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Zusammenfassung 

Die agentenbasierte Modellierung (ABM) oder individuenbasierte Modellierung (IBM), wie sie in der 
Ökologie und Biologie genannt wird, ist inzwischen ein weitverbreiteter Modellierungsansatz, wenn lokale 
Interaktionen auf Mikrolevel entscheidend für die Beschreibung von Mustern auf dem Makrolevel sind. 
Der vorliegende Beitrag gliedert sich in vier Abschnitte. Im ersten Teil wird ein Überblick über die 
Entwicklung und Definition von ABM in den Forschungsgebieten Informatik, Soziologie, Ökonomie und 
Ökologie gegeben. Dieser Abschnitt schließt mit einer Diskussion der Gemeinsamkeiten und 
Unterschiede von agentenbasierter Modellierung in den unterschiedlichen Forschungsgebieten und einer 
Darstellung der gegenwärtigen Probleme und Herausforderungen im Bereich der agentenbasierten 
Modellierung. Eine dieser Schwierigkeiten ist das Fehlen anerkannter Standards im Bereich der 
Kommunikation und Programmierung agentenbasierter Modelle. Der zweite Abschnitt nimmt diesen 
Punkt mit einer Vorstellung verschiedener, weitverbreiteter Programmbibliotheken (Swarm, Mason, 
Repast, NetLogo) auf und geht in den dritten Abschnitt über. Dort wird NetLogo als eine mögliche 
Standardsprache bzw. ein Standardwerkzeug für die Kommunikation von ABM vertieft dargestellt. Im 
letzten Abschnitt werden Erweiterungen für NetLogo, entwickelt von den Autoren dieses Artikels, 
vorgestellt. Dies beinhaltet die MultiView-Extension, die R-Extension und ein NetLogo-Plug-In für den 
Pygments Syntax Highlighter. Der Beitrag schließt mit einem Ausblick auf weitere Werkzeuge und 
Erweiterungen für NetLogo ab, die NetLogos Relevanz als Kandidat für ein(e) Standardsprache/-
werkzeug in der agentenbasierten Modellierung noch ausbauen werden.    

Summary 

Agent-based models (ABM) or individual-based models (IBM), as they are called in ecology and biology, 
are a widely used modeling approach when local interactions on the micro level are essential for the 
description of patterns on the macro level. This chapter is divided into four sections. In the first section, 
the history and definitions of ABMs in various research disciplines, namely computer science, social 
science, economics and ecology, are reviewed. This section closes with a discussion of similarities and 
differences in the different research fields and a discussion of current challenges in agent-based 
modeling. One of these difficulties is the lack of accepted standards for communication and 
programming. The second section refers to this point by a presentation of some widely used ABM 
libraries, namely Swarm, Mason, Repast and NetLogo and is followed by a more detailed description of 
NetLogo as a potential standard tool in ABM communication. In the last section extensions to NetLogo, 
developed by the authors of this chapter, are presented. This includes the MultiView-Extension, the R-
Extension and the NetLogo plug-In for the Pygments syntax highlighter. The chapter closes with an 
outlook to further tools for NetLogo which aim at making NetLogo even more relevant as a standard tool 
in ABM.  
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I. Agent-/individual-based modeling 

Introduction 

Building and using models is part of everybody’s life. For example, if we wait for the 
train, we decide where to stay so that we can get into the train fast and get a good seat. 
We include our former experience about where it is best to find a seat: in the middle, 
the front or the back of the train. Furthermore we check the other passengers waiting 
on the track. People carrying heavy luggage are slower than others and so on. But it 
will be impossible to include all information and details. Therefore, simplification and 
aggregation of the real system (abstraction) is the key in modeling. STARFIELD et al. 
(1990) called this “purposeful representation”, which means that the real system is 
represented only by those elements which are important for answering the question the 
model is designed for. Thus, the problem to solve should stand at the beginning of the 
model building process. The second step is the definition of the system and its 
boundaries which leads to a verbal, conceptual model (BOSSEL 1994) followed by the 
selection of the formal model structure with scales, state variables, processes and 
parameters. If such a model is too complex to calculate its outcome analytically, it has 
to be implemented as a computer model, called computer simulation model, before the 
model can be analyzed and developed (see Modeling Cycle in GRIMM & RAILSBACK 
2005).  
There are different reasons to perform a computer simulation. They are useful to test 
theories and to try understanding system behavior, but they are also used to make 
forecasts and to design experiments which could not be done in real life (e.g. for ethical 
or technical reasons). 
With increasing computer power and growing criticism of conventional modeling 
methods, a new approach to simulation models, agent-based modeling (ABM), 
established in different kinds of scientific fields. Since the development of ABM took 
place more or less independently in different scientific fields, they differ in definitions, 
history and context. Therefore, we will give a short overview over the most important 
sectors: computer science, sociology, economics and ecology. But it should be 
mentioned that ABM is now increasingly applied interdisciplinarily, which makes the 
following separate descriptions slightly obsolete.  

ABM in Computer Science 

The basis for agent-based modeling in many other fields has been the development of 
so-called multi-agent systems (MAS) in computer science as a part of the 
distributed artificial intelligence (DAI) research area (GREEN et al. 1997, SYCARA 
1998). The development of MAS started around the late 1970s (e.g. HEWITT 1976) but 
their wider use began only in the 1990s, mainly to distribute large computational 
problems over multiple computers (LUCK et al. 2003, WOOLDRIDGE 2005, WEISS 1999). 
Later influenced and adapted by different disciplines, it is not surprising that many 
different definitions of the term MAS and what an agent is exist (e.g. JENNINGS et al. 
1998, JENNINGS 1999). In a very general case a MAS is defined as a system which is 
composed of multiple (semi-) autonomous components to reach a common goal 
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(JENNINGS et al. 1998). Many modular software systems could be summarized under 
this weak definition. A narrower definition is given by WOOLDRIDGE & JENNINGS (1995). 
They added the requirement of using intelligent agents to their definition of MAS. Their 
(computational) agents have been characterized as autonomous, social, reactive and 
pro-active entities. In this concept, an agent takes input from the environment and 
produces actions as outputs that affect the environment but with incomplete information 
at the agent level and without a global control mechanism (WOOLDRIDGE 2002). Some 
classical examples for the use of MAS with intelligent agents can be found in computer 
games, computer networks, robotics for manufacturing, or traffic-control systems (for 
examples, see OLIVEIRA 1999, LUCK et al. 2003, SHEN et al. 2006, MOONEN 2009). But 
the more autonomous the local agents became, the more important the question about 
coordination and cooperation within the system was. These questions had strong 
similarities to the research questions in sociology (CONTE et al. 1998).     

