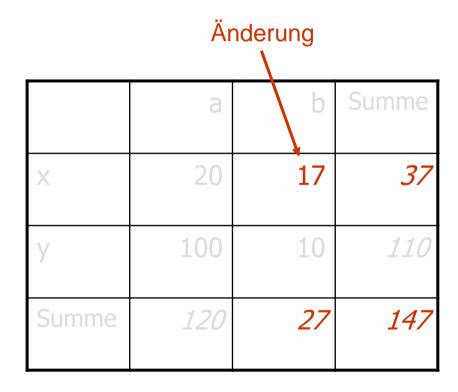


Abteilung Ökoinformatik. Biometrie und Waldwachstum

Was ist Tabellenkalkulation?

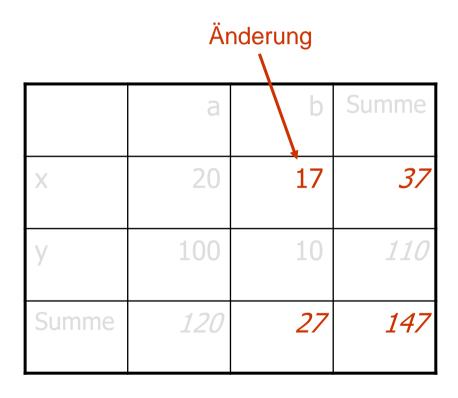
	а	b	Summe
X			
У			
Summe			

Abteilung Ökoinformatik. Biometrie und Waldwachstum


Was ist Tabellenkalkulation?

	а	b	Summe
X	20	15	35
У	100	10	110
Summe	120	25	145

Abteilung Ökoinformatik. Biometrie und Waldwachstum


Was ist Tabellenkalkulation?

Abteilung Ökoinformatik. Biometrie und Waldwachstum

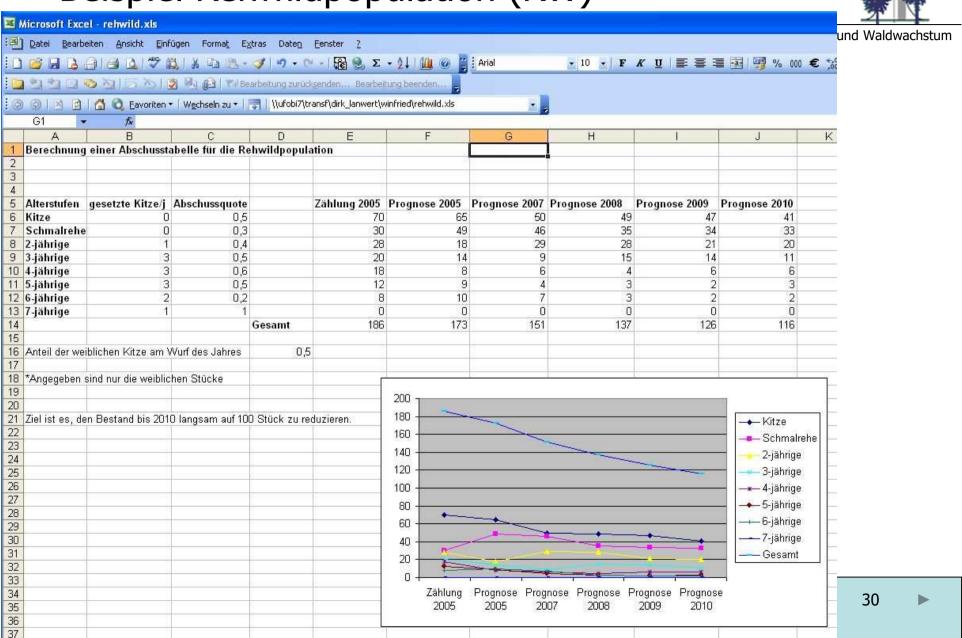
Was ist Tabellenkalkulation?

Praxisbeispiele?

