
Developing Multiscale Simulation Models

using the Software GroIMP

Yongzhi Ong, Winfried Kurth

Department Ecoinformatics, Biometrics & Forest Growth

University of Göttingen

Büsgenweg 4, 37077 Göttingen, Germany

yong@gwdg.de

Abstract:

GroIMP (Growth grammar based Interactive Modelling Platform) is an open-source software tool
focused on the development of functional-structural plant and forest stand models. It encompasses a
domain-specific programming language, Extended L-System language (XL), which provides standard
Java language features and additional rule-based graph rewriting mechanisms. A model with
meaningful 3D representation and visualization, such as a forest plot, can be constructed by
interpreting each project graph geometrically. Additionally, embedded imperative code allows to run
process-based simulations (e.g., light interception) on these 3D structures.
Recent extensions to the graph model and XL have allowed convenient representations of hierarchical
or multi-scale objects in GroIMP. Using these features, models at different spatial scales are coupled
in a common data structure, raising further interests towards specific methods in up- and down-scaling
model dynamics.
In this paper, we show the graph- and rule-based programming approach as a viable method to
developing multi-scale functional-structural models. Examples include stand dynamics and
morphological developments of individual conifers as well as reactions to ozone exposure of beech
trees at the metabolic, organ and whole-tree scale. Distinct scales can be visualized and observed for
analysis and comparisons.

1 Introduction

1.1 Rewriting Systems

Architecture and structure play an important role in statistical and functional models

of individual plants (Godin et al. 1999). The L-systems (Lindenmayer 1968), initially

used to model development of multicellular organisms, were later extended to model

these physical aspects of plants (Smith 1984; Prusinkiewicz 1986). Variants of L-

systems emerged, catering to increasing requirements of structural plant models.

Parametric L-systems (Hanan 1992), for example, allow the association of numerical

parameters with L-system symbols, enabling the quantification of geometric attributes

of a model. Other examples of L-system variants include stochastic L-systems

(Prusinkiewicz & Lindenmayer 1990), context-sensitive L-systems, table L-systems

(Kari et al. 1997), pseudo L-systems (Prusinkiewicz 1986), differential L-systems

(Prusinkiewicz et al. 1993), sensitive growth grammars (Kurth 1999; Kurth & Sloboda

1999), etc. The concision or brevity of rewriting rules is one reason that L-systems

remain one of the dominant formalisms for plant modelling today (Hanan 2013).

mailto:yong@gwdg.de

 2

Along the same line of research, development of several software tools with 3-

dimensional interpretation of (extended) L-systems, e.g., L-Studio (Karwowski &

Prusinkiewicz 2004), GroIMP (Kniemeyer 2008), and OpenAlea/LPy (Boudon et al.

2012) aim to mitigate the process of creating realistic virtual plant architectures and

models.

1.2 Stand and Tree Modelling

At a coarser scale, i.e. higher level in the organizational hierarchy, models of tree and

stand development are required for assessment and management of forests

(Burkhart & Tomé 2012). Different approaches, such as empirical, process-based,

and hybrid, have been taken to construct these models. While empirical models, e.g.

conventional growth and yield models, essentially describe observed data at a given

scale (e.g. tree or stand) in terms of attributes at the same scale, empiricism for

process-based models is usually at finer scales than individual trees or stands

(Thornley & Johnson 1990). Process-based models deal, primarily, with dry mass

production processes at the leaf or canopy scale and its allocation to plant parts,

resulting in tree or stand development. A combination of process-based and

empirical elements at the same scale gives a hybrid model (Mäkela et al. 2000).

Many approaches to empirical modelling of forest stand development exist. One way

to classify the approaches is by the modelling entity (i.e. stand, size class, tree)

utilized (cf. table 10.1, page 235, Burkhart & Tomé 2012). A separate, commonly-

used approach involves the disaggregation of whole-stand models by a continuous

dbh distribution function, as opposed to the discrete disaggregation to size classes in

size class models.

