Rule-based integration of LIGNUM into GroIMP

Katarína Streit (Smoleňová)

ksmolen@gwdg.de Departement Ecoinformatics, Biometry and Forest Growth Georg-August-University Göttingen

September 17, 2013 / Prague

"Modelling of Ecosystems by Tools from Computer Science"

Katarína Streit (Smoleňová)

Outline

Motivation

LIGNUM FSTM

XL implementation

Katarína Streit (Smoleňová)

Motivation

- LIGNUM Functional-Structural Tree Model (FSTM)
- Complex model applied to several tree species
- Test case for the component framework of GroIMP and for models comparison, on the example of Scots pine
- Analysis and (partial) reimplementation into XL

LIGNUM FSTM

- Developed at METLA, Finland
- Originates from a process-based model, being developed as FSTM since 1996 (Perttunen *et al.* 1996)
- Applied to both coniferous and deciduous trees, e.g.,
 - Scots pine (*Pinus sylvestris*)
 - Jack pine (*Pinus banksiana*)
 - Sugar maple (Acer saccharum)
 - Eastern cottonwood (*Populus deltoides*)
 - Silver birch (*Betula pendula*)
 - Mountain birch (Betula pubescens subsp. tortuosa)
- Applied to model both individual trees and stands

Basic structural units

- TS tree segment
- BP branching point
 - B bud
 - A axis

(LIGNUM manual)

Katarína Streit (Smoleňová)

Structure of tree segment

- H heartwood
- S sapwood
- B bark
- LB lateral bud
 - F foliage
 - P petiole

Katarína Streit (Smoleňová)

(LIGNUM manual)

- Main axis (represented as a list):
- ▶ A = [TS, BP, TS, BP, TS, BP, B]
- ► A = [TS, [A, A], TS, [A, A], TS, **[A, A]**, B]
- ▶ A = [TS, [A, A], TS, [A, A], TS, [[B], [B]], B]

- One (main) axis
- Axis sequence of TSs, BPs & terminating B
- Each TS followed by 1 BP
- BP list of axes

Katarína Streit (Smoleňová)

(LIGNUM manual)

- Main axis (represented as a list):
- A = [TS, BP, TS, BP, TS, BP, B]
- ► A = [TS, [A, A], TS, [A, A], TS, **[A, A]**, B]
- ► A = [TS, [A, A], TS, [A, A], TS, **[[B], [B]]**, B]

- One (main) axis
- Axis sequence of TSs, BPs & terminating B
- Each TS followed by 1 BP
- BP list of axes

Katarína Streit (Smoleňová)

(LIGNUM manual)

- Main axis (represented as a list):
- ▶ A = [TS, BP, TS, BP, TS, BP, B]
- ► A = [TS, [A, A], TS, [A, A], TS, **[A, A]**, B]
- ► A = [TS, [A, A], TS, [A, A], TS, **[[B], [B]]**, B]

- One (main) axis
- Axis sequence of TSs, BPs & terminating B
- Each TS followed by 1 BP
- BP list of axes

Katarína Streit (Smoleňová)

(LIGNUM manual)

- Main axis (represented as a list):
- ▶ A = [TS, BP, TS, BP, TS, BP, B]
- ► A = [TS, [A, A], TS, [A, A], TS, [A, A], B]
- ► A = [TS, [A, A], TS, [A, A], TS, **[[B], [B]]**, B]

One (main) axis

- Axis sequence of TSs, BPs & terminating B
- Each TS followed by 1 BP
- BP list of axes

Katarína Streit (Smoleňová)

(LIGNUM manual)

- Main axis (represented as a list):
- ▶ A = [TS, BP, TS, BP, TS, BP, B]
- ► A = [TS, [A, A], TS, [A, A], TS, [A, A], B]
- ► A = [TS, [A, A], TS, [A, A], TS, [[B], [B]], B]

One (main) axis

- Axis sequence of TSs, BPs & terminating B
- Each TS followed by 1 BP
- BP list of axes

Katarína Streit (Smoleňová)

(LIGNUM manual)

- Main axis (represented as a list):
- ▶ A = [TS, BP, TS, BP, TS, BP, B]
- ► A = [TS, [A, A], TS, [A, A], TS, [A, A], B]
- ► A = [TS, [A, A], TS, [A, A], TS, [[B], [B]], B]
- ▶ ...