ABM in Social Sciences 

Since some researches from the DAI area adapted ideas from social sciences, 
sociologists became aware of the MAS techniques in the 1990s, encouraged by the 
advent of personal computers and the development of object-oriented programming 
languages (EPSTEIN & AXTELL 1996, GILBERT 1999, SQUAZZONI 2010). As a part of 
computational sociology, the approach is called agent-based social simulation 
(ABSS) or just agent-based modeling (ABM) (CONTE et al. 1998, GILBERT 2008, MACY 

& WILLER 2002). In such ABMs, agents typically represent social actors which can be 
individual persons, organizations (e.g. companies), or countries (GILBERT 2008) which 
are simulated as an artificial society (EPSTEIN & AXTELL 1996). GILBERT (2008) defined 
an ABM as a “computational method that enables a researcher to create, analyze and 
experiment with models composed of agents that interact within an environment”, 
which is very similar to the definition given by WOOLDRIDGE (2005) for MAS.  
The ABM approach differs substantially from former microsimulation and system 
dynamics approaches in social computations. The latter typically consists of sets of 
differential equations which describe the change of stock variables and is known as 
“top-down” approach. In this way, individual social actors are averaged and their 
behavior is aggregated. A famous example for that kind of models is the world model of 
FORRESTER (1971), which was used by MEADOWS (1974) for predicting the ecological 
limitation of economic and demographic growth. Such models have been mainly used 
for quantitative forecasts, are often highly sensitive to the (frequently unknown) model 
parameters, and ignore the heterogeneity of individuals. Therefore, they are rarely 
appropriate for social sciences, which are mainly interested in understanding and 
explanation (GILBERT & TROITZSCH 1999).  
The classical micosimulation approach incorporates individual heterogeneity but not 
interactions between individuals (MACY & WILLER 2002). This approach is based on 
transition probabilities for each individual, which are typically derived from empirical 
data, and delivers quantitative forecasts (GILBERT & TROITZSCH 1999). Such data-driven 
microsimulations have been applied mainly to forecast the effects of policy changes 
and are highly related to macroeconomic analysis but also well established in non-
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social sciences like traffic/transportation analysis and economic research. Example 
applications in social sciences include tax-benefit analysis, analysis of demographic 
developments, social security and labour analysis. Reviews can be found in SPIELAUER 
(2007), ZAIDI & RAKE (2001) or ALGERS et al. (1997).  
With the introduction of ABM, interactions between complex, adaptive individuals 
(MACY & WILLER 2002) and the opportunity to take spatial effects into account (GILBERT 
2008) were added to social computer simulations. The main idea is to analyze the way 
in which macro-level system properties emerge from interaction of the agents on micro-
level to describe social systems (DAVIDSSON 2002). Therefore, it is mainly used for 
theory testing and development (MACY & WILLER 2002, CONTE 2009). Furthermore, the 
development of an ABM constrains the social scientist to clearly define his assumptions 
of local behavior which helps to clearly communicate basic ideas (GILBERT 2004).  
In general, ABMs are a good choice for studying social processes that do not include 
central coordination (MACY & WILLER 2002). ABMs in social science have been applied 
to the simulation of differentiation, diffusion and emergence of social order in social 
systems (for examples see listing in MACY & WILLER 2002 and references in LI et al. 
2008 and SQUAZZONI 2010) as well as to questions about demographic behavior 
(BILLARI & PRSKAWETZ 2003). Most famous models in social sciences are SCHELLING’S 
(1969, 1971) segregation model and the Sugarscape model of EPSTEIN & AXTELL 

(1996), which have often been cited and extended. However, as stated by MACY & 

WILLER (2002) and recently by HAMILL (2010), ABMs are still considered very skeptically 
by many sociologists and have been used rather rarely compared to other disciplines, 
although SQUAZZONI (2010) reported about a constant increase of ABM awareness in 
recent years. This could be the result of the increasing use of ABM techniques in 
interdisciplinary projects with socio-ecological and socio-economical contexts.   

ABM in Economics 

The neoclassical Walrasian general equilibrium (GE) model as well as the (New) 
Keynesian framework are still the most used fundamental paradigms in (Macro-) 
economics (TESFATSION 2006, OEFFNER 2008). They simplify the economic system by 
representing (averaged) agents with perfect rationality, information and foresight. 
Furthermore, interactions between agents (e.g. firms and households) take place only 
indirect, in case of Walrasian GE model, for example, by pricing using the concept of 
“Walrasian auctioneer” (OEFFNER 2008).  
Such top-down approaches were developed despite ADAM SMITH (1776) and others 
stated that economic processes are the result of parallel, local interactions between 
large numbers of individuals. Therefore, GUN (2004) criticized macroeconomic 
approaches as he wrote: “How can any reasonable person admit, that, for example, the 
evolution of the US aggregates’ results from decisions made by a single individual who 
owns all factories and who decides how much to produce, how much labor to use, how 
production will be distributed between consumption and investment, and so on?”. 
Consequently, to overcome these weaknesses the ABM approach was adapted to 
economic modeling by using heterogeneous, interacting (and learning) agents (FARMER 

& FOLEY 2009).  
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The ABM approach in economics is called agent-based computational economics 
(ACE) and is related to the field of cognitive and evolutionary economics. ARTHUR 
(2006) described this as follows: “Standard neoclassical economics asks what agent’s 
actions, strategies, or expectations are in equilibrium with (consistent with) the outcome 
or pattern these behaviors aggregatively create. Agent-based computational economics 
enables us to ask a wider question: how agent’s actions, strategies or expectations 
might react to – might endogenously change with – the pattern they create. In other 
words, it enables us to examine how the economy behaves out of equilibrium, when it 
is not at a steady state.” The beginnings of ACE are going back to the work of the 
Santa Fe Institute which started in the late 1980s with its work on describing and 
analyzing the economy as an evolving and complex system encouraged by the 
development of personal computers and object- and agent-oriented programming 
languages (RICHIARDI 2007).  
TESFATSION (2006) has defined ACE as “the computational study of economic 
processes modeled as dynamic systems of interacting agents” and an agent as 
“bundled data and behavior methods” which could represent individuals, social 
grouping and institutions, biological or physical entities. This definition is nearly 
identical to the definition of social ABMs given by GILBERT (2008), which is not 
surprising since there is no strict boundary between both disciplines. Even the aims of 
ACE have similarities to those of social ABMs. They can be divided into four main 
categories: empirical understanding, normative understanding, qualitative insight as 
well as theory generation and methodological advancement (for details see TESFATSION 
2006). Therefore, ACE can be used complementarily to mathematical theorizing as well 
as a substitute for it (PHAN 2004, AXTELL 2000). ACE have been used for example for 
the reproduction of classical cobweb theorem (e.g. ARIFOVIC 1994), for modeling 
financial/stock markets (see LEBARON 2000 for a review) as well as for simulating 
industry and labor dynamics (e.g. LEOMBRUNI & RICHIARDI 2004). Nevertheless, many 
economists still prefer the conventional mathematical models by tradition (BUCHANAN 

2009). 