In empirical growth and yield models, field measurements of variables such as age,

diameter at breast height (dbh), height, site quality are taken and fitted with

regression models that allow reproduction of the characteristics in the data set. With

more available data, e.g. whole stand, diameter distribution, size-class, and individual

tree models, improved yield models using advanced analytical methods and

computing technology have been developed (Burkhart & Tomé 2012). In later

models, crown and branching traits have been included (Mohren & Burkhart 1994). A

variety of approaches have been used to quantify tree crowns. Straightforward

approaches use crown length and width to estimate crown surface area and volume,

assuming that the crown is some regular geometric shape. Alternatively, regression

equations have been used to estimate crown volume from dbh, height, and live-

crown ratio (Biging & Wensel 1990). Later research resulted in crown profile models

with finer detail by dividing each crown into segments (Hann 1999; Marshall et al.

2003). Other techniques for modelling tree crowns include stochastic frontier models

(Nepal et al. 1996), non-parametric models (Doruska & Mays 1998), and use of

fractal geometry (Zeide & Gresham 1991; Zeide & Pfeifer 1991). A comprehensive

list of approaches for describing crown profiles can be found in Pretzsch (2009) and

Burkhart & Tomé (2012).

 3

In order to derive the dynamics of stand structure, competition, and interaction of

trees with other organisms from simple rules acting at a local scale, individual-based

models have been developed (Grimm & Railsback 2005). It has been demonstrated

that the above-mentioned rewriting-system approach is also applicable for a concise

specification of such models at stand scale (Kurth 2002, Kurth et al. 2012).

1.3 Multiple Scales

Apparent in various domains of research, attempts have been made to integrate

scales in plant, tree, stand models, etc. In computer graphics, Deussen et al. (1998)

and Lane & Prusinkiewicz (2002) generated plant ecosystems for visualization. In

process-based stand and tree modelling, Mäkela (2003) proposed a hierarchical

treatment of multiscale processes. Seidl et al. (2012) presented a hierarchical

multiscale framework in ecology that constructs ecosystems at landscape level from

the scale of individual trees. In functional-structural plant modelling, Godin and

Caraglio (1998) proposed the multiscale tree graph in order to formalize the

hierarchical representation of individual plant structures. Cournède et al. (2008) have

combined a competition model based on point patterns in a plane with an individual-

tree FSPM to simulate 3D forest structures. By taking into account individual 3D tree

structures and competition in a mixed stand, Lintunen et al. (2011) have successfully

simulated the crown structures of trees. Last but not least, scale-integration,

otherwise known as linkages in forest stand modelling (cf. chapter 10.2, Burkhart &

Tomé 2012), is commonly used for efficiency and consistency in providing different

levels of detail on stand structure.

Continued efforts to integrate scales in models saw the coupling of L-system-based

models with objects not easily accessible from the rule-based realm, giving rise to

lengthy model definitions, contradicting the original advantage of concise rule-based

formalisms. To illustrate this problem, consider a plant organ modelled as a symbol in

an L-system rule and an object representing a forest stand that is not recognized in

rules. When computations require an interface between the two, either (index-based)

referencing or lengthy graph queries need to be engaged. This problem was

addressed separately by Boudon et al. (2012) using strings that encode multiscale

structures in rules, and by Ong & Kurth (2012) using multiscale graph grammars.

1.4 Multiscale Programming with Rules and a Unified Data Structure

In this paper, we present the applicability of multiscale graph grammars (Ong & Kurth

2012) in the context of its implementation – the programming language XL and the

software platform GroIMP (Kniemeyer 2008). We showcase the usage of rule-based

programming on a single unified data structure for multiscale models, as an

alternative to coupling scattered software packages. Drawing from the wide range of

stand and tree models in the aforementioned categories, the use of rules is not only

 4

demonstrated for the structural growth of individual trees, but also for a selected

empirical stand model and crown profile model.

In section 2, we revisit main concepts of earlier work in multiscale graph grammar

and show the graph construct for containing atmospheric effects on metabolic

networks. Section 3 describes, using an example, the step-by-step development of a

multiscale model using the programming language XL in the software GroIMP.

Lastly, in section 4, we summarize and discuss upcoming and potential future work.