Katarína Streit (Smoleňová)

- One (main) axis
- Axis sequence of TSs, BPs & terminating B
- Each TS followed by 1 BP
- BP list of axes

Structure development

Described by rules (species specific), written in the language L

```
// initial structure
Start:
{
...
produce
    F(0.30)
    SB() Down(1.0) Pitch(pitch) B(data,2,0.9) EB()
    SB() Roll(rollmain4) Down(1.0) Pitch(pitch) B(data,2,1.0) EB()
    SB() Roll(2.0*rollmain4) Down(1.0) Pitch(pitch) B(data,2,1.0) EB()
    SB() Roll(3.0*rollmain4) Down(1.0) Pitch(pitch) B(data,2,1.0) EB()
    B(data,1,1.0);
}
```

Metabolic processes

- Two categories (w/o or w flow of information):
 - Photosynthesis
 - Respiration
 - Mortality
 - Length growth
 - Diameter growth
 - Up flow
 - Down flow
- Iterative allocation of new photosynthates into the organs

 $P - M = \Delta W_n + \Delta W_o + \Delta W_r$ and P - M > 0

Light distribution

(Perttunen et al. 2002)

Katarína Streit (Smoleňová)

Implementation background

- Implemented in C++ (metab. processes), L (architecture)
- Two-way communication

Katarína Streit (Smoleňová)

4 generic algorithms

- For traversing the model tree, quering the status of the tree or passing information between tree compartments
- Sufficient to cover the computation of modelled metabolic processes
 - ForEach (e.g., calculate photosynthesis for each segment)
 - Accumulate (e.g., sum up photosynthates of all segments)
 - AccumulateDown (e.g., diameter growth)
 - PropagateUp (e.g., signal/data passing)

Tree<ScotsPineSegment, ScotsPineBud> scotspine; ForEach(scotspine, Photosynthesis<ScotsPineSegment, ScotsPineBud>());

LIGNUM's structural components as XL modules

Main structural units:

TreeSegment, Bud (*BranchingPoint* and *Axis*, inevitable in LIGNUM, inherently expressed in XL)

- Modules for trees in general: Tree, TreeCompartment
- Modules specific for conifers, pine and Scots pine: CfTreeSegment, PineSegment, PineBud, ScotsPineTree, ScotsPineSegment, ScotsPineBud
- Modules to control branch orientation: Pitch, Roll, Turn, Down, HDir

Structure development (XL)

Straightforward translation of L rules into XL rules

LIGNUM	GroIMP	Description
Start : { produce A(); }	Axiom ==> A;	Start symbol
A() : { produce B() A(); }	A ==> B A;	L-system rule
SB()	[Branch start
EB()]	Branch end

Katarína Streit (Smoleňová)

Structure development (XL)

```
Start:
                 produce
                    F(0.30)
                    SB() Down(1.0) Pitch(pitch) B(data,2,0.9) EB()
                    SB() Roll(rollmain4) Down(1.0) Pitch(pitch) B(data,2,1.0) EB()
                    SB() Roll(2.0*rollmain4) Down(1.0) Pitch(pitch) B(data,2,1.0) EB()
                    SB() Roll(3.0*rollmain4) Down(1.0) Pitch(pitch) B(data,2,1.0) EB()
                    B(data, 1, 1.0);
Axiom ==>
   ScotsPineSegment(0.30)
    [ Down(1.0) Pitch(pitch) ScotsPineBud(data, 2, 0.9) ]
    [ Roll(rollmain4) Down(1.0) Pitch(pitch)
                                ScotsPineBud(data, 2, 1.0) ]
    [ Roll(2.0*rollmain4) Down(1.0) Pitch(pitch)
                                ScotsPineBud(data, 2, 1.0) ]
    [ Roll(3.0*rollmain4) Down(1.0) Pitch(pitch)
                                ScotsPineBud(data, 2, 1.0) ]
   ScotsPineBud(data, 1, 1.0)
```

;

Katarína Streit (Smoleňová)

Metabolic processes (XL)

LIGNUM	GroIMP	Example
ForEach	execution rule (::>)	<pre>sps:ScotsPineSegment ::> sps.photosynthesis();</pre>
Accumulate	aggregators (<i>sum</i> , <i>count</i> , <i>max</i> ,), with queries ((* *))	<pre>sum((* ScotsPineSegment *) .getP()) // sum up photosynthates</pre>
AccumulateDown PropagateUp	path patterns with directed relations (- <i>r</i> ->, <- <i>r</i> -), with <i>r</i> = minDescendants descendants, ancestor shortcuts: >, < = any edge, >, <= successor, +>, <+= branch	<pre>sps:ScotsPineSegment ::> if (sps.getAge() == 0) { sps.setQin((* sps -ancestor-> ScotsPineSegment *) .getQin()); } // propagate up incoming radiant flux // to new segments</pre>

Katarína Streit (Smoleňová)

Light distribution

- Sky model and two (presented) light models used in LIGNUM were adapted into GroIMP
- Their code is hidden from the user
- Light models called using execution rules sps:ScotsPineSegment ::> radiation.eval(sps);

Comparison

Summary

- Partial translation of both, the structural and the functional part of LIGNUM into the rule-based language XL
 - Architecture, radiation distribution, photosynthesis, respiration, senescence, allocation, elongation
- Focus on Scots pine
- Future work
 - Translation of missing parts pruning
 - Model comparison
 - how will the final structure look like if different light models, photosynthesis, etc., are used
 - simulation of a same species with LIGNUM and GreenLab, comparison of outputs

Katarína Streit (Smoleňová)

Thank you for your attention!

Katarína Streit (Smoleňová)