ABM in Ecology 

In contrast, in the field of ecology the agent-based approach has a slightly longer 
tradition and is well established nowadays (GRIMM & RAILSBACK 2005), although there 
are critics as well (CASHWELL 2001). The development of so called individual-based 

models (IBM) is less closely related to the developments of MAS as it is the case in 
social sciences, because ecologists early became aware of the restrictions in classical 
population models (differential equation models) and looked for alternatives. The most 
obvious approach for the simulative reproduction of observed population-level effects 
was to take the heterogeneous properties of the individuals into account.  
Since sufficient computational power became available in the early 1970s, first 
ecologists started to develop such IBMs (e.g. MYERS 1976, DEANGELIS et al. 1980). 
One of these pioneer works is the forest succession model JABOWA of BOTKIN et al. 
(1972). In his review, however, GRIMM (1999) distinguishes this work, which often was 
pragmatically motivated, from the later paradigmatic motivations of the IBM approach, 
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in which IBMs are not used because of the limitation of more aggregate models but 
because of the motivation to overcome the limitations of the population-level paradigm 
of theoretical ecology. GRIMM (1999) refers to KAISER (1974) and ŁOMNICKI (1978, 1988) 
as the pioneers of the paradigmatic motivation, but noticed that still only a minority of 
ecological IBMs directly addressed theoretical issues. The main driver of the success of 
IBMs in ecology was and still is the pragmatic motivation.  
Milestones in the establishment of the IBM approach in ecology were the review of 
HUSTON et al. (1988), followed by the substantial conference proceedings of DEANGELIS 

& GROSS (1992) and the influential articles of HOGEWEG & HESPER (1990), JUDSON 

(1994), UCHMANSKI & GRIMM (1996), GRIMM (1999), ŁOMNICKI (1999), DEANGELIS & 

MOOIJ (2005) as well as the monograph of GRIMM & RAILSBACK (2005). As GRIMM & 

RAILSBACK (2005) noticed, up to mid-1990s, a clear definition of IBMs was still missing 
and the use of the term became fuzzy.  
Therefore, UCHMANSKI & GRIMM (1996) defined criteria for the classification of ecological 
models which allow separating IBMs from classical state-variable approaches (for 
details see UCHMASKI & GRIMM 1996 or GRIMM & RAILSBACK 2005): IBMs include 
(potentially) heterogeneous, discrete entities which represent real individuals. These 
individuals can be adaptive in behavior and life history. Moreover, IBMs include 
feedbacks between dynamic (food) resources and individuals. In contrast, age- or 
state-structured population models and models defining resources via constant carrying 
capacities do not fulfill these conditions. GRIMM & RAILSBACK (2005) defined such 
models in the middle between unstructured population models and IBMs.   
Over the last three to four decades hundreds of IBMs were developed in ecology 
(DEANGELIS & MOOIJ 2005). For reviews see for example GRIMM (1999), GRIMM & 

RAILSBACK (2005), HOGEWEG & HESPER (1990), DEANGELIS et al. (1990), DEANGELIS & 

GROSS (1992), DEANGELIS et al. (1994) and DEANGELIS & MOOIJ (2005). See also 
BUNSING & MAILLY (2004) and LIU & ASHTON (1995) on IBMs of forest dynamics. In case 
of modeling forests, these IBMs are sometimes called individual-tree models (e.g. by 
PRETZSCH 2009 and COATES et al. 2003). 
A family of models in biology which has some common features with IBMs is that of 
functional-structural plant models (FSPM) (GODIN & SINOQUET 2005, VOS et al. 2007). In 
an FSPM, a plant individual is decomposed into morphological units like internodes, 
leaves, root segments etc., which all have their own functions and state variables and 
which interact with each other. The three-dimensional architecture of a plant and its 
functioning are both represented in the same model. Since the morphological units are 
modeled as entities with certain autonomy, this approach can be considered as an 
extension of IBMs to a spatial scale level below that of the individual. However, FSPMs 
can also be used to model interactions between several individuals and thus the 
behavior of whole plant stands (HEMMERLING et al. 2008, COURNÈDE et al. 2010). 

Synopsis 

As we have seen, there are strong similarities in the definitions of ABMs in the different 
fields but there are also some differences. The narrowest definition gave UCHMANSKI & 
GRIMM (1996) in the field of ecology while no strict line can be drawn between ACE and 
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ABSS. In the last two fields, however, the influence of MAS from computer sciences 
was much stronger than in ecology. Whilst ABMs in social science and economy are 
often more paradigmatic and abstract, they are usually pragmatic and specific in 
ecology. Nevertheless, they have in common that they present an alternative to 
aggregated state-variable (equilibrium) models; they do not impose system-level results 
but are dedicated to answer the question how system-level patterns emerge from 
adaptive behavior and local interactions. 
Although we here focussed on the research fields computer science, sociology, 
economy and ecology, there are many other disciplines in which ABMs are increasingly 
used, often within an interdisciplinary context. Examples are ecological economics 
(e.g. HECKBERT et al. 2010 and DRECHSLER et al. 2007), marketing/socio-psychology 
(e.g. NORTH et al. 2010 and BEN SAID et al. 2002), archaeology/anthropology (e.g. 
GRIFFIN & STANISH 2007, PREMO 2007 and PREMO & KUHN 2010), microbiology (e.g. 
FERRER et al. 2008 and GINOVART et al. 2002), biomedicine/epidemiology (e.g. AN 
2009 and CARPENTER & SATTENSPIEL 2009), criminology (strongly related to ABSS, 
e.g. MALLESON et al. 2010), land-use management (e.g. POLHILL 2009 and MATTHEWS 
et al. 2007) and forest management planning (e.g. SIMON & ETIENNE 2009). 
The wide use of the ABM approach in all these disciplines has in common that it was 
strongly related to the increasing availability and power of personal computers and the 
development of object- and agent-oriented programming languages.  

Current Challenges in ABMs  

As with every method there is no light without shadow. There are several challenges as 
well as stereotypes related to the ABM approach. Some of them are shortly discussed 
in the following.  
ABMs are often seen as very data hungry (e.g. REED et al. 2002). It is true that data 
are needed when building ABMs, but it is wrong to believe that an ABM should not be 
built without complete information (STARFIELD 1997). As GRIMM & RAILSBACK (2005) and 
SQUAZZONI (2010) noticed, ABMs can be used to test hypothesis about unknown parts 
of a system and can help empiricists to identify which are the important things to 
measure. Furthermore, it can be easier to collect data at the level of the individual than 
to collect them at an (abstract) macro-level (HOGEWEG & HESPER 1990, HUSTON et al. 
1988), and the model might react less sensibly on parameter variations at the level of 
the individual (BRECKLING 2002). The main problem with the measurements is that 
results of laboratory experiments with sometimes isolated individuals/humans could be 
invalid for natural conditions. In general, GRIMM (1999) reported about a tendency 
towards an overuse of empirical knowledge in IBMs in the sense of putting all available 
data into a model. He advised to find the appropriate level of aggregation through the 
modeling process and not through availability of data or the aim to let the model (not 
the outcome) look more ‘realistic’.  
This leads directly to the next point, the difficulties in analyzing, validating and 

