Kohärentes Metropolis-Lichttransportmodell mit Mutationen mit mehreren Versuchen im Seminar Computergrafik

Jan Niklas Grieb

Georg-August-Universität Göttingen

11. Januar 2011

Jan Niklas Grieb Kohärentes Metropolis-Lichttransportmodell

- Einführung

INHALT

1 Einführung

- Computergrafik: Strahlverfolgung
- Monte-Carlo
- Metropolis-Lighttransport
- Verbesserungen?

2 Kohärenter Metropolis-Lichttransport

- Multiple-Try-Mutationen
- Multiple-Try-Metropolis-Lichttransport
- Resultate
- **3** ZUSAMMENFASSUNG
 - Anwendung & Beschränkungen
 - Abschließende Worte

- EINFÜHRUNG
 - Computergrafik: Strahlverfolgung

Beleuchtung in der Computergrafik

- Verfahren der Computergrafik:
 - **Rasterizing**: Grafikpipeline, hardwarebeschleunigt, in Echtzeit.
 - Strahlverfolgung: realistisch, indirekte Beleuchtung.
- Beleuchtung in der Szene:
 - Lokale Beleuchtung: Shading, Farbe der Oberfläche aus Blickrichtung, Licht und Material.
 - Bei der globalen Beleuchtung besteht der Anspruch, die Lichtausbreitung realistisch zu verfolgen (Geometrie, Physik, etc.).
- Fazit: Rasterizering/Shading ist schnell, Strahlverfolgung/globale Beleuchtung ist realistischer und rechenzeitintensiver.

- Einführung
- Computergrafik: Strahlverfolgung

STRAHLVERFOLGUNG

- Beim Raycasting werden f
 ür jeden Sichtstrahl eines jeden Kamerapixels die Schnittpunkte mit der Szene bestimmt.
- Schnell, aber wenig Gestaltungsspielraum.
- Keine diffuse Beleuchtung, Schatten: nur Ja/Nein.

- Einführung
- Computergrafik: Strahlverfolgung

STRAHLVERFOLGUNG

Vielzahl an Verbesserungen entwickelt:

WHITTED-RAYTRACING

- Das Raytracing nach Turner Whitted berechnet auch Sekundärstrahlen rekursiv (Brechung, Spiegelung).
- Schatten (abrupte Kanten), aber noch keine diffusen Oberflächen implementiert.

DISTRIBUTION RAY TRACING

- Hier werden mehrere Primär- und Sekundärstrahlen versendet (stochastisch verteilt) und gemittelt.
- Ergebnis: weichere Schattenverläufe, diffuse Beleuchtung.
- Realitätseindruck durch motion blur und Unschärfe gesteigert.

A (10) N (10)

- Einführung

Computergrafik: Strahlverfolgung

PFADTRACING

Lösen der Rendergleichung von Kajiya bisher nicht gegeben:
 "Lichtausbreitung um die Ecke"

ABHILFE: PFADTRACING

- Das Pfadtracing generiert Sekundärstrahlen bei diffusen, reflektierenden und lichtdurchlässigen Materialien.
- Integration über mehrere Pfade pro Bildpixel.
- Mathematische Formulierung: Bidirektionale Reflektanz-, resp. Transmittanzverteilungsfunktion (BRDF, BTDF, etc.).

- EINFÜHRUNG
 - Computergrafik: Strahlverfolgung

BIDIREKTIONALES PFADTRACING I

 Verbesserung durch bidirektionalen Ansatz: gleichzeitige, unabhängige Konstruktion von Kamerastrahl und Lichtstrahl.

EINFÜHRUNG

Computergrafik: Strahlverfolgung

BIDIREKTIONALES PFADTRACING II

 (s, t): Kombination von Kamerapfaden der Länge s mit Lichtpfaden der Länge t zu Gesamtpfaden der Länge k = s + t − 1.

ILLUSTRATION

```
• Alle (s, t)-Pfade der Länge k = 2.
```


[Quellenangaben zu den Bildern in der Ausarbeitung.]

- Einführung

└_MONTE-CARLO

WAHRSCHEINLICHKEITSDICHTEFUNKTION UND ERWARTUNGSWERT

 Der Ewartungswert, wenn Wahrscheinlichkeitsdichtefunktion (PDF) verwendet:

$$E[f] = \int f(\mathbf{x}) p(\mathbf{x}) \,\mathrm{d}V. \tag{1}$$

- Sei F_N Schätzer aus N Samples für eine Größe I.
- Schätzer ist erwartungstreu für $E[F_N] = I$ und
- konsistent, falls $\lim_{N\to\infty} E[F_N I] = 0$.

- Einführung

└_MONTE-CARLO

Monte-Carlo-Integration

• Verfahren zur numerischen Integration von Funktionen.

 ${\small \mathbf{Standard}}{\small -}{\small \mathbf{MC}}{\small -}{\small \mathbf{Integration}}$

$$I = \int_{M} f(\mathbf{x}) \,\mathrm{d}\mu(\mathbf{x}), \quad F_{N} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(\mathbf{X}_{i})}{p(\mathbf{X}_{i})} \quad \Rightarrow \quad E[F_{N}] = I, \quad (2)$$

wobei X_i Zufallszahlen nach PDF $p(\mathbf{x})$ aus Gebiet M mit Maß $d\mu(\mathbf{x})$.

• Umgeht Fluch der Dimensionalität der gewöhnlichen Quadraturmethoden (Gauß, etc.), da Fehler $\delta I \propto 1/\sqrt{N}$, dimensionsunabhängig!

