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Abstract

The fundament challenges of scalability faced in the methods of
volumetric reconstruction of real time objects are discussed in the
original paper. The work in this paper is mainly based on the original
article i.e. Scalable Real-time Volumetric Surface Reconstruction by
Jiawen Chen, Dennis Bautembach, Shahram Izadi. According to [1] a
data structure for graphic hardware and live reconstruction of large
scale scenes is designed which is also memory efficient. The data
structure takes overlapping depth maps which are then merged into
a single volumetric representation of a moving object. The process is
a two way process between GPU and host for streaming data. The
main process is then divided in two sub-processes. The 1st process is
to take the depth maps which are taken before processing, the 2nd is
the estimation of camera pose and the last is volumetric fusion and
extraction of surface. According to [1], a shallow hierarchy with a
factor having large branching gives good memory improvement, certain
experiments are carried out which show that this data structure actually
consume less memory than a regular grid. A comparison between
implementation of the data structure in the original paper and the
existing methods is done and also a higher quality reconstruction on
different scenes which are captured in real time scenario is demonstrated
(see [1]). It is a study about the creation of high level large scale scenes
reconstruction with fine geometric details with efficient memory and
hierarchical data structure. A moving depth camera is used that fuses
overlapping depth maps by the use of a sparse data structure and
creates a single volumetric representation, from which detailed surface
models are extracted.
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1 Introduction

The surface reconstruction problem is always under the focus in the field
of Computer Graphics. It can be used in multiple applications for cultural
heritage, special effect and especially for gaming it is very important. The
reconstruction process takes multiple overlapping, depth measurement and
objects’ measurements or even a complete scene as input, the process performs
different mathematics operations and returns a single 3D representation of
that 2D image or object. The depth can be calculated from 2D images with
the help of structure-from-motion (SfM) techniques (see [2]). Multi-View
stereo or active sensors such as laser scanner or depth cameras can also be
used to find out the depth of an image (see [3]).
According to the original article [1], one of the well-known surface reconstruc-
tion approaches is the volumetric method (see [4]). As compared to other
methods this method uses relatively simple fusion method and gives high
quality output results. This approach has the following points:

• It doesn’t make any assumption about the surface topology.

• Uses the redundancy of overlapping depth samples.

• Captures the uncertainty of depth estimates.

• Fills small holes but leaves unobserved regions empty.

The introduction of depth cameras in the field of computer graphics and
computer vision leads the researches’ interest in the applications of real time
surface reconstruction, which can be used in the following (see [1])

1. Augmented reality: Here the need is to combine the real world geometry
with the virtual actions of a user.

2. Autonomous guidance: Where a robot is supposed to reconstruct the
environment, get some data and respond back to the physical environ-
ment.

The reconstruction method adopted by Kinect Fusion - “KinectFusion provides
3D object scanning and model creation using a Kinect for Windows sensor” [5]
- compelled live reconstruction from noisy Kinect depth maps and these were
applied to a variety of interactive scenarios. The data structure that is used
in the original volumetric method by Curless and Levoy [4], is a regular 3D
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grid that is uniformly divided into a set of voxels (volume elements). These
voxels are mapped on predefined physical dimensions. There is a problem
in this data structure i.e. it puts a lot of load on the memory because the
surface geometry and free spaces are all densely represented.
This densely represented data structure creates a problem in the world of
volumetric reconstruction and that is the scalability problem which means to
create high definition models with fine details without the loss of frames for
the purpose of saving memory. The various issues related to the problem and
their solutions mentioned by the original article are given as (see [1]):

1. The designing of a hierarchical GPU data structure which is not only
fast and compact but is also able to update and support the live Kinect
depth map’s fusion. In this way a high resolution representation can be
achieved by the use of comparatively less memory.

2. A mechanism is proposed that is used for the streaming of the proposed
data-structure between the host and the GPU.

According to [1], the best memory and speed improvement can be achieved
by using a shallow hierarchy of regular grids even with the same hardware.
The original article demonstrates the reconstruction of different scenes taken
from both indoor, out-door locations where the light provided was only the
natural light. The experiments were carried out by using a Kinect camera
having more speed, quality and scale as well. There is also a comparison
between different methods that improved the reconstruction quality.