understanding the outcomes of an ABM due to its complexity. ABMs should be kept 
as simple as possible otherwise they could contain unnecessary details to answer the 
research question (MACY & WILLER 2002, HIEBELER 1994). Nevertheless, even in simple 
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ABMs outcomes can be hard to understand. Different guidelines about how to analyze 
ABMs are available (e.g. RICHIARDI et al. 2006, GILBERT 2008, WINDRUM et al. 2007, 
GALÁN et al. 2009); GRIMM & RAILSBACK (2005) dedicated a whole chapter to this topic. 
But an accepted standard way of analyzing ABMs is still missing.  
The communication of ABMs is also very difficult, since ABMs are simulation models 
and cannot be described completely by means of mathematics. Therefore, several 
communication protocols have been proposed. Some are based on an extension of the 
Unified Modeling Language (UML) but such approaches are usually too technical for 
non-computer scientists. The ODD protocol of GRIMM et al. (2006) is much simpler and 
allows providing a precise overview over the general properties of the model. It has the 
potential to become a standard protocol for ABMs (GRIMM et al. 2010, POLHILL 2010, 
JANSSEN et al. 2008).  
However, since the ODD protocol only provides a structure for  verbal model 
descriptions but does not specify how to document the details of the model it will be just 
one half of an overall model documentation. It does not yet provide a “lingua franca” by 
itself, which via some kind of pseudo code would allow describing all submodels 
unambiguously. In the next two sections we will discuss how the software platform 
NetLogo (WILENSKY 1999) might fill this gap. 
The last point to be discussed here is the high risk of programming “bugs” in ABM 
implementations (LOREK & SONNENSCHEIN 1999, GILBERT 2008). A bug means that the 
computer is doing something different to what the programmer/modeler intended. Such 
bugs can lead to misinterpretations of the model outcomes (AXELROD 1997).  
Simulation platforms for agent-based models can help reducing the risk of 
programming bugs and can increase the understandability of the source code. 
Furthermore, such platforms will make the implementation process much easier 
(HAMILL 2010). HEATH et al. (2009) surveyed 279 ABM articles of which just 175 offered 
details about their programming language/tool. He identified 68 different 
tools/languages. HEATH et al. (2009) conclude that there will never be one standard 
programming language.  
We think, however, that the fact that modelers usually are not computer scientists and 
the challenges of ABMs described so far should encourage us to try and find a 
common language and standard procedures or template (sub) models. There is 
actually no point in implementing an ABM from scratch, using a general purpose 
programming language like Java or C++ because ABM libraries exist which provide 
standard software designs and code. Standardized model descriptions and 
implementations would facilitate to understand the underlying concepts, structure and 
algorithms of ABMs. Without such standards, it is difficult or even impossible to 
reproduce the results of published models, which undermines the scientific credibility of 
the ABM approach (JANSSEN et al. 2008).   
Therefore, the next part of this chapter focuses on software platforms and languages 
for ABMs and is followed by a more detailed description of the NetLogo language and 
platform.  

II. Software libraries, environments and languages for ABMs 
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As discussed above, to decrease implementation time and the risk of making errors 
and to increase re-usability, traceability and communicability, it is helpful to use 
established software libraries or languages that were especially designed for 
implementing ABMs. One of the first programming languages which provided features 
for object-oriented modeling and simulation was SIMULA (DAHL et al. 1967). It was 
indeed used for ABMs in ecology (e.g., Reuter 1998), but required still considerable 
skills in mastering a general-purpose language, and its supportive features for ABMs 
were rather limited. Since that time, many general and special purpose libraries and 
platforms for the development of ABMs have been developed. WIKIPEDIA (2010) lists 69 
different agent-based modeling software libraries/platforms and several reviews can be 
found in the literature (e.g. ALLAN 2009, NIKOLAI & MADEY 2009, BERRYMAN 2008, 
GILBERT 2008, RAILSBACK et al. 2006, TOBIAS & HOFMANN 2004). The most popular, non-
proprietary general-purpose ones are Swarm (MINAR et al. 1996), MASON (LUKE et al. 
2005), Repast (COLLIER et al. 2003) and NetLogo (WILENSKY 1999), which are briefly 
presented in the following. Besides we would like to mention that any review of ABM 
software platforms is due to be outdated within a year or two because some platforms 
develop rapidly while others are no longer maintained. Therefore, in the following we do 
not list software features in detail but describe the history and the main concepts 
underlying the platforms.    
Swarm can be seen as the mother of many other ABM libraries. The project was 
initiated in 1994 at the Santa Fe Institute, New Mexico (HIEBELER 1994) and is 
maintained since 1999 by the Swarm Development Group (SWARM 2010a). The aim of 
Swarm is to provide a vocabulary and a set of standard computer tools for the 
development of multi-agent simulation models (SWARM 2010b). It comes as an open-
source library collection for Objective-C and has a port for using it in Java, which both 
follow the object-oriented programming (OOP) paradigm. Applications using Swarm 
often contain a hierarchical structure, with an observerSwarm object responsible for the 
creation of screen displays and a modelSwarm object, which manages the individual 
agents and schedules their activities in discrete time intervals as well as delivers 
information to the observer (SWARM 2010b). Agents are instances of user-written 
classes derived/extended from the class SwarmObject. Furthermore, the Swarm 
libraries provide classes for the creation of Graphical User Interfaces (GUI) for 
controlling simulations and for visualization (SWARM 2010b). Since Swarm consists just 
of libraries, the models are written in the language of the chosen library (Objective-C or 
Java). This requires strong programming skills but gives a maximum of flexibility and 
extendibility to the (experienced) user.  
MASON is considerably younger as the project was initiated in 2003 at the George 
Mason University, USA (BALAN et al. 2003). It is written as an open-source library in 
Java and is conceptually strongly inspired by Swarm. The main development goal was 
a good computational performance to allow simulations with many runs, a large number 
of agents and a good support for 3D-simulations and visualizations (LUKE et al. 2004). It 
is, like Swarm, a pure but very concise library. The implementation of a simulation 
model in MASON is encapsulated completely from the code for visualization. The 
highest level of a simulation model is the SimState super-class which holds an instance 
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of the Schedule class for managing the time and sub-schedules in the model. Agents 
can be added to the simulation/schedule by instancing user-written classes, which have 
to implement the interface Steppable with the agent schedule method step. Space can 
be represented by using the grid-based or continuous space classes whereas networks 
are created by using the classes Network and Edge (MASON 2010). The same as for 
Swarm holds about flexibility and required programming skills. 
Repast (Recursive Porous Agent Simulation Toolkit) is slightly older than MASON as 
the first release was available in 2000 offered by a group of researches of the 
University of Chicago (COLLIER et al. 2003). Started as a pure Java library, it was 
available for the programming languages Java (Repast J), Microsoft .Net (Repast .Net) 
and Python (Repast Py) in the meantime since Version 3.0, which was released in 
2004 (ROAD 2010a). In 2008 the Repast development team, more precisely the Repast 
Organization for Architecture and Development (ROAD), introduced Repast Simphony 
(called Repast S), a customized version of the integrated development environment 
(IDE) Eclipse, which enables the user to build models using graphical editing tools via 
drag and drop. At the end of 2010, a beta version of Repast S 2.0 was released and 
opened different ways to build models: the point-and-click flowcharts, Java, Groovy and 
ReLogo as a Logo dialect and an import and translation routine for NetLogo models 
(ROAD 2010b). In December 2010 as well, a first beta version of Repast High 