- Einführung
 - └-MONTE-CARLO

Metropolis-Hastings-Algorithmus I

- Bei der Verwendung von p(x) ∝ f(x) werden die Zufallszahlen die "wichtigen" Stellen der Funktion treffen.
- Dies minimiert die Varianz von F_N und damit den Fehler der Monte-Carlo-Integration.
- **Frage**: Wie wird eine solche PDF $p(\mathbf{x})$ generiert?
- Antwort: Markov-Ketten!

EINFÜHRUNG

- Monte-Carlo

MARKOV-KETTEN

Kette aus Realisierungen einer Zufallsvariablen

 $\ldots \rightarrow \mathbf{x}_i \rightarrow \mathbf{x}_{i+1} \rightarrow \mathbf{x}_{i+2} \rightarrow \ldots$

- Maß für die Übergangswahrscheinlichkeit ist K(x_i → x_{i+1}) (keine Vorgeschichte).
- Wahrscheinlichkeit für Zustand x in Schritt *i*: P(x, i).
- stationär: $P(\mathbf{x}, i) = P(\mathbf{x}, i+1) \equiv P(\mathbf{x})$

DETAILLIERTES GLEICHGEWICHT

Fordere

$$p(\mathbf{x}_i)K(\mathbf{x}_i \to \mathbf{x}_j) = p(\mathbf{x}_j)K(\mathbf{x}_j \to \mathbf{x}_i).$$
 (3)

Dann: $P(\mathbf{x}) \propto p(\mathbf{x})$

・ 戸 ト ・ ヨ ト ・ ヨ ト

- Einführung

└_MONTE-CARLO

Metropolis-Hastings-Algorithmus II

- Implementation einer Markov-Kette, welche $p(\mathbf{x})$ reproduziert
- durch Vorschlagen von Kandidaten mit Wahrscheinlichkeit
 $T(\mathbf{x}_i \rightarrow \mathbf{x}_j)$ und
- Akzeptanz mit Wahrscheinlichkeit

$$W(\mathbf{x}_i \to \mathbf{x}_j) = \min\left(1, \frac{p(\mathbf{x}_j)T(\mathbf{x}_j \to \mathbf{x}_i)}{p(\mathbf{x}_i)T(\mathbf{x}_i \to \mathbf{x}_j)}\right)$$
(4)

(so groß wie möglich).

- $\bullet \Rightarrow \mathcal{K}(\mathbf{x}_i \rightarrow \mathbf{x}_j) = \mathcal{T}(\mathbf{x}_i \rightarrow \mathbf{x}_j) \mathcal{W}(\mathbf{x}_i \rightarrow \mathbf{x}_j)$
- Wichtig: p(x) muss i.A. nicht berechenbar sein, es reicht die Verhältnisse zu kennen.

EINFÜHRUNG

└_MONTE-CARLO

Metropolis-Hastings-Algorithmus III

Metropolis-Hastings-Algorithmus

- 1) Startwert $\mathbf{x}_i \leftarrow \mathbf{x}_0$
- 2) Vorschlag \mathbf{x}^* gemäß $T(\mathbf{x}_i \rightarrow \mathbf{x}^*)$
- 3) Berechne $w \equiv W(\mathbf{x}_i \to \mathbf{x}^*) = [p(\mathbf{x}^*)T(\mathbf{x}^* \to \mathbf{x}_i)]/[p(\mathbf{x}_i)T(\mathbf{x}_i \to \mathbf{x}^*)].$
 - I) Wenn $rand(0,1) \le w$, so akzeptiere Vorschlag: $\mathbf{x}_{i+1} \leftarrow \mathbf{x}^*$.
 - II) Ansonsten alter Wert: $\mathbf{x}_{i+1} \leftarrow \mathbf{x}_i$.
- 4) Sample x_{i+1} in Histogramm
- 5) Setze $\mathbf{x}_i \leftarrow \mathbf{x}_{i+1}$ und beginne erneut bei 2).

Startup-Bias

Die Markov-Kette ist zunächst vom Startwert abhängig und somit erst nach einiger Zeit stochastisch unabhängig.

- Einführung

Metropolis-Lighttransport

MC-INTEGRATION IN DER CG

In einem Pfadtracer die Rendergleichung durch MC-Integration lösen:

$$I = \int_{\Omega} f(\bar{\mathbf{x}}) d\mu(\bar{\mathbf{x}}).$$
 (5)

PFADINTEGRAL-FORMULISMUS

Erweitere Messgleichung rekursiv mit Rendergleichung:

$$I = \int_{\mathcal{M}^2} L_e(\mathbf{x}_1 \to \mathbf{x}_0) G(\mathbf{x}_1 \leftrightarrow \mathbf{x}_0) W_e(\mathbf{x}_1 \to \mathbf{x}_0) \, \mathrm{d}A(\mathbf{x}_0) \, \mathrm{d}A(\mathbf{x}_1) + \int_{\mathcal{M}^3} L_e(\mathbf{x}_2 \to \mathbf{x}_1) G(\mathbf{x}_2 \leftrightarrow \mathbf{x}_1) f_s(\mathbf{x}_2 \to \mathbf{x}_1 \to \mathbf{x}_0) \cdot G(\mathbf{x}_2 \leftrightarrow \mathbf{x}_1) W_e(\mathbf{x}_1 \to \mathbf{x}_0) \, \mathrm{d}A(\mathbf{x}_0) \, \mathrm{d}A(\mathbf{x}_1) \, \mathrm{d}A(\mathbf{x}_2) + \dots$$
(6)

- EINFÜHRUNG
 - Metropolis-Lighttransport

PFADINTEGRALE I

- Beim PI-Formulismus wird die unabhängige Summe über die Integration aller Pfade einer Länge k gebildet.
- Diese Integrale werden mit Monte-Carlo-Verfahren gesampelt.
- Beitrag f(x̄) eines Pfades x̄ zum MC-Schätzwert des Integrals: vertexweise aus BRDF f_s und geometrischem Faktor G multipliziert.

