Carrots and a vole:
Simple interactions
between plants and animals

Ole Kniemeyer

Summer School “Modelling of Ecosystems by Tools from Computer Science”
16 - 20 September 2013, Prague

The actors

The carrot model

e Simple light competition model based on amount of obstacles in light cone

e Carbon production in leaves according to the light interception
e Carbon flow towards root leads to internode elongation and root growth

The vole model

The vole has two states:

e Non-digging: Run along existing tunnels, gnaw at carrot roots if possible
e Digging: Dig a new tunnel and try to reach a carrot or an existing tunnel

Non-digging rules:

e Reinforce a scent-mark at current tunnel node

e |f arootis nearby, gnaw at it

e Move to a connected tunnel node, favouring
those with less intensive scent-marks

e Or from time to time, if no root is nearby,
become a digging vole

Digging rules:

e Find closest nearby tunnel node in front of vole

e Dig to this node and become a non-digging vole

e Or, iIf no node was found, find the closest carrot
and dig in its direction

Implementation of plant model

Computation of shading:

c:Carrot ::>

{
Tuple3d m = mean(location((* c (——>)x Leaf x))); // Compute the centre of c's leaves
m.z *x= 0.3; // and reduce it along the z-axis.
c[shadow] := sum
((x d:Carrot, ((d '= c) && (distance(c, d) < 3)), // For every neighbouring d
d (——>)%x f:F, // Tfind all internode descendants f
(f in cone(m, HEAD, 50)) // within a light cone around m
x) [length]); // and sum up their length.

Implementation of plant model

Carbon production:

x:Leaf ==>>
if (probability(0.95)) (break)

// With a probability of 5%,
// append a Carbon particle to the leaf.
x [Carbon(0.03 / (14+0.8xfirst((* x —ancestor—> Carrot *)[shadow]l)))];

Carbon transport:

n:Node [c:Carbon] -ancestor-> a:F ==>> n, a [c]; // Move c downwards to next F

Implementation of plant model

Carbon allocation:

n:F [c:Carbon] ==>>
{Carrot m = first((* n <— Carrot *));}

if (m != null) (// If n is the immediate successor of a carrot m
n // keep n in the graph, but delete c
{m[size] :+= 0.014 % c[valuel;} // and let the carrot grow.
) else {
float v = 0.2 x clvaluel; // Else allocate an amount v of carbon
clvalue] :—= v;
n[length] :+= v; // and elongate the internode n.
break; // Do not apply any structural changes to the graph.

Implementation of vole model

Non-digging vole:

t:TunnelNode [v:Vole] ==>>

{
t[scent] += 3; // Re-inforce scent mark.
Carrot ¢ = first((x x:Carrot, (distance(v, x) < 0.5) x));
if (c !'= null) // There is a close carrot,
c[gnawed] :x= 0.9; // so gnaw off a bit.
I3
if ((c '= null) || probability(0.9)) // At a carrot or with high probability
(// choose a neighbouring node n of t
{ // favouring nodes with less intensive scent marks.
TunnelNode next = selectRandomly((x t —tunnel- n:TunnelNode *), Math.exp(-n[scent]));
if (next == null) next = t;
I3
t, next [v] // and move to that node.
) else (

// Otherwise, start digging in a random direction.
t RU((irandom(0,1)*x2 - 1) *x random(60, 120)) M(1) [DiggingVole]
);

Implementation of vole model

Digging vole:

v:DiggingVole —ancestor—> t:TunnelNode ==>>
// O0f all nodes z that are close to v
{TunneWNode x = selectWhereMin((x z:TunneWode, ((z '= t) && (distance(z, v) < 1)
// and lie within the vole's forward cone,
& (z in cone(v, false, 60))) %),
// select that node x with minimal distance to v.
distance(z, v));}

if (x '= null) (// If such a node x exists,
t —tunnel-> x, x [Volel] // dig a tunnel to it and become a non-digging vole.
) else (
n:TunnelNode(1) [<-tunnel- t] // Otherwise, create a new node n with tunnel from t,
moveIncoming(v, n, -1) // embed n at the graph location of v,

// select the closest carrot c
{Carrot c = selectWhereMin((x d:Carrot %), distance(d, v));}
tropism(v, c, Math.exp(-0.1xdistance(c, v))) // and turn towards c.
RU(random(-10,10)) M(0.5) [v]

Putting it all together

Sub-models have different time resolutions:

public void model()
{
if ((globalStep % 5) == 0)
{
carrots();
I
vole();
globalStep++;

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