2 Previous Work

2.1 Multiscale Graph Model and Grammar

For the purpose of embedding and accessing objects at different scales via rules in a

unified data structure, a three-part graph model and grammar was proposed (Ong &

Kurth 2012). The first part, a structure-of-scales, is a finite partially ordered set that

establishes the scales and the ordering of refinement relationships between them. A

scale is either a refinement of, an encoarsement of, or incomparable with another

scale. These inter-scale relationships are (super)imposed on the second part, a type

graph. The type graph is a labelled, directed graph that consists of nodes, each

representing an entity type in the model. Refinement relationships are represented by

edges labelled by the unique refinement edge label. The third part is an instance

graph that comprises node or object instances (in terms of object-oriented

programming) corresponding to entity types in the type graph. Figure 1 depicts the

three-part multiscale graph model. The structure-of-scales, although a fundamental

component of the graph model, is exempted from source code. In practice, it can be

deduced from the type graph. Typically, a rule in the initial procedure – init() of

projects in GroIMP is used to specify the type graph. Other rule statements leverage

on the type graph for semantic interpretation of intended graph queries (on the left-

hand side) and productions (on the right-hand side).

Figure 1. Three-part graph model and grammar. Refinement relationships are superimposed from the

structure-of-scales to the type graph, and from the type graph to the instance graph. Syntax

interpretation relies on the type graph and rules operate on the instance graph.

2.2 Example: Rules for Atmospheric Gas, Trees, and Biological Networks

The three-part graph model was used to represent tropospheric ozone conditions,

European beech (Fagus sylvatica) trees (whole tree, axes, growth units, organs,

 5

crown layers), and the Shikimate pathway network (Ong et al. 2014, submitted).

Figure 2 illustrates the structure-of-scales and type graph used.

Some rules used in the model highlight the advantages of this three-part graph data

structure. For example, to look up current ozone AOT40 (accumulated ozone

exposure over a threshold of 40 parts per billion) conditions in order to initialize

enzyme concentrations of the Shikimate pathway networks in the instance graph, we

used the query (left-hand side of rule)

 s:Stand (/>)* CrownLayer [dahps:DAHPS][dhqd:DHQD][sd:SD][epsps:EPSPS]

In this query, (/>)* represents a path of refinement edges with an arbitrary length

from the Stand node to the CrownLayer node. The brackets between the CrownLayer

node and nodes representing metabolic species represent refinement edges instead

of branching edges in conventional bracketed L-systems. This interpretation occurs

as a result of the refinement relationships in the type graph. In a single query, the

ozone conditions stored in Stand nodes and the related nodes for metabolic species

(e.g. DAHPS) are found in the instance graph. The colon-separated, lower-case

prefixes (s, dahps, ...) of the node type names are labels of individual instances,

used to retrieve them in subsequent code (not shown).

Figure 2. Structure-of-scales and type graph of model simulating ozone trends, beech trees

and the Shikimate pathway.

On the other hand, conventional successor and branching edge relationships are

expected for two consecutive nodes with entity types at the same scale. To illustrate

this, consider the rule

t:Tree a:Axis g:GU Bud ==> t a g

for(1:numInternode) (Internode [Axis GU Bud]) GU Bud;

that specifies the structural development of beech trees at various scales (tree, axes,

growth units, and internodes). The left-hand side of the rule, i.e. t:Tree a:Axis g:GU

 6

Bud, is replaced by the production graph specified after the symbol ==>. A branching

edge, for example, is expected between Internode and the Bud node within brackets

although they are separated by coarser scale nodes, Axis and GU.

In addition, the type graph is used to determine edge connections necessary to

embed production graphs in the instance graph during graph rewriting operations (cf.

Ong & Kurth 2012 for details of the rewriting mechanisms).

3 Multiscale Model Development

This section describes the development of a multiscale model that consists of stand

dynamics, crown profile development, height and dbh growth, and branching

structure development of individual trees. Emphasis is placed on the rule-based

(graph) data structure-oriented programming approach, and the integration of

quantitative values at different scales for a consistent multiscale model. For this

paper, empirical models are adopted from literature and combined. The rest of this

section is divided into sub-sections describing the multiscale graph structure, model

initialization, the germination model, the growth model, and the mortality model.

3.1 Multiscale Graph Structure and Model Initialization

An overview of the scales and entity types required in the model is first constructed

using the structure-of-scales and type graph (Figure 3).

Figure 3. Graph construct for model simulating stand dynamics and developments of crown profile,

height, dbh, and branching structure of virtual fir trees. Left: structure-of-scales. Right: type graph.