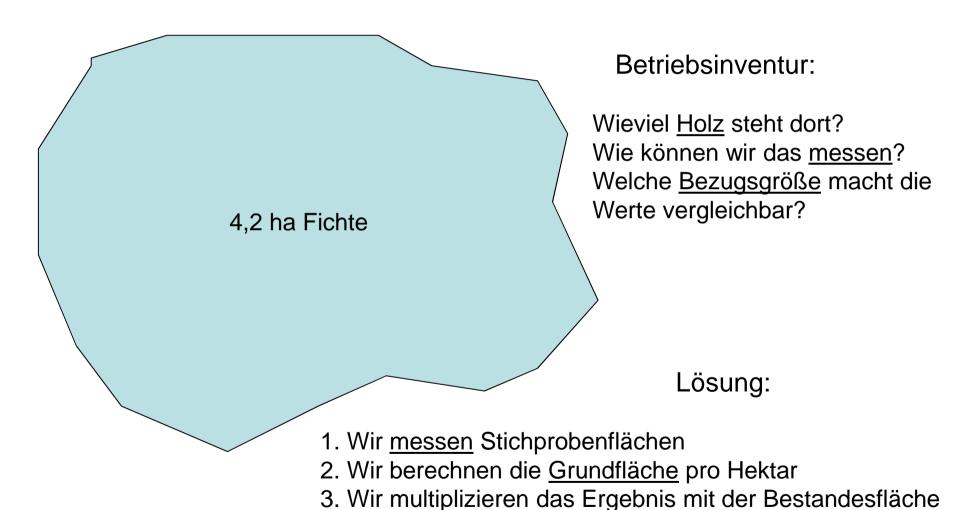
Wozu brauche ich das Ganze?

Abteilung Ökoinformatik. Biometrie und Waldwachstum

Beispiele (im Lernmaterial):


• Rehwildpopulation (Abschusstabelle)

Betriebsinventur (Probekreisdaten)



Beispiel Rehwildpopulation (RW)

Probekreise: Was sind das?

Grundfläche pro Baum

Abteilung Ökoinformatik. Biometrie und Waldwachstum

Ist: die Querschnittsfläche eines Baumes in 1,3 m Höhe

gemessen in: Quadratmetern

Frage: Wie berechnet man die Querschnittsfläche eines Baumes anhand des BHD (Brusthöhendurchmesser = Durchm. in 1,3 m Höhe) ?

$$q_{\text{Baum}} = \frac{\Pi}{4} \cdot d_{\text{Baum}}^2$$

Frage: In welcher Einheit wird der BHD gemessen? Welche Einheit hat q_{Baum} ?

$$cm^2$$

Grundfläche pro Hektar

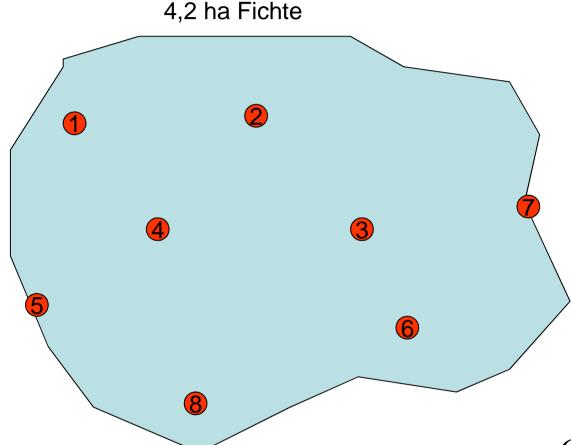
Abteilung Ökoinformatik. Biometrie und Waldwachstum

Ist: die Querschnittsfläche aller Bäume auf einem Hektar. angegeben in: Quadratmeter / Hektar (100 Meter x 100 Meter).

Frage: Wie berechnet man die Grundfläche der Bäume?

$$\sum_{1..n} q_{\text{Baum}} \qquad \text{(in cm}^2\text{)}$$

Frage: Wie rechnet man Quadratzentimeter in Quadratmeter um?

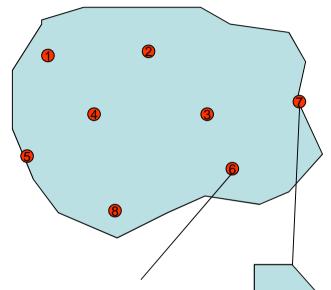

$$1 \text{ m}^2 = (100 \text{ cm})^2 = 10 000 \text{ cm}^2$$

Daraus folgt:

$$\sum_{1..n} q_{\text{Baum}} (in \text{ m}^2) = \frac{\sum_{1..n} q_{\text{Baum}} (in \text{ cm}^2)}{10000}$$

Querschnittsfläche pro Probekreis

- Messen: Bäume auf der Stichprobenfläche
- 2. Berechnen der Baumquerschnittsflächen (cm²)
- 3. Addieren der Querschnittsflächen
- Dividieren durch 10000
 (=> Angabe in m²)
- => Querschnittsfläche für den Probekreis.


