Heuristics for ray tracing using space subdivision

Arne Sieverling

10.11.2009

- Einführung
- Grundlagen
 - Ray tracing
 - Bounding Volume
 - Hierarchische Raumaufteilung
 - Octree
 - kd-Tree
- Oberflächenheuristik
 - Oberflächenmetrik
 - Optimale Raumaufteilung
 - Strategien im Vergleich
 - Diskussion

Literatur

Hauptarbeit:

Mac Donald, J.D., Booth, K.S.: "Heuristics for ray tracing using space subdivision" (1990)

aus: The Visual Computer 6: S. 153-166

Einige Grafiken und Berechnungen aus:

Havran, V.: "Heuristic Ray Shooting Algorithms" (2000)

Dissertation an der technischen Universität Prag

Ray tracing

- Aussenden und Verfolgen von Lichtstrahlen in 3D-Szene
- Strahlen werden ausgesendet, die Schnittpunkte mit den Objekten in der Szene werden berechnet und an den Objekten reflektiert, gebrochen oder gestreut.
- Hauptaufwand: Berechnung der Strahl-Objekt Schnittpunkte
- Naiver Ansatz: Schnitttest des Strahls mit jedem Objekt in der Szene.

Bounding Volume

- Vereinfachung des Strahl-Objekt-Tests
- Einfaches Volumen wird um das Objekt gelegt.
- Strahl schneidet Volumen ⇒ berechne Schnitt mit Objekt im Inneren
- Strahl schneidet Volumen nicht ⇒ fahre fort.

Hierarchische Raumaufteilung

- Object subdivision: Gruppiere Objekte Bsp: Bounding Volume Hierarchy
- Space subdivision: Teile den Raum auf Bsp: Octree, kd-Tree

Octree

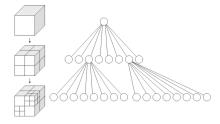


Figure: Wikipedia-User "Nü": "Schemazeichnung eines de:Octrees, einer Datenstruktur der Informatik" http://commons.wikimedia.org/wiki/File:Octree2.png, 7.4.2006

Teile in jedem Schritt in 8 kleinere Volumen.

kd-Tree

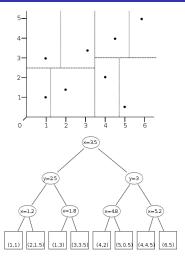


Figure: Wikipedia user "3bit": "2-d-Tree Example, Computer Science", http://commons.wikimedia.org/wiki/File:2dbaum.svg,

Teile in x,y oder z-Richtung auf beliebiger Höhe d.

2.9.2006

Fragmentierung

Problem bei kd-Trees und Octrees: Objekte können bei Raumaufteilung geteilt werden.

Eine Lösung: Speichere Objekte in beiden Knoten.

Cache verwenden, um überflüssige Berechnungen zu sparen.

Strategien für Schnittebene

Einige einfache Strategien zur Erstellung von kd-Trees:

- Wähle räumlichen Median $d = d_{max}/2$ (uniform space division).
- Wähle Objekt Median, s.d. links und rechts von d gleich viele Objekte.
- Teile zyklisch x,y, und dann z-Achse
- Teile immer zuerst längste Achse

Oberflächenmetrik

Annahme:

- Strahlen in Ursprung und Richtung gleichverteilt.
- Strahlquellen entfernt von Objekten
- Strahlen treffen kein Objekt im Modell.
- \Rightarrow Anzahl der Strahlen, die Knoten K schneiden \sim SA(K)
- $\Rightarrow P("Strahl schneidet Knoten" K) = \frac{SA(K)}{SA(R)}$
 - SA(K): Oberfläche von K,
 - *SA*(*R*): Oberfläche der Wurzel

Oberflächenmetrik 2

- Anzahl getroffene Knoten: $n_K = \sum_{k=1}^{N_k} \frac{SA(k)}{SA(R)}$
- Anzahl getroffene Blätter: $n_B = \sum_{b=1}^{N_b} \frac{SA(b)}{SA(R)}$
- Anzahl Strahl-Objekt-Test: $n_t = \sum_{b=1}^{N_b} \frac{SA(b)N_{obj}(b)}{SA(R)}$

 N_k Anzahl Knoten N_b Anzahl Blätter $N_{obj}(b)$ Anzahl der Objekte in Blatt b

Gesamtkosten für einen ausgesendeten Strahl:

$$C_{ges} = c_k n_k + c_b n_b + c_t n_t$$

c_k: Kosten für die Traversierung eines Knotens,

c_b: Kosten für die Traversierung eines Blattes,

c_t: Kosten für Strahl-Objekt-Test.