Performance Computing (HCP) was published, designed to run simulations in parallel 
on large-scale distributed computer platforms such as clusters and supercomputers. 
Models for Repast HCP can be implemented in standard or Logo-style C++ (ROAD 
2010c). Although the Repast toolkit has its origins in social sciences, it is usable for the 
implementation of most agent-based models. The basis of a classical Repast model is 
a Context which is built by the ContextBuilder class. A Context manages a set of 
Agents, like a population. Agents are user-defined classes for each type of Agents (e.g. 
one for wolves and another for sheeps) which implements behaviors by methods and 
state variables by class members. If spatial aspects are required, a Projection can be 
added to a Context, which places the Agents into a Grid or ContinousSpace. To create 
relations between Agents, the NetworkBuilder class is used (COLLIER & NORTH 2010). 
The ReLogo part is conceptually equivalent to that of NetLogo, what is not surprising, 
since ReLogo is adapted from/inspired by NetLogo. Therefore, details about the 
ReLogo concept can be left out here as NetLogo is described in detail later. The 
Java/Groovy and ReLogo part of Repast deliver an extendable standard window for 
simulation visualization, a way for creating stand-alone programs and an option to run 
them in batch mode as well as a couple of interfaces to helpful programs like GNU R, 
GRASS GIS or MATLAB.    
By now, the presented modeling libraries are conceptually very similar, except for 
ReLogo. Models are written in a common high level programming language by 
implementing interfaces or extending classes of the used libraries. There is always a 
top-level class coordinating the simulation and bundling the simulation entities. The 
class or interface which are extended or implemented by agent classes are unspecific, 
i.e. do not differentiate between different types of agents. Space is added explicitly to 
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agent classes. Although some helping methods for implementing the behavioral rules 
for the agents exist, a lot of code has to be written by hand. 
Because NetLogo is not a library but a complete language especially designed for the 
implementation of ABM, it provides many pre-defined methods for the implementation 
of the behavioral rules of the agents. Furthermore, its Logo-like syntax (see next 
section) and different standard agent types (Turtles, Patches, Links) in combination 
with a point-and-click GUI-building mechanism make it possible to learn the language 
very fast without programming experiences. No less important are the excellent and 
comprehensive documentation of the NetLogo language and simulation environment 
and the different tutorials. Moreover, there is a very large library of sample models and 
code examples as well as a very active mailing list. Furthermore, textbooks with 
practical introductions to agent- and individual-based modeling using NetLogo are 
available (e.g. RAILSBACK & GRIMM in press and WILENSKY & RAND in press).  
Because of these features, NetLogo is very popular and widely used. It has the 
potential to become a standard language for describing ABMs (as pseudo language) 
and is ideal for prototyping since in no other language ABMs can be written and 
changed as fast as in NetLogo. This hypothesis is underlined by the ReLogo project, 
which adapted the NetLogo language as described above and opens the possibility to 
translate NetLogo models to Repast, which allows to run also models which are 
computational very expansive. Therefore, in the following NetLogo is in focus as it has 
the potential to help to overcome the weakness of missing standards in ABMs in 
respect to the description of model details. 

III. NetLogo: Modeling language and simulation platform 

History of NetLogo 

The development of NetLogo started in 1999 (WILENSKY 1999) and the first beta 
version was released in 2000 by Uri Wilensky (TISUE & WILENSKY 2004a). It is now 
maintained by the Center for Connected Learning and Computer-based Modeling at the 
Northwestern University, Illinois (NETLOGO 2010a). NetLogo is the successor of the 
StarLogo simulation environment family. Although StarLogo was mainly developed for 
the use in education it was used more and more by researches. This led to the 
development of NetLogo, which was designed for educational and research purposes 
(TISUE & WILENSKY 2004b). Milestones in the development of NetLogo were 

• the release of the first stable version 1.0 in 2002,  
• the introduction of the HubNet functionality in 2003,  
• the extension and controlling API as well as a headless mode for GUI-free 

command line runs in 2004,  
• the System Dynamics Modeler for models including ordinary differential 

equations and a 3D view in 2005,  
• an improved compiler that speeded up many models and the introduction of links  

as own agent type for network models in 2007, 
• a GIS extension published in 2008 and  
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• BehaviourSpace, a tool for running NetLogo repeated with different parameter 
values, became open source and supports running multiple simulations with the 
BehaviourSpace in parallels in 2009 (NETLOGO 2010b). 

The current version, released in December 2010, is 4.1.2.  
A drawback of NetLogo is that although it is available free of charge, its source code is 
not available (with exception for BehaviourSpace and the extensions). This is often 
criticized in reviews as it means that the proper functioning of built-in NetLogo 
procedures, called “primtives”, can only be validated by testing and not by inspecting 
and directly testing the underlying source. On the other hand, this is more a theoretical 
than a practical discussion: NetLogo includes a compiler (SONDAHL et al. 2006) whose 
implementation is presumably beyond the programming skills of most modelers, who 
are often not computer scientists. Nevertheless, it is not good practice to make use of 
open source libraries, like the MersenneTwisterFast from the Repast project or the 
MovieEncoder from the MASON project, without opening the own project (NETLOGO 
2010c). But on the FAQ page of the NetLogo project the NetLogo team wrote, that “We 
are working on eventually releasing the source under an open source license.” 
(NETLOGO 2010d).  

NetLogo Programming Language 

The NetLogo language is especially designed for the implementation of ABMs. As the 
name suggests, it is an extension of the Logo language. Logo was designed as a 
functional programming language for educational use in the 1960s and is a dialect of 
Lisp (LOGO FOUNDATION 2010). Logo is often known for its turtle, which is used to create 
graphics on the monitor by giving movement commands to the turtle. NetLogo adapted 
this turtle approach and combined it with the concept of multiple turtles/agents and 
concurrency from *Lisp (“StarLisp”). The design goal of the Logo language was "low 
threshold and no ceiling", which was borrowed for the development of NetLogo (TISUE 

& WILENSKY 2004a). Low threshold stands for easy to learn also by people with less or 
without modeling and programming experiences. No ceiling means that it should not be 
restrictive for advanced users, who need high flexibility. 
The basic entity in NetLogo is the agent. There are different pre-defined types of 
agents: the observer, patches, turtles, and links. The observer is the global instance 
which provides global variables and manages and has access to the other agents. 
There is only one observer. Patches are immobile agents, i.e. spatial units with a 
location in space. All patches together form the grid of the world and define the extent 
of the world. Patches have pre-defined variables, such as x- and y-coordinates, a color 
and a label, but the user can add further variables to the patches. Patches are, like all 
other agents, programmable. Turtles are, contrary to the patches, mobile agents. They 
can move on the patches in continuous space within the world defined by the patches. 
Turtles have, like patches, pre-defined variables, like their position, shape etc. but can 
get user-defined variables. It is possible to declare different types of turtles, called 
breeds; breeds inherit all variables of the turtles, but can have additional own variables. 
The last agent type is the link, which is a connection between two turtles. All agents 
can communicate and interact with each other. 
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The available data types in NetLogo are numbers (double and integer), boolean, string, 
color, agent, agentset and list. The agentset data type is a collection of agents and the 
list data type is a vector to store multiple values. Blocks of code are defined by 
embedding them into squared brackets and comments are available just as line 
comments beginning with a semicolon.  
Variable declarations and assignments can be done by using the operator set or by 
using let for local variables, as shown in Listing 1. Advanced programmers need to get 
used to it, but for the novice this is a very natural way for assignments, as it is written 
like a spoken command.   
 