1.1 Objectives of this research

The issues that are stated above can be solved by achieving the following:

• A fast and compact hierarchical GPU data structure, capable of dynamic
update, supporting fusion of live Kinect depth maps and rendering of
surface in real-time. This increases the physical size and resolution of
the reconstruction volume using an order of magnitude less memory
than a regular grid.

• A mechanism for losslessly streaming subsets of our data structure
between GPU and host, decoupling the active volume from a predefined
physical space.
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2 Related work

A surface is basically the result of creation of a single 3D model from different
noisy measurements. Different approaches are used in general but they
have some problems for example, they don’t give any information about
the process of capturing the objects, and also disregard the uncertainty in
measurements. These informations are very important when it comes to
the laser-range-sensors and depth cameras, especially for triangulation based
methods because of achieving higher quality reconstruction.
Different methods are used to deal with such sensors that implement the
techniques of combining different overlapping depth measurements into a
single 3D representation but to discuss all these methods is out of the scope
of this paper, however, these methods are partially discussed in the original
paper (see [1]).

2.1 Volumetric fusion

The problems discussed above have a high impact on the process of recon-
struction that is why different methods exist to solve these problems each with
its own pros and cons. Some of these methods use volumetric data structures
such as occupancy or samples of continuous functions. Occupancy generateds
binary grids from multiple range images then these similar properties are
shared with voxel carving (see [6]). In most cases only a low quality can be
achieved (see [1]).
Different steps and techniques are used for the volumetric fusion. For example
a representation of the surface related signed distance field is used. According
to [7], the use of signed distance fields for the representation of surfaces for
the physical simulation is very common. Curless and Levoy worked with
the depth map fusion and dealt with the direction of a sensor in a noisy
environment. Each depth map is converted into signed distance field and
then converted into voxel grid. Furthermore the method of iso-surface or ray
casting is used to get the zero level-set (see [1]).

2.2 Reconstruction from 2D images

This method is mostly used to reconstruct a large outdoor scenes. Because in
the outdoor environment most of the scenes are captured with the help of 2D
cameras. MVS or SfM techniques are used to create depth maps from the
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passive 2D cameras. Because we don’t have active sensors here, the depth
estimation can give a result having non-systematic noise and also outliers and
because of this most of the systems use some steps to regularize depth maps
by testing photo-consistency, visibility, and shape priors of the image (see [3]).
Some explicit spatial regularization is added to the method of Curless and
Levoy (see [4]) which re-casted the problem, it gives impressive results but
with the loss of memory and speed.
According to [1], the use of the above discussed system gives a very low
quality depth map but the expense of depth estimation and fusion results in
comparatively equal quality, speed, and scale however for this process a readily
available active depth camera is used. This enables a wider applicability of
subset of outdoor scenes, but still, reconstruction can be done in natural
lighting. In the design of volumetric data structures scale, quality and speed
can be demonstrated.

2.3 Real-Time reconstruction using active sensor

Some researchers left the scaling problem completely because of the trad-
off between scale quality and speed and they started their research on the
reconstruction of smaller scenes and objects by the use of active sensors.
The handheld object is scanned by a structured light sensor. Using a variant
of ICP the algorithm first aligns the point cloud, creates a voxel grid from
samples and renders. By the implementation of the Curless and Levoy
algorithm, a high-quality surface reconstruction can be achieved. However,
to scan a single small object, a low resolution hand-held and ToF camera was
used by Cui et al. (see [8]).
This method doesn’t focus on high-quality reconstruction but rather deals
with robust localization, loop closure and correction for model drift (see [1]).
KinectFusion used a modified version of Curless and Levoy to fuse noisy
Kinect depth maps. The surface is stored as a regular voxel grid in the
graphical memory. It is extracted by raycasting. According to [1], here the
limitation for higher quality reconstruction is about (3m)3, having a physical
size of 5123, and the requirement for graphics memory is 512MB, yet the
spatial scale of KinectFusion can be extended because of the real time results.
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2.4 Extending Kinect Fusion

We can use simple approaches to extend KinectFusion and that approaches
are (see [1]):
Streaming: The current volume data of the graphical memory is streamed
and then cleared, the volume of the camera position should be maintained.
And later the different overlapping surfaces can be merged.
Motion Volume: There is a defined area where the camera can move with
sensors. So this approach transforms the distance field into an active region or
re-indexes the grid with a rolling buffer and reallocates the deactivated regions.
A point cloud from deactivated regions is extracted by the system and creates
a mesh on the host periodically. This method is dependent on a regular grid,
making the active region small. The reconstruction is limited to scenes where
geometric structures are closer by each other. User experience and tracking
quality can also have effect on the clipped active region. Reintegration of the
data into volume is not possible once it is streamed to the host. “Because of
having no real time dynamic update for fusion and surface extension, these
approaches are impractical”. [1]

3 3D Reconstruction Pipeline

Figure 1 shows the 3D reconstruction pipeline. The main purpose here is
to combine both the noisy depth maps and the memory efficient volumetric
data structure to construct large and fine scale surface geometry. The surface
will be encoded as SDF. The pipeline that is used here is based on the
KinectFusion system (see [9]).