Three scales make up the model. The Stand scale is the coarsest scale and

comprises the entity types Stand, which represents a collective object for a forest

stand, and Grid, which represents a unit of the regularly divided stand area. The Tree

scale comprises an entity type Tree that represents a single fir tree. The finest scale

Organ has entity types Bend, I, Bud, and Trunk. Bud represents a bud, I represents

an internode, Trunk represents an internode along the trunk or main stem, and Bend

represents a connection between a lateral branch and the trunk. The entity types,

otherwise known as modules in the programming language XL, are declared in code.

 7

In the initial procedure init(), a forest stand with an evenly divided grid floor is

created:

 {grids = createGridFloor();}//grids is a double array of Grid objects

Axiom ==> Stand for(int i:(1: S_GRID_COUNT_X))

 (for(int j:(1: S_GRID_COUNT_Y))([grids[i][j]]));

The procedure createGridFloor() initializes a double array (rows and columns) of

Grid nodes. To initialize the instance graph, a rule with query for Axiom creates a

Stand node that is connected to each Grid node via a branching edge. The init()

procedure additionally contains the rule for creating the type graph, as illustrated in

Figure 3, and connecting it to the root node ^:

==>> ^ {# Stand Grid #} /> Tree /> {# Bend I Trunk Bud #};

The symbols {# and #} enclose nodes in a clique, connecting each pair within bi-

directionally by successor and branching edges.

Upon completion of init(), a procedure run() is invoked once for every simulation

year. Three major simulation sub-steps, described by the next three sub-sections,

are included in run().

3.2 Germination

A constant pool of germinating seeds is assumed to reside in the virtual forest stand

each year. The procedure for the first sub-step of run(), germinate(), contains the

following rule that appends graph nodes representing seedlings to the instance

graph:

 s:Stand ==> s for(int i:(1:S_SEED_POOL))(

{x = random(0,S_DIM_X); y = random(0,S_DIM_Y);}

[createTree(x,y) createTrunk Bud(0)]);

In the second line of the rule, a Java code block (between curly brackets) is

embedded to generate random 2-d coordinates for the position of a new tree.

createTree(x,y) and createTrunk are procedures that return new graph nodes with

entity types Tree and Trunk respectively. All in all, a total of S_SEED_POOL nodes with

entity type Tree are newly refined from each Stand node. Each new Tree node is

refined to a new Trunk node succeeded by a new Bud node.

Internally, the procedure createTree(x,y) establishes a refinement edge from a Grid

node to the new Tree node it creates based on the position given by x and y:

 {Tree t = new Tree(x,y,T_INIT_HT,T_INIT_CI,T_INIT_DBH,T_INIT_AGE,

T_CR,treeCwmax(0),T_INIT_HCBASE,T_INIT_HD,T_INIT_NUMINT,T_CROWN_SHADE

T_RPMAX);}

==>> grids[x/S_DIM_X][y/S_DIM_Y] t <+ ^;

The Grid node representing the grid unit in which the tree resides is identified from

the double array using a simple division of the coordinates by the grid dimensions,

S_DIM_X and S_DIM_Y. The graph root node ^ is connected to the new Tree node via a

 8

branching edge for visualization purposes, since our tool GroIMP currently shows in

its 3D view only nodes accessible from the root by a path composed exclusively of

successor and branching edges. Parameters for a new Tree node are mostly

constants except for maximum crown width, which is computed by the procedure

treeCwmax. Empirical data for maximum crown width of fir trees was extracted from

Schober (1995). The data was fitted and computed as

 cw = 8.331566 / (1 + 5.011992 * age –1.011805)2 + 0.194259

where cw is the maximum crown width for a tree with age age.

Similar to createTree, createTrunk consists of a rule to connect the graph’s root

node to new Trunk nodes.

3.3 Growth

The second sub-step of run(), grow(), contains procedures and rules to compute

competition among trees, growth of individual trees, and development of organs and

finer structures for each tree.

3.3.1 Stand Competition Index

An empirical model of forest stand development based on Burkhart et al. (1987) is

utilized. Dbh of trees in each grid unit is reset and summed using the rules:

 g:Grid ::> {g.dbhSum = 0; g.dbhSumInRange = 0;}

 g:Grid t:Tree ::> {g.dbhSum += t.dbh;}

The first rule resets the value of parameters dbhSum and dbhSumInRange for each Grid

node. The second rule aggregates the dbh of each tree, t.dbh, residing in each grid

unit into g.dbhSum.