EINFÜHRUNG

└─ Metropolis-Lighttransport

PFADINTEGRALE II

• Hier ein Beispiel für k = 3 ($\overline{\mathbf{x}} = \mathbf{x}_0 \dots \mathbf{x}_3$):

$$f(\overline{\mathbf{x}}) = L_e(\mathbf{x}_0 \to \mathbf{x}_1)G(\mathbf{x}_0 \leftrightarrow \mathbf{x}_1)f_s(\mathbf{x}_0 \to \mathbf{x}_1 \to \mathbf{x}_2)G(\mathbf{x}_1 \leftrightarrow \mathbf{x}_2)$$
$$\cdot f_s(\mathbf{x}_1 \to \mathbf{x}_2 \to \mathbf{x}_3)G(\mathbf{x}_2 \leftrightarrow \mathbf{x}_3)W_e(\mathbf{x}_2 \to \mathbf{x}_3)$$

EINFÜHRUNG

Metropolis-Lighttransport

PFADWAHRSCHEINLICHKEIT

 Die Pfadwahrscheinlichkeit p(x) ergibt sich aus den Wahrscheinlichkeiten pro Flächenelement an den Vertizes:

$$p(\overline{\mathbf{x}}) = \frac{\mathrm{d}P}{\mathrm{d}\mu}(\overline{\mathbf{x}}) = \prod_{i=0}^{k} \frac{\mathrm{d}P}{\mathrm{d}A}(\mathbf{x}_{i})$$
(7)

- Bei Lichtquellen ist Wahrscheinlichkeit pro Flächenelement dA a-priori vorgegeben.
- Bei Sekundärstrahlen wird Richtung ω_0 mit W'keit $p(\omega_0)$ gewählt. Transformation der PDF:

$$p(\mathbf{x}') = p(\omega_0) \frac{|\cos(heta'_i)|}{\|\mathbf{x} - \mathbf{x}'\|^2}$$

- Einführung

Metropolis-Lighttransport

FAZIT

- Die allgemeine Monte-Carlo-Integration in Pfadtracern mittels PI kann globale Beleuchtung realisieren, hat aber Schwächen bei schwierigen Beleuchtungsverhältnissen.
- Manche Effekte (e. g. spekulare Lichtquellen) nur mit BPT realisierbar

Multiple-Importance-Sampling

- Die einzelnen Pfade kommen bei unterschiedlichen Importance-Sampling-Techniken zustande.
- Optimales Endergebnis durch gewichtetes Mittel aus allen Techniken: *multi-sample model*.
- Unverzichtbar bei BPT.

- Einführung

Metropolis-Lighttransport

Metropolis-Lichttransportmodell

 Beim Metropolis-Light-Transport (MLT) wird auf Metropolis-Hastings (MH) zurückgegriffen, so dass die intensiven Lichtpfade bevorzugt behandelt werden. Literatur: [Veach 1997], [Veach and Guibas 1997]

Vergleich bidir. Pathtracer – MLT

 Bessere Konvergenz bei schlechten Lichtverhältnissen (e. g. Türspalt).

- EINFÜHRUNG
 - Metropolis-Lighttransport

Metropolis-Lichttransportmodell

Verwende MH zum Samplen von Lichtpfaden:

MLT-Algorithmus

- 1) Startpfad $\overline{\mathbf{x}}_i \leftarrow \overline{\mathbf{x}}_0$
- 2) Vorschlag $\overline{\mathbf{x}}^*$ gemäß $T(\overline{\mathbf{x}}_i \to \overline{\mathbf{x}}^*)$
- 3) Berechne $w = W(\bar{\mathbf{x}}_i \to \bar{\mathbf{x}}^*) = [p(\bar{\mathbf{x}}^*)T(\bar{\mathbf{x}}^* \to \bar{\mathbf{x}}_i)]/[p(\bar{\mathbf{x}}_i)T(\bar{\mathbf{x}}_i \to \bar{\mathbf{x}}^*)].$
 - I) Für rand(0,1) ≥ 1 akzeptiere den Vorschlag: $\overline{\mathbf{x}}_{i+1} \leftarrow \overline{\mathbf{x}}^*$.
 - II) Ansonsten behalte den alten Wert: $\overline{\mathbf{x}}_{i+1} \leftarrow \overline{\mathbf{x}}_i$.
- 4) Lichtintensität von $\overline{\mathbf{x}}_{i+1}$ in Histogramm
- 5) Setze $\overline{\mathbf{x}}_i \leftarrow \overline{\mathbf{x}}_{i+1}$ und beginne erneut bei 2) bis *n* MH-Mutationen durchgeführt sind.
 - Bei Farben wird die Lichtintensität auf die photometrische Luminanz skaliert.