Figure 1: High level 3D reconstruction pipeline [1]

Suppose a regular dense 3D grid. We will give an input Zi to our system.
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The camera will be focused to the origin in the beginning. The volume is
updated for each frame by fusing surface observations into the stored SDF
and new data will be added in the empty spaces. The volume is re-casted by
the use of camera pose estimation. We will use rays to find sign charges. The
result will be a map. To estimate a new camera pose we will use a variant of
the ICP (Iterative closest point) algorithm (see [1]).

1. Integration: The sample takes the surface as plane. Each of the voxel’s
center is projected to the same x, y coordinates. For each voxel the
distance from center to the plane is saved.

2. Truncation and free space carving: When a sensor is moving it allows
thin surface reconstruction. Then the voxels which are far away can be
ignored as the SDF is useful only to those points which are near to the
surface. Therefore a truncated SDF is used. This gives more information
near the surface which means that the rays up to the surface are blocked
or restricted. These locations are marked as free space (see [1]). Figure
2 shows the over steps of 3D reconstruction.

Figure 2: 3D reconstruction steps [5]

Data Structure Design: According to [1], the goal is to design a data struc-
ture that efficiently represents a TSDF (Truncated SDF) and permits well-
organized integration and raycasting operations.
Figure 3 shows the view of the data structure design in the original research.
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The design consists of three levels: The root is a fully allocated grid and
provides a rough sub-division of the physical volume. The truncation region
(in grey) needs to be refined. This process is repeated again and again until
it reaches the leaf level i.e. in blue, each node is a small regular grid in this
area (see [1]).

Figure 3: The data structure design [1]

4 GPU Implementation

The role of graphics memory and the integration and raycasting i.e. in paral-
lelization is depicted in the figure 4. According to [1], the GPU implementation
consists of the following processes:
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Figure 4: Memory view of hierarchy [1]

4.1 Memory Layout

The grid is stored in GPU memory. The root level grid is stored as a dense 3D
array of GridDesc records and the initial values are null. For each hierarchy
level a backing store, pool and free list is declared. The free list is a queue of
block indices. The backing store is an array of n fixed blocks. A free block is
removed from queue when a grid needs to be allocated i.e. assigned to the
poolIndex and is marked as isDirty. When a garbage collection operation is
performed, a block index is added to the queue.
Since the grid resolution and element size can be different in each level (flexible
database [1]), a separate pool is required for each level.
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4.2 Integration

For interior levels of the tree, the atomic queue has rasterized the footprints
of the depth maps into finer voxel grids. The root algorithm and the interior
levels’ algorithm are nearly same. Now the voxels are projected to hexagons
that are smaller, therefore one thread-block is applied per grid having only
one thread per voxel. From the input queue the grid descriptor is read
and is cleaned in parallel if ‘isDirty’ flag is set. A single thread is used for
the Hexagon rasterization, while other threads proceeds with rest of the
algorithms. In order to achieve continuous results, a very careful conservative
rasterization as well as a test for intersection is very important. There is
always a possibility to miss the depth samples in the interior as the voxels in
that part are larger in size.

4.3 Summarization

We have to perform summarization in parallel to retain the job queues which
ensures that large portions are skipped from raycasting operations. When the
leaf grid is swept by parallel threads we perform a parallel reduction on any
SDF value that is near to the surface geometry (see [1]) and set its grid to
nearSurface. To find minimum weight in the leaf, a parallel reduction process
is used. A minWeight field is used as an indication for the garbage collection.