Validierung der Oberflächenmetrik

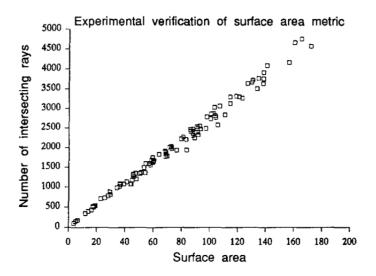


Figure: Mac Donald, J.D., Booth, K.S.: "Heuristics for ray tracing using space subdivision (1990), The Visual Computer 6: S. 158"

Optimale Raumaufteilung

Suchen: Kosten eines kd-Trees bei Teilung an Koordinate bb=0: kleinstmöglicher Wert, b=1 größtmöglicher.

Kosten eines Schnittes:

$$f(b) = LSA(b) \cdot L(b) + RSA(b) \cdot (n - L(b))$$

LSA(b): Oberfläche des Knotens $\leq b$,

RSA(b): Oberfläche des Knotens $\geq b$,

L(B): Anzahl der Objekte $\leq b$,

n: Anzahl aller Objekte.

Optimale Raumaufteilung - Beispiel

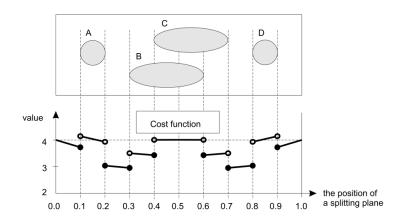


Figure: Havran, V.: "Heuristic Ray Shooting Algorithms" (2000) S.57

Räumlicher vs Objektmedian

$$f(b_{rm}) = LSA(0.5) \cdot L(0.5) + RSA(0.5) \cdot (n - L(0.5)) = n \cdot LSA(0.5)$$
 , da $LSA(0.5) = RSA(0.5)$

$$f(b_{om}) = LSA(b) \cdot n/2 + RSA(b) \cdot n/2 = n \cdot LSA(0.5)$$
, da $LSA(b) + RSA(b)$ konstant. $\Rightarrow LSA(b) + RSA(b) = 2 \cdot LSA(0.5)$

Optimalwert für b liegt zwischen den beiden Medianen. Minimum nicht berechenbar, da f unstetig.

Oberflächenheuristik

Verfahren:

- Berechne Objektmedian b_{om} in x,y und z-Richtung
- Sample Werte b_i mit $n/2 \le b_i \le b_{om}$
- Berechne $f(b_i)$
- Teile bei min f(b_i)

Größe des Baumes

- Teile Raum so lange, bis jeder Knoten genau ein Objekt enthält.
- Teile, bis zur vorher festgelegten Tiefe

Bessere Strategie mit SAH:

• Teile bis $f(b) \le k$ Für alle b, mit Konstante k

Strategien im Vergleich

Strategie	avg	best	worst
3	0%	0%	0%
1	+1804%	+25%	+36604%
2	+354%	-7%	+1755%
4	-3%	-12%	+5%
5	+7%	-8%	+88%

- 3: Optimale Schnittebene in allen Richtungen berechnet mit Kostenfunktion (Referenzalgorithmus)
- 1: Räumlicher Median und zyklischer Achsendurchlauf (entspricht Octree)
- 2: Objekt Median und zyklischer Achsendurchlauf
- 4: Optimale Schnittebene, Suche zwischen den Medianen
- 5: Optimale Schnittebene und zyklischer Achsendurchlauf

Werte aus: Havran, V.: "Heuristic Ray Shooting Algorithms" S.81. Aufgetragen ist die durchschnittliche, die beste und die

Zusammenfassung & Ausblick

- Oberflächenheuristik liefert das schnellste Space Subdivision Verfahren.
- Kann aber durch fortgeschrittene Techniken noch verbessert werden.
- Schneller als Object Subdivision Verfahren für statische Szenen

Ende

Vielen Dank für die Aufmerksamkeit!