EINFÜHRUNG

Metropolis-Lighttransport

LICHTPFADINTENSITÄT

Bidirektionales MLT: Kombiniere Kamera- und Lichteilpfad zu (s, t)-Pfaden der Gesamtlänge k = s + t - 1.

$$\frac{f_{s}(\mathbf{x}_{2} \rightarrow \mathbf{x}_{1} \rightarrow \mathbf{x}_{0})}{p(\mathbf{x}_{2} \rightarrow \mathbf{x}_{1} \rightarrow \mathbf{x}_{0})} \times \frac{G(\mathbf{x}_{2} \leftrightarrow \mathbf{y}_{2})f_{s}(\mathbf{y}_{2} \rightarrow \mathbf{x}_{2} \rightarrow \mathbf{x}_{1})f_{s}(\mathbf{x}_{2} \rightarrow \mathbf{y}_{2} \rightarrow \mathbf{y}_{1})}{\pi d^{2}} \\ \times \frac{f_{s}(\mathbf{y}_{2} \rightarrow \mathbf{y}_{1} \rightarrow \mathbf{y}_{0})}{p(\mathbf{y}_{2} \rightarrow \mathbf{y}_{1} \rightarrow \mathbf{y}_{0})} \times \frac{AL_{e}(\mathbf{y}_{0} \rightarrow \mathbf{y}_{1})}{P_{\mathrm{len}}P_{\mathrm{light}}} = LP(\mathbf{x}_{1} \rightarrow \mathbf{x}_{0})$$

BEISPIELPFAD IM BIDIREKTIONALEN MLT

Jan Niklas Grieb Kohärentes Metropolis-Lichttransportmodell

EINFÜHRUNG

└─ Metropolis-Lighttransport

MLT-MUTATIONSSTRATEGIEN

- Gestalte Übergänge zu Mutationen T(x_i, x_j) so, dass dieses berechenbar ist und Ergodizität vorliegt.
- Ergodizität wird in MLT durch komplett neue Teilpfade realisiert (*birectional mutations*).
- Pfadmutationen an den Vertizes werden nach komplizierten Mustern je nach Oberfläche / Material behandelt:
 - lens perturbations,
 - caustic perturbations,
 - multi-chain perturbations
- Kamerateilpfadmutationen, damit jeder Kamerapixel gleich oft vorgeschlagen (*stratification* abbauen).

EINFÜHRUNG

Metropolis-Lighttransport

Normierung des Histogramms

Normiere das Histogramm:

$$I_{\rm norm} = sI, \quad s = \frac{f_{\rm avg}}{h_{\rm avg}}.$$
 (8)

 $f_{
m avg}$ mittlere Intensität $h_{
m avg}$ mittlere Anzahl von Samples pro Bin

- Ersteres aus gewöhnlichem BPT mit MIS,
- dann Rauschunterdrückung und Abgrasen von Kaustiken mittels MLT.

- Einführung
 - -Verbesserungen?

VERBESSERUNGEN AN MLT?

Weiterführende Arbeiten

- [Kelemen et al. 2002] verbessern MLT durch Beschreibung von kleinen Mutationen durch Zufallszahlen auf Einheitswürfel (Varianz verringert). Große Mutationen für Ergodizität.
- Verwende MH in Energieverteilungs-Pfadtracern [Cline et al. 2005].
- Oder Replica Exchange ersetzt MH [Kitaoka et al. 2009], erinnert an simulated annealing.
- Die sequenzielle Berechnung der Mutationen ist ein großer Schwachpunkt von MLT: keine Parallelisierung.
- Zudem gering Cache-Freundlichkeit
- und Flickerprobleme in Animationsszenarien.

-Kohärenter Metropolis-Lichttransport

INHALT

1 Einführung

- Computergrafik: Strahlverfolgung
- Monte-Carlo
- Metropolis-Lighttransport
- Verbesserungen?
- **2** Kohärenter Metropolis-Lichttransport
 - Multiple-Try-Mutationen
 - Multiple-Try-Metropolis-Lichttransport
 - Resultate
- **3** ZUSAMMENFASSUNG
 - Anwendung & Beschränkungen
 - Abschließende Worte

Kohärenter Metropolis-Lichttransport

└─ MULTIPLE-TRY-MUTATIONEN

MULTIPLE-TRY-MUTATIONEN

- In vielen Dimension wächst die Schrittgröße (multivariate Normalverteilungen) mit \sqrt{d}: curse of dimensionality. Dies führt zu vielen Rückweisungen.
- Bei verringerter Schrittweite wird der Raum weniger gut abgedeckt.

Multiple-Try-Metropolis-Hastings

 [Liu et al. 2000] haben eine Verbesserung von MH vorgeschlagen, bei der mehrere Kandidaten gegeneinander antreten (*multiple-try*).