The effects of competition between trees occur within a specified distance range

S_COMPETE_RANGE, which is resolved into a number of grid units depending on the

dimensions of a grid unit. The sum of dbh in grid units within the range

S_COMPETE_RANGE, dbhSumInRange, is aggregated for each Grid node using

conventional Java iterations on the double array grids. Correction is performed for

grid units along the marginal areas of the virtual stand by compensating for out-of-

range areas using the average dbhSum of within-range grid units.

With the accumulation of dbh in grid units, competition indices of trees are set using

the following rule:

g:Grid t:Tree ::> {t.ci = g.dbhSumInRange/t.dbh;}

where t.ci is the competition index for tree t residing in the grid unit represented by

Grid node g.

 9

3.3.2 Individual Tree Growth

Empirical data for height and dbh of fir trees is extracted from Schober (1995). The

data was fitted and computation of height and dbh are as follows:

 ht = 0.023777 / (0.000559 + age –1.896382) + 0.400637

 dbh = 0.225899 * age 1.142437 + (–0.000378 * age) + 1.012812

where ht, dbh, and age are the height, dbh, and age of a fir tree respectively. Given

height, dbh, and age, crown ratio (vertical proportion of height that the crown

occupies) is computed based on the model by Dyer & Burkhart (1987):

 cr = 1 – e–(0.55243 + 5.026/age) * dbh / ht

where cr is the crown ratio of the tree.

A rule in grow() utilizes the empirical fittings and pre-computed competition indices to

determine the development of each tree:

t:Tree ::> {

 float htPotDelta = treeHt(t.age + 1) – t.ht; //poten. ht inc.

 t.hd = cDelta(htPotDelta, t.ci, t.cr); //ht inc. w. competition

 t.ht += t.hd;

 float dbhPotDelta = treeDbh(t.age + 1) – t.dbh; //poten. dbh inc.

 t.dbh += cDelta(dbhPotDelta, t.ci, t.cr);//dbh inc. w. competi.

 t.age ++; //tree age

 t.cr = crownRatio(t.dbh,t.ht,t.age); //crown ratio

 t.cwmax = treeCwmax(t.age); //maximum crown width

 t.hcbase = (1-t.cr) * t.ht; //height to base of crown

 }

The procedures treeHt, treeDbh, and crownRatio contain the aforementioned

empirically fitted formulas for height, dbh, and crown ratio of fir trees. Given the

succeeding age of a tree (t.age + 1) , the potential height increment, htPotDelta,

and potential dbh increment, dbhPotDelta, are computed. These potential

increments are provided as inputs to the competition model (based on Burkhart et al.

1987) specified in the procedure cDelta to obtain actual increments in the

competitive environment. The competition model is computed as follows:

 d = dpot * (0.26325 + (2.11119 * cr 0.56188 * e –0.26375 * ci – 1.03076 * cr))

where d is the actual increment, dpot is the potential increment, cr is the crown ratio,

and ci is the competition index of the tree. Lastly, age, crown ratio (cr), and

maximum crown width (cwmax) are updated for each tree.

3.3.3 Structural and Architectural Development

In this section, we first describe apical growth of a tree’s trunk, followed by elongation

of lateral first order branches. Bending and senescence of lateral branches are

described at the end.

 10

Development of tree trunks is specified by the rule

 t:Tree b:Bud, (b.order == 0) ==> { int numInt = (t.hd / I_ELONG0);}

 t for(int i: (1:numInt)) (

 Trunk(I_ELONG0, I_INIT_DBH) RH(I_PHYLLO)

 [Bend(I_ANGLE, 0) I(I_ELONG1) Bud(1)])

 Trunk(t.hd%I_ELONG0, I_INIT_DBH) RH(I_PHYLLO) Bud(0);

where numInt is the number of internodes to be created along the trunk and t.hd is

the precomputed actual height increment for the tree. The for-loop inserts Trunk

nodes according to a phyllotaxy constant I_PHYLLO, each with a lateral branching

angle Bend(I_ANGLE, 0), internode I(I_ELONG1), and bud Bud(1). The final apical

internode is represented by a Trunk node with length t.hd%I_ELONG0, remainder of

the division of actual height increment by internodal length. This rule operates only

for the bud with order zero, i.e. apical bud for the main stem or trunk, as indicated by

the query condition (b.order == 0).

