
Carrots and a vole:
Simple interactions

between plants and animals
Ole Kniemeyer

Summer School “Modelling of Ecosystems by Tools from Computer Science“
16 – 20 September 2013, Prague

The actors

The carrot model

• Simple light competition model based on amount of obstacles in light cone

• Carbon production in leaves according to the light interception
• Carbon flow towards root leads to internode elongation and root growth

The vole model

The vole has two states:
• Non-digging: Run along existing tunnels, gnaw at carrot roots if possible
• Digging: Dig a new tunnel and try to reach a carrot or an existing tunnel

Non-digging rules:
• Reinforce a scent-mark at current tunnel node
• If a root is nearby, gnaw at it
• Move to a connected tunnel node, favouring

those with less intensive scent-marks
• Or from time to time, if no root is nearby,

become a digging vole

Digging rules:
• Find closest nearby tunnel node in front of vole
• Dig to this node and become a non-digging vole
• Or, if no node was found, fnd the closest carrot

and dig in its direction

Implementation of plant model

Computation of shading:

c:Carrot ::>
{
 Tuple3d m = mean(location((* c (-->)* Leaf *))); // Compute the centre of c's leaves
 m.z *= 0.3; // and reduce it along the z-axis.

 c[shadow] := sum
 ((* d:Carrot, ((d != c) && (distance(c, d) < 3)), // For every neighbouring d
 d (-->)* f:F, // find all internode descendants f
 (f in cone(m, HEAD, 50)) // within a light cone around m
 *)[length]); // and sum up their length.
}

Implementation of plant model

Carbon production:

x:Leaf ==>>
 if (probability(0.95)) (break)
 // With a probability of 5%,
 // append a Carbon particle to the leaf.
 x [Carbon(0.03 / (1+0.8*first((* x -ancestor-> Carrot *)[shadow])))];

Carbon transport:

n:Node [c:Carbon] -ancestor-> a:F ==>> n, a [c]; // Move c downwards to next F

Implementation of plant model

Carbon allocation:

n:F [c:Carbon] ==>>
 {Carrot m = first((* n <-- Carrot *));}
 if (m != null) (// If n is the immediate successor of a carrot m
 n // keep n in the graph, but delete c
 {m[size] :+= 0.014 * c[value];} // and let the carrot grow.
) else {
 float v = 0.2 * c[value]; // Else allocate an amount v of carbon
 c[value] :-= v;
 n[length] :+= v; // and elongate the internode n.
 break; // Do not apply any structural changes to the graph.
 };

Implementation of vole model

Non-digging vole:

t:TunnelNode [v:Vole] ==>>
 {
 t[scent] += 3; // Re-inforce scent mark.
 Carrot c = first((* x:Carrot, (distance(v, x) < 0.5) *));
 if (c != null) // There is a close carrot,
 c[gnawed] :*= 0.9; // so gnaw off a bit.
 }
 if ((c != null) || probability(0.9)) // At a carrot or with high probability
 (// choose a neighbouring node n of t
 { // favouring nodes with less intensive scent marks.
 TunnelNode next = selectRandomly((* t -tunnel- n:TunnelNode *), Math.exp(-n[scent]));
 if (next == null) next = t;
 }
 t, next [v] // and move to that node.
) else (
 // Otherwise, start digging in a random direction.
 t RU((irandom(0,1)*2 - 1) * random(60, 120)) M(1) [DiggingVole]
);

Implementation of vole model

Digging vole:

v:DiggingVole -ancestor-> t:TunnelNode ==>>
 // Of all nodes z that are close to v
 {TunnelNode x = selectWhereMin((* z:TunnelNode, ((z != t) && (distance(z, v) < 1)
 // and lie within the vole's forward cone,
 && (z in cone(v, false, 60))) *),
 // select that node x with minimal distance to v.
 distance(z, v));}
 if (x != null) (// If such a node x exists,
 t -tunnel-> x, x [Vole] // dig a tunnel to it and become a non-digging vole.
) else (
 n:TunnelNode(1) [<-tunnel- t] // Otherwise, create a new node n with tunnel from t,
 moveIncoming(v, n, -1) // embed n at the graph location of v,
 // select the closest carrot c
 {Carrot c = selectWhereMin((* d:Carrot *), distance(d, v));}
 tropism(v, c, Math.exp(-0.1*distance(c, v))) // and turn towards c.
 RU(random(-10,10)) M(0.5) [v]
);

Putting it all together

Sub-models have different time resolutions:

public void model()
{
 if ((globalStep % 5) == 0)
 {
 carrots();
 }
 vole();
 globalStep++;
}

Thanks for your attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