Kohärenter Metropolis-Lichttransport

MULTIPLE-TRY-MUTATIONEN

Multiple-Try-Metropolis-Hastings

Die Vorschlagswahrscheinlichkeitsverteilung sollte

$$T(\mathbf{x} \to \mathbf{y}) > 0 \Leftrightarrow T(\mathbf{y} \to \mathbf{x}) > 0$$
(9)

erfüllen. Mit symmetrischer, nicht-negativer Funktion $\lambda(\mathbf{x}, \mathbf{y})$ definiert man:

$$w(\mathbf{x}, \mathbf{y}) := p(\mathbf{y}) T(\mathbf{y} \to \mathbf{x}) \lambda(\mathbf{x}, \mathbf{y}).$$
(10)

- Diese Funktion vergleicht mehrere Kandidaten / Widersacher miteinander. Im Falle von detailliertem Gleichgewicht realisiert die resultierende Markov-Kette die PDF p(x).
- Möglichkeit:

$$\lambda(\mathbf{x}, \mathbf{y}) = [T(\mathbf{y} \to \mathbf{x})T(\mathbf{x} \to \mathbf{y})]^{-1}$$
(11)

Kohärenter Metropolis-Lichttransport

- Multiple-Try-Mutationen

MULTIPLE-TRY-METROPOLIS-HASTINGS

MTMH-Algorithmus

- 1) Startwert $\mathbf{x}_i \leftarrow \mathbf{x}_0$
- 2) Vorschlag: k neue $\{\mathbf{y}_l\}$ gemäß $T(\mathbf{x}_i \rightarrow \mathbf{y}_l)$
- 3) Wähle ein $\mathbf{x}^* = \mathbf{y}_{I^*}$ mit Wahrscheinlichkeit gemäß Gewicht $w(\mathbf{x}_i, \mathbf{y}_i)$ aus.
- 4) Ziehe k 1 Widersacher $\{z_l\}$ gemäß $T(x^* \rightarrow z_l)$ und setze $z_k := x_i$.

5) Berechne
$$\tilde{w} := \left[\sum_{l} w(\mathbf{x}_{l}, \mathbf{y}_{l})\right] / \left[\sum_{l} w(\mathbf{x}^{*}, \mathbf{z}_{l})\right].$$

- I) Für rand(0,1) $\leq \tilde{w}$ akzeptiere den Vorschlag: $\mathbf{x}_{i+1} \leftarrow \mathbf{x}^*$.
- II) Ansonsten behalte den alten Wert: $\mathbf{x}_{i+1} \leftarrow \mathbf{x}_i$.
- 6) Sample \mathbf{x}_{i+1} in Histogramm
- 7) Setze $\mathbf{x}_i \leftarrow \mathbf{x}_{i+1}$ und beginne erneut bei 2).

Erfüllt detailliertes Gleichgewicht!

-Kohärenter Metropolis-Lichttransport

└─ Multiple-Try-Metropolis-Lichttransport

MULTIPLE-TRY-METROPOLIS-HASTINGS IN MLT I

- Vektorielle Verabeitung von Pfadmutationen durch Verwendung von MTMH in MLT: kohärentes Metropolis-Lichttransportmodell (coherent Metropolis Light Transport, CMLT).
- Mehrere Kandidaten gleichzeitig berechnet und verglichen.
- effiziente Verschachtelung von "normalem" MH und MTMH: lichtintensive MH-Pfade werden dann mit MTMH behandelt (Kaustiken "absuchen").

Kohärenter Metropolis-Lichttransport

└─ Multiple-Try-Metropolis-Lichttransport

MULTIPLE-TRY-METROPOLIS-HASTINGS IN MLT II

• Mutation der Kamerateilpfade: $(L|D)S^*E$.

- Kohärenter Metropolis-Lichttransport

└─ Multiple-Try-Metropolis-Lichttransport

ANPASSUNG DES VERFAHRENS

- CMLT beinhaltet MLT, wobei die Kameraunterpfade des bidirektionalen MC-Pfadtracers kohärent durch MTMH-Störungen gesampelt wird.
- Im Gegensatz zum ursprünglichen MTMH-Algorithmus von [Liu et al. 2000] werden alle Kandidaten ausgewertet und nach den Metropolis-Raten gewichtet gemittelt. Dies erfüllt immer noch das detaillierte Gleichgewicht.
- Die MTMH-Störungen sind (biasfreie) Linsen- und kaustische Mutationen.

Kohärenter Metropolis-Lichttransport

└─ Multiple-Try-Metropolis-Lichttransport

Kohärenter Metropolis-Lichttransport

ÄUSSERER ALGORITHMUS

- 1) Startpfad $\overline{\mathbf{x}}_i \leftarrow \overline{\mathbf{x}}_0$ A)-G) [...]
- 2) Vorschlag: $\overline{\mathbf{x}}^*$ gemäß $T_{\text{bidir}}(\overline{\mathbf{x}}_i \to \overline{\mathbf{x}}^*)$.
- 3) Berechne $w = [p(\overline{\mathbf{x}}^*) T_{\text{bidir}}(\overline{\mathbf{x}}_i \to \overline{\mathbf{x}}^*)] / [p(\overline{\mathbf{x}}_i) T_{\text{bidir}}(\overline{\mathbf{x}}^* \to \overline{\mathbf{x}}_i)].$
 - I) Für $rand(0,1) \le w$ akzeptiere den Vorschlag: $\overline{\mathbf{x}}_{i+1} \leftarrow \overline{\mathbf{x}}^*$.
 - II) Ansonsten behalte den alten Wert: $\overline{\mathbf{x}}_{i+1} \leftarrow \overline{\mathbf{x}}_i$.
- Setze x
 _i ← x
 _{i+1} und beginne erneut bei 2) bis n MH-Mutationen durchgef
 ührt sind.