� Insert Listing 1 anywhere around here 
 
The NetLogo language distinguishes between commands and reporters. Commands 
are instructions to an agent whereas reporters calculate and return a value. There are 
around 400 built-in commands and reporters, called primitives. Some of them have to 
be executed in a specific agent type context, for example move-to is just for turtle 
context since it does not make sense to ask a patch for moving away as they are 
immobile. User-defined commands and reporters are called procedures and can 
consist of sequences of commands and reporters. They are defined by the opening 
keyword to or to-report followed by the name given to the procedure, which includes 
the things to do, and are closed by the keyword end. An example is given in Listing 2.  
If necessary, input variables for procedures can be defined. Commands and reporters 
are executed by using their name. If inputs should be passed to the command or 
reporter, the user has to write them directly after the name of the command or reporter 
in a whitespace separated list. Because reporters return values on the right side of a 
reporter call, there has to be an output command or an assignment. Typical for Logo 
languages is that commands and reporters, although comparable with functions or 
methods in other languages, do not have parentheses after the name containing the 
input variables. There is no terminal character, like the semicolon in Java or C++. 
Everything is separated just by whitespaces. In some cases, when a primitive gets 
optional or repeatable inputs, the primitive and its inputs have to be declared as 
belonging together by using parentheses. 
 

� Insert Listing 2 anywhere around here 
 
A very important command is ask which iterates over the given agentset and executes 
the commands and reporters given in a block with the context of the current agent of 
the iterated agentset. This ask command is very powerful in combination with the with 
reporter, which creates a new agentset containing only those agents that satisfy a 
given condition. A scheduler for a simulation model could then look like the procedure 
go in Listing 3 and would be executed in observer context. 
 

� Insert Listing 3 anywhere around here 
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NetLogo Integrated Simulation Environment 

As mentioned before, NetLogo comes with an integrated, interactive simulation 
environment. There are three basic tabs, one for the model source code (Procedures 

Tab), one for the model description (Information Tab) and one for the Graphical User 
Interface (Interface Tab), as shown in Fehler! Verweisquelle konnte nicht gefunden 

werden.. 
 

� Insert Figure 1 anywhere around here 
 
When leaving the Procedures Tab or when dropping the Check Button, NetLogo runs 
the spellchecker, reports errors, if found (see Figure 2) and tokenizes as well as 
compiles parts of the code for execution/interpretation (for details on the combined 
compiler-interpreter architecture with the bytecode inlining technique see SONDAHL et 
al. 2006).  
 

� Insert Figure 2 anywhere around here 
 
Graphical elements can be placed somewhere on the Interface Tab by drag-and-drop. 
The user can add Buttons, Sliders, Switches, Choosers, Inputs, Monitors, Plots 

(Scatter, Line, and Bar plots), Outputs and Notes. Some of them take additional 
NetLogo commands or reporters. For example, a button, when pushed, executes the 
command the user gave to it, like the execution of a procedure.  
One graphical element which is always there is the View, which visualizes the patches 
and the turtles. If one wants to implement a non-spatial model, it is possible to hide the 
turtles and reduce the world to just one remaining patch, which could be leaved unused 
and hidden behind a plot. If a spatial model is implemented, users can choose a 
wrapping world, choose the number and size of the patches and set the location of the 
origin of the coordinates. Within the world, patch, link and turtle variables can be 
inspected by clicking on the desired agent with the mouse. The variables of this agent 
are shown in a new window and can be watched and changed during and after the 
simulation. If required, NetLogo offers a 3D view of the world for perspective 
visualizations.   
Furthermore, users can control the speed of a simulation via a slider which opens the 
possibility to slow down the simulation to observe the turtle’s movement in detail.  
With the Command Center, NetLogo delivers an interpreter. It is possible to execute 
any command or reporter during the simulation within the context of the observer, 
patch, turtle or link.  

NetLogo Extensions and Controlling API 

Due to NetLogo’s design philosophy “low threshold, no ceiling”, the developers 
included an interface for everyone to extend the NetLogo language. The Extension API 
offers a way to extend the language by adding user-defined primitives (STONEDAHL et 
al. 2008). Extensions can be written in Java or Scala and can access NetLogo objects, 
like turtles or lists.  
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NetLogo comes with a bundle of standard extensions, like the GIS extension, which 
adds functionality to import raster and vector datasets into a NetLogo model or the 
array, table and matrix extensions, which add multi-dimensional data storages.   
The controlling API allows running the NetLogo application by remote control. It is 
possible to open models and execute NetLogo commands and reporters from other 
Java and Scala programs.     

IV. Extensions to NetLogo 

This last section of this chapter gives an overview over new extensions to and tools for 
NetLogo written by the authors of this chapter. The extensions were developed to 
extend the functionality of NetLogo for making this software more relevant as a 
standard tool of ABM and, in case of the R-Extension, to combine ABMs with 
standardized methods from statistics and to avoid hand-written solutions.  

MultiView 

As described above, NetLogo visualizes the patches in the world widget. For this, the 
built-in patch variable pcolor is used by default. The value of pcolor or any other patch 
variable, if defined, determines the color of each patch. But there is no way to create 
more than one world widget to visualize more than one patch variable at a time. For 
example, if we take a model like BEFORE (RADEMACHER et al. 2004) this could be a 
restriction. BEFORE simulates the dynamic of natural beech forests. It distinguishes 
four horizontal layers which are characterized by their coverage percentage. The forest 
itself is divided into quadratic patches, which are represented in NetLogo by the 
patches of the NetLogo world. The coverage percentage of each horizontal layer is 
stored in a user-defined patch variable. There is no useful way to visualize the four 
patch variables simultaneously.  
Another example is a model where we want to compare different temporal stages at a 
time. For example, if one defines a patch variable which saves the value of the variable 
of interest of the last simulation step there is no way to see the current spatial pattern of 
the patch variables and the pattern of the last simulation step simultaneously.  
Therefore, we developed an extension which adds new windows to the simulation 
showing the patches of the world. The windows contain a copy of the view, i.e. uses the 
settings of the view regarding patch size and the number of patches. The user can 
define the patch variable which is to be used for colorization of the patches in the new 
view window. There is also the right mouse click functionality within the view window 
available to inspect patches and to export the view into an image file (see Figure 3 and 
Listing 4). The user can add as many additional view windows as desired.  

 
� Insert Figure 3 and Listing 4 anywhere around here 

 
The extension adds just four new primitives to the NetLogo language: One for the 
creation of a new window, one for repainting/updating the view, another for renaming 
the window and a last for (tidy) closing the window. The extension is available for 
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download at the official NetLogo web page: http://ccl.northwestern.edu/ 
netlogo/resources.html. It is released under the GNU GPL v2 open source license and 
comes with a short documentation and the source code.  