$$Q_{\text{Probekreis}} = \frac{\sum_{1..n} q_{\text{Baum}} (in \text{ cm}^2)}{10000}$$

Vom Probekreis zum Hektar

Abteilung Ökoinformatik. Biometrie und Waldwachstum

4,2 ha Fichte

Voller Probekreis 6: Radius 12 m Fläche 530,92 m² Q = 1.5 m² Berechnen des Verhältnisses Probekreis / ha

$$\frac{10000 \, m^2}{\text{Probekreisfläche } m^2} \cdot Q_{\text{Probekreis}}$$

→ Für Probekreis 6:

$$\frac{10000\,m^2}{530,92\,m^2}\cdot 1,5$$

Geteilter Probekreis 7: Radius 12 m Fläche 530,92 m² davon 270,03 m² innerhalb Q = 0,8 m²

→ Für Probekreis 7:

$$\frac{10000\,m^2}{270,03\,m^2}\cdot 0.8$$

Grundfläche pro Hektar

Abteilung Ökoinformatik. Biometrie und Waldwachstum

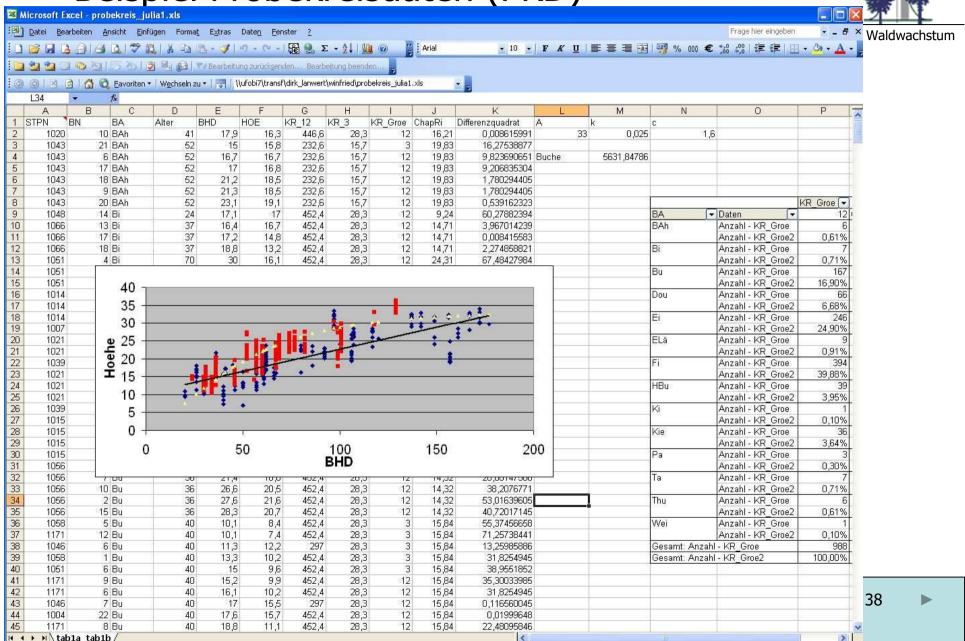
Querschnittsfläche aller Bäume in Quadratmeter / Hektar:

$$G(m^2/ha) = \frac{\sum_{1..n} q_{Baum} (in \text{ cm}^2)}{10.000} \cdot \frac{10.000}{\text{Probekreisfläche} (in \text{ m}^2)}$$

oder

$$G(m^2/ha) = \frac{\sum_{1..n} q_{Baum} (in cm^2)}{Probekreisfläche (in m^2)}$$

Grundfläche pro Hektar



Abteilung Ökoinformatik. Biometrie und Waldwachstum

Mittelwert bei mehreren Probekreisen

$$Mittelwert = \frac{\sum_{1..n} G(m^2 / ha) \text{ errechnet durch Probekreis}}{\text{Anzahl Probekreise}}$$

Beispiel Probekreisdaten (PKD)

Abteilung Ökoinformatik. Biometrie und Waldwachstum

Bei Problemen nehmen Sie bitte Kontakt auf:

Abteilung Ökoinformatik, Biometrie und Waldwachstum

Büsgenweg 4

wk<at>informatik.uni-goettingen.de

thomas.hay<at>uni-goettingen.de