Kohärenter Metropolis-Lichttransport

- Multiple-Try-Metropolis-Lichttransport

Kohärenter Metropolis-Lichttransport

INNERER ALGORITHMUS

- A) Startpfad $\overline{\mathbf{x}}_{i}^{(j)} \leftarrow \overline{\mathbf{x}}_{i}^{(0)} \leftarrow \overline{\mathbf{x}}_{i}$
- B) Vorschlag: k neue $\{\bar{\mathbf{y}}_l\}$ gemäß $\mathcal{T}_{\mathrm{lc}}(\bar{\mathbf{x}}_i^{(j)} \to \bar{\mathbf{y}}_l)$
- C) Wähle ein $\bar{\mathbf{x}}^* = \bar{\mathbf{y}}_{I^*}$ mit Wahrscheinlichkeit gemäß Gewicht $w(\bar{\mathbf{x}}_i^{(j)}, \bar{\mathbf{y}}_I)$ aus.
- D) Ziehe k-1 Widersacher $\{\overline{z}_l\}$ gemäß $\mathcal{T}_{lc}(\overline{x}^* \to \overline{z}_l)$ und setze $\overline{z}_k := \overline{x}_i^{(j)}$.

E) Berechne
$$\tilde{w} := [\sum_{l} w(\bar{\mathbf{x}}_{i}^{(j)}, \bar{\mathbf{y}}_{l})] / [\sum_{l} w(\bar{\mathbf{x}}^{*}, \bar{\mathbf{z}}_{l})].$$

- I) Für $rand(0,1) \leq \tilde{w}$ akzeptiere den Vorschlag: $\bar{\mathbf{x}}_{i}^{(j+1)} \leftarrow \bar{\mathbf{x}}^{*}$.
- II) Ansonsten behalte den alten Wert: $\bar{\mathbf{x}}_{i}^{(j+1)} \leftarrow \bar{\mathbf{x}}_{i}$.
- F) 2k Lichtintensitäten mit Gewichten w $\frac{f(\bar{y}_l)}{F_y}$ und $(1 w) \sum_{l=1}^k \frac{f(\bar{z}_l)}{F_z}$, $l = 1 \dots k$, in Histogramm
- G) Setze $\bar{\mathbf{x}}_{i}^{(j)} \leftarrow \bar{\mathbf{x}}_{i}^{(j+1)}$ und beginne erneut bei B) bis *m* MTMH-Mutationen durchgeführt sind.

•
$$F_y = \sum_{l=1}^k f(\overline{\mathbf{y}}_l), \ F_z = \sum_{l=1}^k f(\overline{\mathbf{z}}_l), \ \text{wieder Luminanz-skaliert}$$

Kohärenter Metropolis-Lichttransport

— Multiple-Try-Metropolis-Lichttransport

PARAMETERWAHL

- [Segovia et al. 2007] finden keine Abhängigkeit von der Wahl von λ .
- Kritische Parameter sind die Varianzen der Gaußschen Mutationsparameter und die Anzahl k von MTMH-Vorschlägen.

-Kohärenter Metropolis-Lichttransport

— Multiple-Try-Metropolis-Lichttransport

Kohärenz

- Generierung von kohärenten Strahlbündeln: uniform verteilte, geclusterte Mutationsschritte. Dann: Box-Muller-Trafo.
- Vektorielle SIMD-Berechnung der Cluster.
- Auch möglich: Strahlbündel-Frustums [Reshevtov et al. 2005].

Illustration der kohärenten Bündel

- Kohärenter Metropolis-Lichttransport
 - -RESULTATE

Resultate I

- [Segovia et al. 2005] verwenden OpenRT.
- Parameterstudien für verschachteltes CMLT.

PARAMETERABHÄNGIGKEIT I

- Keine Sensitivität auf die Länge *m* der MTMH-Untersequenzen,
- da MH-Samples bereits proportional zur Lichtintensität sind.

-Kohärenter Metropolis-Lichttransport

- RESULTATE

RESULTATE II

Parameterabhängigkeit II

- Zusammenhang von Schrittgröße σ und Anzahl an MTMH-Wettstreitern.
- Viele Kandidaten kompensieren große Schrittweite und stabilisieren damit Algorithmus.
- Zu viele Kandidaten sorgen für stratification.

BEISPIEL FÜR stratification

JAN NIKLAS GRIEB KOHÄRENTES METROPOLIS-LICHTTRANSPORTMODELL

Kohärenter Metropolis-Lichttransport

-RESULTATE

RESULTATE III

- Leistungssteigerug durch SSE-SIMD: Faktor 1.5 bis 2.5.
- Cachefreundlichkeit: Vergleich von CMLT mit MLT und Radiosity zeigt, dass die kohärente Arbeitsweise die Cachezugriffe auf Niveau des letzteren Verfahrens senkt.

ZUSAMMENFASSUNG

INHALT

1 Einführung

- Computergrafik: Strahlverfolgung
- Monte-Carlo
- Metropolis-Lighttransport
- Verbesserungen?
- **2** Kohärenter Metropolis-Lichttransport
 - Multiple-Try-Mutationen
 - Multiple-Try-Metropolis-Lichttransport
 - Resultate

3 ZUSAMMENFASSUNG

- Anwendung & Beschränkungen
- Abschließende Worte

- -ZUSAMMENFASSUNG
- Anwendung & Beschränkungen

Anwendung & Beschränkungen

- Anwendung in kommerziellen Renderern in Aussicht.
- Zudem Übertragung auf andere Bereiche möglich, wie e. g. energy-redistribution rendering.

Einschränkungen

- Weiterhin Flickeringprobleme, evtl. Glättung der Skalierung und gespeicherte Seeds.
- Weiterhin Bedarf eines guten (Pseudo)-RNG.
- Rechnernetzwerke: kopiere Geometrie, Schreibzugriff auf alle Teile des Bildes.

