ation Grun

Deforma

nen Erweit

weiterungen

nisse Referenzen

Polygonnetz-freie Deformationen mittels Formangleich

Christian Georg Wehrberger christian@wehrberger.de

Seminar Computergraphik Institut für Informatik Georg-August-Universität Göttingen

24.01.2012

- 2 Grundlagen
- 3 Deformationen
- 4 Erweiterungen
- 5 Ergebnisse

Motivation Grundlagen

n Deformationen

Erweiterungen

en Ergebnisse

Referenzen

Motivation

- Vielfältige Ansätze zur Deformations-Beschreibung
 - Physikalisch akkurat
 - Auf Stabilität fokussiert
- Keine Verwendung in Computerspielen
 - Stabil, aber rechenintensiv
 - Ungeignet für degenerierte Geometrien
 - Geringe Anpassbarkeit

Gliederung Motivation Grundlagen Deformationen Erweiterungen Ergebnisse Referenzen

Verwandte Arbeiten

- Elastisch deformierbare Modelle
- Masse-Feder-Modelle
- Randelement-Methode
- Finite-Elemente-Methode
- Finite-Volumen-Methode
- Polygonnetz-freie Partikel-Systeme

tion Grundlagen

n Deforn

ien Erweite

Erweiterungen

Ergebnisse Ref

Referenzen

Grundlagen

Numerische Integration

- Implizite Integration: $G(X(t), X(t + \Delta t)) = 0$
 - Unbedingt numerisch stabil
- Explizite Integration: $X(t + \Delta t) = F(X(t))$
 - Schnellere Berechnung
 - Bedingte numerische Stabilität
 - Abhängigkeit der Konvergenzgeschwindigkeit und Stabilität von Spektralradius ρ der System-Matrix A:

 $ho(A) = \max_{1 \le i \le n} |\lambda_i(A)| \stackrel{!}{\le} 1 \ (\lambda_i \text{ Eigenwerte von } A)$

Referenzen

Explizite vs. implizite Integration

- Beispiel: $f(x) = x^2$ mittels Euler-Verfahren
- Explizite Integration
 - $f(x+h) = f(x) + 2h\sqrt{f(x)}$
- Implizite Integration

•
$$f(x+h) = f(x) + 2h\sqrt{f(x+h)}$$

• Man erhält: $f(x + h) = 2h^2 \pm \sqrt{4h^2 - f(x)^2}$

Referenzen

Stabilität numerischer Integration

• Beispiel: modifiziertes Euler-Schema

Stabilität numerischer Integration

• Beispiel: modifiziertes Euler-Schema

•
$$v(t+h) = v(t) + h \frac{-k(x(t)-h_0)}{m}$$
, $x(t+h) = x(t) + hv(t+h)$

• Gleichungssystem:
$$\begin{pmatrix} 1 & -\frac{hk}{m} \\ h & 1 - \frac{h^2k}{m} \end{pmatrix} \begin{pmatrix} v(t) \\ x(t) \end{pmatrix} = \begin{pmatrix} v(t+h) \\ x(t+h) \end{pmatrix}$$

• Eigenwerte der System-Matrix:

$$\lambda_{1/2} = 1 - \frac{1}{2m}(h^2k \pm \sqrt{-4mh^2k + h^4k^2})$$

• Forderung zur Konvergenz der iterativen Berechnung: $\rho(A) \leq 1$, d. h. $h \leq 2\sqrt{\frac{m}{k}}$

ation Grundlagen

Deformationen

Erweiterungen

Ergebnisse

Referenzen

Deformationen

- Initiale Konfiguration
- 2 Deformierte Konfiguration
- Sormangleich
- (9) "Hinziehen" der Partikel zu formangepasster Konfiguration

(日) (同) (日) (日) (日)

- Gegeben: Punktemengen x⁰_i und x_i
- Gesucht: Rotationsmatrix R und Verschiebungen t_0 , t, sodass der Ausdruck $\sum_i w_i (R(x_i^0 t_0) (x_i t))^2$ minimiert wird $(w_i \text{ Gewichtung})$
- Ergebnis: $t_0 = \frac{\sum_i w_i x_i^0}{\sum_i w_i} := x_{cm}^0, \ t = \frac{\sum_i w_i x_i}{\sum_i w_i} := x_{cm},$ $R = A_{pq} \sqrt{A_{pq}^T A_{pq}}^{-1} \operatorname{mit} A_{pq} := \sum_i w_i (x_i - x_{cm}) (x_i^0 - x_{cm}^0)^T$
- Zielpositionen $g_i = R(x_i^0 x_{cm}^0) + x_{cm}$

• Wissen über Zielpositionen ermöglicht bedingungslose numerische Stabilität

•
$$v_i(t+h) = v_i(t) + \alpha \frac{g_i(t) - x_i(t)}{h} + h \frac{f_{ext}(t)}{w_i}$$

 $(\alpha \in [0...1]$ Steifigkeits-Parameter)

•
$$x_i(t+h) = x_i(t) + hv_i(t+h)$$

• System-Matrix
$$\begin{pmatrix} 1 & -\frac{\alpha}{h} \\ h & 1 - \alpha \end{pmatrix}$$

• Eigenwerte der System-Matrix $\lambda_{1/2} = (1 - \frac{\alpha}{2}) \pm \frac{i}{2}\sqrt{\alpha(4 - \alpha)}$, also $|\lambda_{1/2}| = 1$