R-Extension 

NetLogo already provides some primitives for data analyses, like mean, median, mode, 
variance and standard-deviation but it lacks advanced methods. Therefore, we 
developed an extension to link NetLogo directly to the statistical software GNU R 
(THIELE & GRIMM 2010). There are two typical use cases of this extension that we had in 
mind while developing it. First, the integration of advanced statistical methods within 
the model itself and second the integrated and immediate stepwise analysis of 
simulation results.  
The first goal includes methods like regression analysis or just random numbers from 
special random distributions. Imagine, for instance, that the amount of food intake of an 
agent is dependent on the expectations for the future which is based on the 
experiences of the past and current circumstances. Here, non-linear regression models 
could be fitted to the past values and used to make the forecast. In such a case, the 
stepwise fitting of the regression model and the forecast could be computed using GNU 
R and used by the NetLogo simulation. This would require an interactive use of both 
software packages.  
An example of the second intended use of our R extension of NetLogo is the analysis 
of the spatial distribution of agents using spatial point pattern statistics like Ripley’s K. 
Another example is the calculation of diversity indices. Furthermore, as R delivers 
advanced plotting functionalities, the R-Extension can be used to extend the limited 
plotting capabilities of NetLogo. Moreover, connections to all common databases could 
be established via GNU R. 
By using the R-Extension, the modeler can save a lot of work and time by using R 
functions instead of programming statistical analysis from scratch. This guarantees to 
use reliable functions implemented and tested by the R programmers/contributors and 
users. Because R is a standard tool in statistical analysis, listing the R functions used 
describes the used methods comprehensively. Therefore, using the R-Extension keeps 
the NetLogo code short, clear, traceable and reduces the chance of doing bugs.   
The extension makes use of the rJava-Package for GNU R and the Extension API of 
NetLogo. Via the rJava-Package, or more precisely the JRI library within the rJava-
Package, it is possible to create R data types from Java via the Java Native Interface 
(JNI) and C. The NetLogo data types are accessed via the Extension API and 
converted into R data types within the R-Extension. R commands are evaluated within 
the R-Extension and return values are converted into NetLogo data types. Even 
NetLogo turtles, links, patches and lists are supported as well as R vectors, lists and 
dataframes. 
The R-Extension adds nine new primitives to the NetLogo language for the interaction 
between NetLogo and R and six additional primitives for debugging purposes. Table 1 
lists the different basic primitives. 
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� Insert Table 1 anywhere around here 
  
A nice, but often not recognized, feature is the r:interactiveShell primitive. If NetLogo 
has been started via the shell/command line/ms-dos prompt and uses the R-Extension 
the user can redirect the connection to the underlying R session to the shell. Then, the 
user can work directly in the R session, can access the variables created with the R-
Extension in NetLogo, can execute R commands and access newly created R variables 
within NetLogo using the R-Extension (see Figure 4). 

 
� Insert Figure 4 anywhere around here 

     
Figure 5 shows an example for the usage of the R-Extension in spatial statistics. The 
point pattern of the agent positions is used to calculate the L function (based on 
Ripley’s K) with Monte-Carlo-Simulations for the null hypotheses test (complete spatial 
randomness). For this, the agent positions are sent to an R dataframe via the primitive 
r:putagentdf. By using the R-Package spatstat this agent positions dataframe is 
transformed into a planar point pattern object (ppp) and used as input for the envelope 
function, which performs 99 replicated simulations (Monte-Carlo-Simulation) for the 
hypotheses test. The pointwise critical envelopes for L(r) are then plotted using the 
standard plot function of R, which creates a gray band for the envelope with a dotted 
line for the theoretical value under complete spatial randomness and a solid line for the 
observed pattern. The code for this operation in NetLogo is shown in Listing 5. In 
Figure 5 you can see that it is also possible to send the result of the envelope 
calculation back to NetLogo and make a simple plot there, but without the nice gray 
bands and dotted lines. The NetLogo code for this step, which requires some data 
transformations for the plot routine, can be found in the examples which are delivered 
with the R-Extension. 
 

� Insert Figure 5 and Listing 5 anywhere around here 
  
The R-Extension is specific to the version number of GNU R/r-Java and NetLogo. It 
comes with documentation and different examples as well as the source code under 
the GNU GPL v2 open source license. It is available for download at the Berlios 
repository: http://netlogo-r-ext.berlios.de/. The Extension is tested on Windows XP, 
Windows Vista, Windows 7, Linux (Ubuntu, SuSe) and Apple Macintosh. It runs also on 
64-bit systems. Since the release at the beginning of 2010 until December of 2010, it 
was downloaded more than 300 times. The most frequent problem which has been 
reported was the installation/configuration process. To create the connection to R, the 
user has to set two environment variables, which turned out to be too difficult for some 
users.       

Pygments parser 

Not a real extension but a small supporting tool is the NetLogo language definition for 
Pygments (POCCO 2010). Pygments is an open source syntax highlighting engine 
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written in Python which takes source code and produces output in different formats that 
contain syntax highlighting markup. Output formats include HTML, LaTeX, RTF, GIF, 
PNG, JPEG and others. It can be used as a library or as a command-line tool. 
The NetLogo language definition makes it possible to generate automatically NetLogo 
model source code in different formats, as mentioned above, directly from the original 
source file. The output looks like in the Procedures Tab of NetLogo with respect to the 
colorization as well as the indentation and is therefore easily available and editable for 
publications in text processing software or for using it on websites. 
It is written as a Plug-In for Pygments with a lexer based on regular expressions and 
keyword lists as well as a style definition for the colorization. It works for the primitives 
of the bundled extensions as well as for the MultiView- and R-Extension. 
The Plug-In includes a setup script which automatically adds the Plug-In to Pygments. 
A command line call for creating an HTML output could look as shown in Listing 6. The 
user can choose between an embedded css-style (Cascading Style Sheet) definition 
within the HTML file or without. It is possible to create a separate css-file based on the 
style definition.   
 

� Insert Listing 6 anywhere around here 
 
The Pygments Plug-In for NetLogo language is available at http://www.uni-
goettingen.de/de/72779.html. 

Outlook 

To further extend the functionality of NetLogo, which will help to strengthen its potential 
as a standard tool, further tools for NetLogo are currently in preparation. One of these 
tools is RNetLogo, a package for GNU R to include NetLogo simulations within R. This 
is the reverse connection of the R-Extension with its own strength. It will overcome the 
difficulties in the setup process of the R-Extension with the creation of environment 
variables and will have the functionalities of the Mathematica Link for NetLogo 
described in BAKSHY & WILENSKY (2007). It could be used to establish a standard 
protocol for calibrating and analyzing ABMs. GNU R with its hugh amount of packages 
is the ideal basis for designing simulation experiments and analyzing their results.  
Another important functionality, which is currently missing in NetLogo, is a stepwise 
debugger, as mentioned by RAILSBACK et al. (2006). Such a tool is currently under 
development and will fill this gap.  
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Figures 

 
Figure 1: NetLogo GUI, Interface Tab with the View/World on the right, some control widgets on the left 

and Command Center at the bottom. 
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Figure 2: NetLogo GUI, Procedures Tab with Syntax Checker indicating an error. 