ZUSAMMENFASSUNG

└─ ABSCHLIESSENDE WORTE

Abschliessende Worte

- MLT stellt ein numerisch stabiles Rendering-Verfahren mit globaler Beleuchtung (geringe Ansprüche an Szene und Lichtverhältnisse) ohne Bias.
- CMLT verbessert die Implementation von MLT auf Parallelrechnern durch vektorielle Berechnung von Mutationen und Cache-Freundlichkeit.
- Guter Schritt in Richtung Echtzeit-Pfadtracing,
- Kelemen-MLT neuerdings auf GPU gerechnet.

ZUSAMMENFASSUNG

ABSCHLIESSENDE WORTE

ENDE

Vielen Dank für Ihre Aufmerksamkeit.

 Besten Dank auch an W. Kurth f
ür die Betreuung des Seminars und an R. Hemmerling f
ür seine Unterst
ützung und Hilfestellungen.

INHALT

4 ANHANG

- Verweise
- Definitionen
- Anschaung CMLT

-

-Verweise

VERWEISE I

CLINE, D., AND EGBERT, P. 2005. A practical introduction to metropolis light transport.

A practical introduction to metropolis light transpor Tech. rep., Brigham Young University, May.

CLINE, D., TALBOT, J., AND EGBERT, P. 2005. Energy redistribution path tracing. ACM Transactions on Graphics 24, 3 (Aug.), 1186–1195.

HECKBERT, P. S. 1990.

Adaptive radiosity textures for bidirectional ray tracing. In Computer Graphics (Proceedings of SIGGRAPH 90), 145–154.

KAJIYA, J. T. 1986. The rendering equation. In Computer Graphics (Proceedings of SIGGRAPH 86), 143–150.

KELEMEN, C., SZIRMAY-KALOS, L., ANTAL, G., AND CSONKA, F. 2002. A simple and robust mutation strategy for the metropolis light transport algorithm. *Computer Graphics Forum* 21, 3, 531–540.

KELLER, A. 1997. Instant radiosity. In Proceedings of SIGGRAPH 97, Computer Graphics Proceedings, Annual Conference Series, 49–56.

KITAOKA, S., KITAMURA, Y., AND KISHINO, F. 2009. Replica exchange light transport. Computer Graphics Forum 28, 8 (Dec.), 2330–2342.

-Verweise

Verweise II

LIU, J. S., LIANG, F., AND WONG, W. H. 2000.

The Multiple-Try Method and Local Optimization in Metropolis Sampling. Journal of the American Statistical Association 95, 449 (March), 121+.

PHARR, M. 2003. Chapter 9: Metropolis sampling. In SIGGRAPH 2003 Course Note #44: Monte Carlo Ray Tracing.

RESHETOV, A., SOUPIKOV, A., AND HURLEY, J. 2005. Multi-level ray tracing algorithm. ACM Transactions on Graphics 24, 3 (Aug.), 1176–1185.

SEGOVIA, B., IEHL, J.-C., AND PÉROCHE, B. 2007. Coherent Metropolis Light Transport with Multiple-Try Mutations. Tech. Rep. RR-LIRIS-2007-015, LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université Lumière Lyon 2/Ecole Centrale de Lyon, Apr.

VEACH, E., AND GUIBAS, L. J. 1997. Metropolis light transport. In Proceedings of SIGGRAPH 97. Computer Graphics Proceedings. Annual Conference Series. 65–76.

VEACH, E. 1997.

Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis, Stanford.

WALD, I., SLUSALLEK, P., BENTHIN, C., AND WAGNER, M. 2001. Interactive rendering with coherent ray tracing. Computer Graphics Forum 20, 3, 153–164.

Kohärentes Metropolis-Lichttransportmodell

L DEFINITIONEN

WAHRSCHEINLICHKEITSDICHTEFUNKTION

 Eine Wahrscheinlichkeitsdichtefunktion (probability density function, PDF) p(x) misst die infinitesimale
 Wahrscheinlichkeit einer Zufallsvariablen X:

$$P(a < X < b) = \int_{a}^{b} p(x) \, \mathrm{d}x. \tag{12}$$

- Meist wird eine PDF normiert: $\int_{-\infty}^{\infty} p(x) dx = 1$.
- Die Stammfunktion wird (kumulative) Verteilungsfunktion genannt:

$$F(x) = \int_{-\infty}^{x} p(x') \,\mathrm{d}x'. \tag{13}$$

Anhang

L DEFINITIONEN

LICHTPFADNOTATION

reguläre Ausdrücke in Lichtpfaden [Heckbert 1990]

- L Lichtquelle,
- D diffuse Oberfläche,
- S spiegelnde Oberfläche,
- E Beobachter.

BEISPIEL

$ES^*DS^+(D|L)$

kaustischer Lichtpfad von der Linse zu einer diffusen Oberfläche oder einer Lichtquelle

DEFINITIONEN

VERTEILUNGSFUNKTIONEN

BRDF (bidrectional reflectance distribution function)

DEFINITION

$$\begin{split} f_{\mathfrak{s}}(x \to x' \to x'') &= f_{\mathfrak{s}}(x \to x', x \to x'') \\ &= \frac{\mathrm{d}L_r(x \to x'')}{\mathrm{d}E_i(x \to x')} = \frac{\mathrm{d}L_r(x \to x'')}{L_i(x \to x')\cos\theta_0\,\mathrm{d}(x \to x')}, \end{split}$$

wobei E_i Lichteinfluss und L_r -ausfluss, sowie θ_0 der Winkel zwischen Einfallsvektor $x \to x'$ und der Oberflächen-Normalen sind.