Diskussion des Ansatzes

- Berechnung:
 - Vorberechnung der x_{cm}^0 und $x_i^0 x_{cm}^0$
 - In jedem Zeitschritt Berechung von A_{pq} und des Ausdrucks $\sqrt{A_{pq}^T A_{pq}}^{-1}$
- Ansatz sinnvoll für kleine Deformationen
- Physikalischer Realismus:
 - Impulserhaltung
 - Drehimpulserhaltung
- Simulation starrer Körper bei $\alpha = 1$

ation Grundlagen

n Deform

Erweiterungen

Ergebnisse

Referenzen

Erweiterungen

Lineare Deformationen

- Lineare Transformation $\beta A + (1 \beta)R$ (A allgemeine Matrix) ersetzt Rotationsmatrix R
- Weiterhin Rotationsmatrix zur Formerhaltung
- Keine höhere Berechnungsintensität, da analog (teilweise) vorberechenbar

Quadratische Deformationen

- Quadratische Transformation $\beta \tilde{A} + (1 \beta) \tilde{R}$ $(\tilde{A} = [A \ Q \ M] \in \mathbb{R}^{3 \times 9})$
- Rotationsmatrix $\tilde{R} = [R \ 0 \ 0] \in \mathbb{R}^{3 \times 9}$ zwecks Formerhaltung
- Zielpositionen $\tilde{g}_i = \tilde{A}\tilde{g}_i$ mit $\tilde{q} = (q_x \quad q_y \quad q_z \quad q_x^2 \quad q_y^2 \quad q_z^2 \quad q_x q_y \quad q_y q_z \quad q_z q_y)'$ und $q_{i\alpha} = (x_i^0 - x_{cm}^0)_{\alpha} \ (\alpha \in \{x, y, z\})$ • Resultat $\tilde{A} = (\sum_{i} w_i (x_i - x_{cm}) \tilde{q}_i^T) (\sum_{i} w_i \tilde{q}_i \tilde{q}_i^T)$

rgebnisse R

Referenzen

Vergleich linearer und quadratischer Deformation

Deformation von Punktgruppen

- Kubische Punktgruppen (Cluster)
- In jedem Zeitschritt Geschwindigkeitsaddition in Richtung Punktgruppen-Zielpunkt $g_i^c : \Delta v_i = \alpha \frac{g_i^c - x_i}{h}$
- Höherer Aufwand, größere Flexibilität

(日) (同) (日) (日) (日)

- Simulation plastischen Verhaltens
- Polarzerlegung von Transformationsmatrix A in Rotations- und Deformationsanteil R bzw. S
- In jedem Schritt, in dem $||S I||_2 > c_{yield}$, aktualisiere Status der plastischen Deformation durch $S_{n+1}^{p} = (I + hc_{creep}(S - I))S_{n}^{p}$ mit Zeitschritt h und Kontrollparameter ccreep

• Anwendung auf
$$q_i = S^p(x_i^0 - x_{cm}^0)$$

Referenzen

Vergleich mit anderen Deformationsmodellen

- Hohe Effizienz durch einfache Berechnung
- Unbedingte numerische Stabilität
- Anpassbarkeit durch linearen/quadratischen Formangleich
- Keine aufwendigen Vorberechnungen
- Physikalisch näherungsweise realistisch

vation Grundlagen

n Deformationen

Erweiterungen

Ergebnisse

Referenzen

Ergebnisse

Motivation Grundlagen

Deformationen

ionen Erv

Erweiterungen

Ergebnisse R

Referenzen

Weitere Szenarien

24/28

Motivation Grundlagen

Deformationen

tionen Er

Erweiterungen

Ergebnisse R

Referenzen

Weitere Szenarien

Motivation Grundlagen

Deformationen

Erweiterungen

Ergebnisse

Referenzen

Weitere Szenarien

24/28

- Höhere Genauigkeit nicht durch höhere Deformationsmoden garantiert
- Kein physikalischer Realismus
- Kollisionserkennung fehlt
 - Flaschenhals im Zeitverhalten
- Keine Vorbearbeitung der Daten notwendig
- Keine Hilfsstrukturen nötig
- Unbedingte numerische Stabilität der Simulation
- Schnelle Berechnung
- Einfache Implementierung

- M. Müller, B. Heidelberger, M. Teschner, M. Gross: Meshless deformations based on shape matching, ACM Transactions on Graphics (TOG), Band 24 (3), Seiten 471–478, 2005
- 2 M. Müller, B. Heidelberger, M. Teschner, M. Gross: Meshless deformations based on shape matching (Report), SIGGRAPH 2005
- 3 D. Terzopoulos. J. Platt, A. Barr , K. Fleischer: Elastically deformable models, ACM Siggraph Computer Graphics, Band 21 (4), Seiten 205–214, 1987
- 4 Wolfram MathWorld (by Eric Weisstein): Euler Forward Method, mathworld.wolfram.com/EulerForwardMethod.html (Zuletzt zugegriffen am 22.01.2012)

(日) (四) (日) (日)

• Folie 6: http:

//sme-blog.com/files/2010/09/Business-Basics.jpg
(Zuletzt zugegriffen am 22.01.2012)

- Folie 11: [2]
- Folie 28: http://www.n24.de/media/_fotos/ bildergalerien/wulff/wu7.jpg (Zuletzt zugegriffen am 22.01.2012)
- Weitere Graphiken: [1]

ation Gru

Deform

ationen E

Erweiterungen

gebnisse

Referenzen

Bemerkungen und Fragen

Bitte klären Sie alle Ihre Fragen möglichst direkt. Bemerkungen und Fragen können aber auch im Nachhinein gerichtet werden an:

christian@wehrberger.de

Vielen Dank für Ihre Aufmerksamkeit!

イロト イポト イヨト イ