 
 

 

Figure 3: NetLogo GUI on the right with two additional view windows on the left created by the MultiView-
Extension. The additional view window on the top uses the pcolor variable for colorization 
and is therefore a duplication of the original view, the bottom view uses the pcolor2 variable 
for colorization as shown in Listing 4. On the bottom view, the right click functionality is 
shown. The user can export the current view into an image file and can inspect the selected 
patch. 
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Figure 4: NetLogo started from an MS DOS prompt with calculation of Spearman's Rho over time using 

the R-Extension (on the right hand side); using the R-Extension's interactiveShell primitive 
to get access to the R session in the MS DOS prompt (on the left hand side) and checking 
the content of the turtles variable created by the R-Extension in NetLogo as well as listing 
the content of the R session. 
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Figure 5: NetLogo GUI on the left, GNU R plot window called from NetLogo R-Extension on the right; the 

results of the L function calculation are sent back to NetLogo and are visualized in a plot on 
the bottom of the NetLogo GUI as well. 
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Tables 
 

Table 1: Primitives added by the R-Extension with a short description (without the additional debugging 
primitives). 

 
Primitive Function 

r:clear Clears the R workspace, deletes all variables. 

r:eval Evaluates the submitted string in R, used for R function without a 
return value. 

r:get Gets a value from R; either submits a string including an R 
function with return value, or gets the value of a variable; return 
values can be strings, numbers, booleans, lists, or a list of lists. 

r:put Creates a new variable in R with value(s) from NetLogo; 
submitted values/variables can be strings, numbers, booleans, 
or lists (NetLogo lists become R vectors, to create R lists see 
putlist). 

r:putagent Creates a list in R from variables of a set of NetLogo agents; 
collections of agent-variables can be stored in a single named 
list. 

r:putagentdf Same as putagent, but creates an R dataframe instead of a list 
because many R functions requires dataframes as input. 

r:putlist Creates a new R list based on the submitted NetLogo variables 
and values. 

r:putnamedlist Same as putlist, but creates a named R list, i.e. the columns of 
the list can be called via their names. 

r:putdataframe Same as putnamedlist, but creates an R dataframe instead of a 
list because many R functions require dataframes as input. 
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Listings 

 
 
 
 

 

Listing 1: Declaration (and assignment) of a new local variable in the first line and re-assignment in the 
second line. The assignment of global variables is the same as the re-assignment of local 
variables. This code fragment could be embedded into a user defined procedure. 

 
 
 
 
 
 

 

Listing 2: A user defined procedure with the name setup which resets everything and creates two turtles. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

to setup 
 clear-all 
 create-turtles 2 
end 

let my-local-var 10 ; declaration and first assignment 
set my-local-var 20 ; re-assignment 
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Listing 3: A (fragmented) example of a model source code with a user-defined turtle type (beech breed), 
a setup procedure to initialize the simulation, a go procedure as a scheduler for one 
simulation step which iterates over all beech-turtles and some other procedures called from 
the go procedure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

breed [beeches beech]              ; create a new breed (turtle subtype) named beech 
 
to setup   ; a user-defined procedure setup, to initialize simulation  
…             
end 
 
to go    ; procedure, executed in observer context 
 tick                                 ; increment internal simulation time 
 ask patches [                 ; do for all patches 
  update-soil-water ; call procedure update-soil-water in patch context 

] 
ask beeches [                ; to for all beeches 

  grow 
  mortality 

] 
end 
 
to update-soil-water           
 … 
end  
 
to grow 
 … 
end 
 
to mortality 
 … 
end 
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Listing 4: An example for the usage of the MultiView-Extension which creates two additional view 
windows, one as a copy of the original NetLogo world view and a second with a colorization 
using variable pcolor2. 

 

; load the extension 
extensions [multiview] 
 
; a patch variable to save the 2nd color (beside pcolor) for the 2nd view window 
patches-own [ pcolor2 ] 
 
globals [ 
  view1 ; a variable to save the reference to a view window  
  view2 ; a 2nd variable to save the reference to a 2nd view window  
] 
 
to setup 
  ; clear-all, closes the view windows as well, view1 & view2 has value 0 
  ca 
  ; create two turtles 
  crt 2 [ set xcor random xcor set ycor random ycor] 
  ; set the colors of the patches, pcolor and pcolor2 will be the same initially 
  ask patches [  
    set pcolor random 300 
    set pcolor2 pcolor 
  ] 
  ; open the 1st view window, using pcolor (as in the NetLogo world view) to  
  ; colorize the patches 
  ; first parameter "pcolor" is the title of the window 
  ; second parameter "pcolor2" is the patch variable used for coloring the patches 
  ; save the reference to the view window in the variable "view1" 
  set view1 multiview:newView "pcolor" "pcolor" 
  ; open the second view window, using pcolor2 
  set view2 multiview:newView "pcolor2" "pcolor2" 
end 
 
to go 
  tick 
  ; change the color values of the patches 
  ask patches [ 
    set pcolor random 300 
    set pcolor2 random 100 
  ] 
  ; update the colors of the view windows (using the predefined patch variables,   
  ; see above: multiview:newView)   
  multiview:repaint view1  
  multiview:repaint view2  
end 
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Listing 5: An example for the usage of the R-Extension. In the setup procedure some turtles are created 
with a clustered spatial distribution. Furthermore, the R package spatstat for spatial statistics 
is loaded. In the go procedure the turtles walk around randomly first. Then, the positions of 
the turtles are sent to R into a dataframe. This dataframe is used to create a point pattern 
object which is used to calculate the L function with critical bands. The result of the L 
function calculation/simulation is plotted using R. 

 
 
 

extensions [r] 
 
to cluster_setup 
  ; clear all 
  ca 
  r:clear 
  ask patches [ set pcolor 9.9] 
  random-seed 1234567 
 
  ; load R package spatstat for spatial statistics 
  r:eval "library(spatstat)" 
   
  ask n-of 10 patches [  
    ask neighbors [   
       sprout 3 [   
          right random 360 
          forward random 2  
       ]   
    ] 
  ] 
end 
 
to go_with_Rplot 
  tick 
  ; let the turtles walk around randomly 
  ask turtles [ 
    right random 360 
    forward random 4 
  ] 
   
  ; send agent variables into an R dataframe 
  (r:putagentdf "agentset" turtles "who" "xcor" "ycor") 
 
  ; create point pattern with vectors of x- and y-coordinates of turtles and the    
  ; dimension of the world 
  let revalstring (word "agppp <- ppp(agentset$xcor, agentset$ycor,  
                         c("min-pxcor","max-pxcor"), c("min-pycor","max-pycor"))") 
  r:eval revalstring 
   
  ; calculate L function with critical bands from 99 Monte-Carlo-Simulations 
  r:eval "Lsim <- envelope(agppp, Lest)"     
  ; plot the L function 
  r:eval "plot(Lsim, main=\"L function (based on Ripley's K)\")"   
end 
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Listing 6: An example for the usage of the Pygment NetLogo Plug-In to create an HTML file (test1.html) 
from a NetLogo model file (test1.nlogo) with embedded css-style (a) and separated css-file 
(b).  

a. with embedded css-style: 
 
 pygmentize -l NetLogo -O full,style=NetLogo -f html -o test1.html test1.nlogo 
 
b. with extra css-file: 
 
Create the html file: 
 pygmentize -l NetLogo -f html -o test1.html test1.nlogo 
 
Export the style to css file: 
 pygmentize -f html -S NetLogo -a .syntax > netlogosyle.css 