- lichtdurchlässige Materialien: BTDF (bidirectional transmittance distribution function)
- Zusammen ergeben diese die BSDF (birectional scattering distribution function).

- Definitionen

Rendergleichung

Die Rendergleichung wurde von [Kajiya 1986] aufgestellt.

Rendergleichung

Notation von [Veach 1997]:

$$L(x' \to x'') = L_e(x' \to x'') + \int_{\mathcal{M}} L(x \to x') f_s(x \to x' \to x'') G(x \leftrightarrow x') dA(x)$$
(14)

L DEFINITIONEN

Rendergleichung

Die Rendergleichung wurde von [Kajiya 1986] aufgestellt.

Rendergleichung

- *L*(*e*) (emittierter) Licht-Energiefluss
 - G geometrischer Faktor (Skalarprodukt)
 - V visueller Faktor
 - *f*_s bidirectional scattering distribution function (BSDF)
 - M Vereinigung aller Oberflächen
 - dA entsprechendes Lebesque-Maß

- Definitionen

Rendergleichung

Die Rendergleichung wurde von [Kajiya 1986] aufgestellt.

Kohärentes Metropolis-Lichttransportmodell

DEFINITIONEN

PFADINTEGRALFORMULISMUS I

Die Messgleichung eines hypothetischen Sensors, der mit Responsivität $W_e(\mathbf{x} \rightarrow \mathbf{x}')$ auf Licht $L(\mathbf{x} \rightarrow \mathbf{x}')$ reagiert:

$$I = \int_{\mathcal{M}\times\mathcal{M}} W_e(\mathbf{x}\to\mathbf{x}') L(\mathbf{x}\to\mathbf{x}') G(\mathbf{x}\leftrightarrow\mathbf{x}) \, \mathrm{d}A(x) \, \mathrm{d}A(x).$$

Erweitere rekursiv mit der Rendergleichung (s.o.), um die Pfadintegralgleichung zu erhalten:

$$I = \sum_{k=1}^{\infty} \int_{\mathcal{M}^{k+1}} \left[L_e(\mathbf{x}_k \to \mathbf{x}_{k-1}) G(\mathbf{x}_k \leftrightarrow \mathbf{x}_{k-1}) W_e(\mathbf{x}_1 \to \mathbf{x}_0) \\ \cdot \left(\prod_{i=1}^{k-1} f_s(\mathbf{x}_{i+1} \to \mathbf{x}_i \to \mathbf{x}_{i-1}) G(\mathbf{x}_i \leftrightarrow \mathbf{x}_{i+1}) \right) \, \mathrm{d}A(\mathbf{x}_0) \dots \, \mathrm{d}A(\mathbf{x}_k) \right]$$

Kohärentes Metropolis-Lichttransportmodell

L DEFINITIONEN

PFADINTEGRALFORMULISMUS II

Beim Pfadintegral-Formulismus wird der Integrationsraum in die Teilräume der endlichen Pfadlängen k zerlegt:

$$\Omega = igcup_{k=1}^\infty \Omega_k, \quad ar{\mathbf{x}} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k) \in \Omega_k$$

Das Maß dieser Mengen wird kombiniert:

$$\mu(G) = \sum_{k=1}^{\infty} \mu_k(G \cap \Omega_k), \quad \mathrm{d}\mu_k(\overline{\mathbf{x}}) = \,\mathrm{d}A(\mathbf{x}_0) \dots \,\mathrm{d}A(\mathbf{x}_k)$$

- Integral ist dann die Summe über Pfade aller Längen.
- Beitrag eines Pfades: multiplizierte BSDF und geometrischen Faktoren.

Anhang

DEFINITIONEN

UMRECHNUNG RAUMWINKEL

•
$$\omega_0 = \widehat{\mathbf{x}' - \mathbf{x}}$$
 Raumwinkel der Gerade $\mathbf{x} \to \mathbf{x}'$.

• Projizierter Raumwinkel von $D \subset S^2$:

$$\sigma_{\mathbf{x}}^{\perp}(D) = \int_{D} |\omega \cdot \mathbf{N}(\mathbf{x})| \, \mathrm{d}\sigma(\omega)$$

infinitesimal:

$$\mathrm{d}\sigma^{\perp}(\omega_0) = |\omega_0 \cdot \mathbf{N}(\mathbf{x})| \,\mathrm{d}\sigma(\omega_0),$$

- N(x) Normalenvektor der Oberfläche an Stelle x, so dass ω₀ · N(x) = cos θ₀.
- Umrechnung PDF:

$$p^{\perp}(\omega_0) = p(\omega_0) rac{1}{\cos heta_0}$$

-Anschaung CMLT

MULTIPLE-TRY-METROPOLIS-HASTINGS IN MLT II

 Illustration der MTMH-Wettstreiter (Kreise) und Widersacher (Dreiecke) als zweite Ebene unterhalb MLT-Mutationen (Quadrate).

ANHANG

-Anschaung CMLT

MULTIPLE-TRY-METROPOLIS-HASTINGS IN MLT II

 Illustration der MTMH-Wettstreiter (Kreise) und Widersacher (Dreiecke) als zweite Ebene unterhalb MLT-Mutationen (Quadrate).