4.4 Raycasting

When a perception of 3D object is created in 2D map it is called as Recasting.
Back then when computers were slower, it wasn’t possible to run real 3D
engines in real-time, and raycasting was the first ever solution. It takes each
of the vertical line of the screen and do calculation for single line which
makes it very fast. Wolfenstein 3D is well-known game that is using this
technique (see [10]). For the recasting of the data structure a DDA algorithm
is used (see [11]). We have to maintain the previous and current distance, the
previous SDF values and stack of voxel indices. DDA is first initialized and
then for each iteration of DDA, we step to the next voxel’s current level. If we
are at the interior node it will be nearSurface. “We consider the gradient in
SDF on Zero to compute surface normal using finite differences and trilinear
interpolation. The majority of sample is in the same leaf grid as we use
shallow trees with large branching factors” [1].
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5 Moving volumes and streaming

Figure 5 shows the overall process of moving volume streams. According
to [1], the idea is taken from the work of Crassin (see [12]) and the work of
Whelan (see [13]) which is about the scale of unbounded physical dimension
and decoupling from physical volume. This idea actually helps in few terms
while decoupling from physical position of volume.

• The number of voxels and leaf level voxel size are always chosen while
defining a hierarchy.

• The coordinate system of the world is quantitized in the unit root voxels
and they are used as unique key for the hierarchy.

• The working set is defined as fixed 3D array indices in the memory of
the GPU.

• A subset of the world coordinate system, i.e. the active region is centered
on the camera view frustum. The active region effective resolution is
enforce to be one root voxel less than that of the working set along each
axis, this is done to get zero contention.

Figure 5: Illustration of bidirectional moving volume streaming.
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Streaming from GPU is similar to the integration. It requires two breadth-first
traversals of the hierarchy. To determine how much space is needed, the
indices are copied into the GPU queue and tree traversal is performed. To
calculate offset into a linear buffer a parallel prefix scan is performed and
each of the subtrees is stored. A final tree traversal operation is performed
to replace poolIndex with the byte offset from the beginning of each subtree
(see [1]).

6 Result

A hierarchy is defined as a structure that carries out or facilitates the ex-
perimentation with the branching factors and tree depths. The optimal
configuration is also shown for the existing hardware.
To capture large scale scenes a semi-mobile client server is designed. While
users use the mobile-client which transmits the scene to the server where it is
reconstructed, the raycasted images of the 3D model are displayed. “At the
client side a laptop with a battery is used along with a Kinect camera that is
controlled by the user. The server side H/W consists of a workstation with
a GPU. The communication b/w client and server is carried out through a
wireless 802.11n network. We use 140 Mbps bandwidth to transmit uncom-
pressed depth frames” [1].
For the performance and memory consumption see Figure 6 is showing the
combined integration and the execution time for raycasting on a 10243 grid
function where the hierarchy configuration is up to level 5. The performance
peaks at level 3 and decreases beyond level 4. Two factors are involved here.
Integration requires synchronization through queues and offsets saving as it is
performed breadth-first. “Raycasting is depth-first and requires stack space
linear in the number of levels” [1].
According to [1], these performance numbers show that the algorithm is more
flexible but the data structure is un-optimized.
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Figure 6: Average combined integration and raycasting runtime

Figure 7: Memory consumption as a function of hierarchy configuration [1]

Figure 7 shows the relationship between consumption of memory and
hierarchy configuration for the volume of 10243. The leaf grids which are
smaller consume less memory because the nodes are tighter and thus they
skip free spaces. After 4 levels there is diminishing returns and there is little
variation between different factors of branching in the mentioned level. There
is an overhead lead at level 5 and upper levels.
Interior levels are always extremely thinly allocated in all the levels. 128 MB
memory is therefore allocated to the leaf level pool. But a 20483 volume with
4mm voxels is not plotted and it takes 245 MB memory in the worst case.
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The figure above also shows a larger voxels requirement for memory (see [1]).

6.1 Limitation and future work

The main problem that is discussed and solved here is the data structure, but
one of the issues is the camera drift that can be a work done in future. One
issue is the re-localization in case of camera fail and the issue was somewhat
solved by the use of ICP and when ICP fails the history is searched. Re-
localization, loop closure and handling drift are some of the main problems
in SLAM and we can say that these are actually some of the future works
(see [1]).

7 Summary

The performance of the real-time volumetric reconstruction is discussed.
Previously Curless and Levoy worked on this but this work is further extended
to large and fine scale reconstruction. To achieve this scalability the most
important of all i.e. the graphics hardware design covered here includes
fast and volumetric data structure design which enables the making of good
quality, scale and speed reconstruction.
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