The development of lateral first order branches is specified by the rule

 t:Tree b:Bud, (b.order == 1) ==> { Point3d locB = location(b);

 float dist = distToTrunk(t.x,t.y,locB.x,locB.y);

 if(locBud.z > t.hcbase) {

 float rp = 1-((locBud.z - t.hcbase)/(t.ht - t.hcbase));

 float cwah = (cwah(t.cwmax, rp, t.ht, t.dbh)/2);

 }

 float elong = cwah - dist; if(elong < 0) elong = 0;}

 t if(elong > 0)(RU(I_TROPISM) I(elong) Bud(1))

 else(b);

The 3D position, locB, of the first order bud is first computed. With its position, the

minimum (perpendicular) distance, dist, of the bud from the trunk is computed. If the

bud is not below t.hcbase, the height to the base of the crown, we compute the

vertical relative position, rp, of the bud in the crown. rp is provided as input to a

crown profile model based on Hann (1999) to compute cwah, the crown width at a

specific height as follows:

 f = 0.929973 – 0.135212 * rp 0.5 – 0.131316 * (ht / dbh), cwah = cwmax * rpf

where f is a coefficient computed using the vertical relative position in crown, height,

and dbh of the tree. cwmax is the pre-computed maximum crown width of the tree.

Elongation, elong, of the lateral branch is computed as the difference between cwah

and dist. A rotational node RU(I_TROPISM) with tropism angle I_TROPISM, and an I

node representing an internode with length elong are appended to the graph if elong

is positive. Figure 4 illustrates the various parameters associated with the crown

profile graphically.

Mechanical bending of the branches is simulated by modifying the angles of Bend

nodes. Branches originating below the pre-computed minimum height to crown base

are removed. These two operations are specified with the following rules:

 11

 t:Tree b:Bend ::> {if(location(b).z > t.hcbase) b.angle+=I_BEND;

 else cutBranch(b);}

 b (-->)+ Node ==>> ;

The first rule checks if the height location(b).z of the Bend node b is higher than

the minimum height to crown base t.hcbase of the tree. If so, the angle of the Bend

node b is incremented by I_BEND degrees. If not, the procedure cutBranch is

invoked with b as input parameter to remove nodes representing the branch. The

second rule is specified in the cutBranch procedure. It queries for the node b as well

as all nodes Node with a path from b and replaces them with an empty production

graph, effectively deleting these nodes from the instance graph.

Figure 4. Illustration of variables – height (ht), diameter at breast height (dbh), maximum crown width

(cwmax), bud’s minimum distance to trunk (dist), crown width at height (cwah) for vertical height (hcw),

height to base of crown (hcbase), and bud’s vertical position (locBud.z). Relative position in crown

(rp) is 1 – ((locBud.z – hcbase) / (ht – hcbase)).

3.4 Mortality

The third and last sub-step of run(), mortality(), contains procedures and rules that

simulate the death of trees in the virtual forest stand. Mortality is based on the model

by Burkhart et al. (1987) and is specified by the rule

 t:Tree /> n:Node ==> {float prob = S_LIVE_JUVENILE;

 if (t.age >= S_AGE_COMPETE) prob = probLive(t.cr, t.ci);}

 if (probability(prob)) (t /> n);

A Tree node and all nodes with a refinement edge connection from it are queried

from the instance graph. If the queried tree is younger than S_AGE_COMPETE, its

probability of survival, prob, is S_LIVE_JUVENILE. If it is of age S_AGE_COMPETE or older,

 12

its probability of survival is computed from its crown ratio (t.cr) and competition

index (t.ci) in the procedure probLive as

 k = –0.0023 * ci 0.65206, p = 1.02797 * cr 0.0379 * ek

where k is a cofficient computed using the competition index ci, and p is the

probability of survival, computed from the tree’s crown ratio cr and k. The tree’s

survivial is determined by the procedure probability with prob as input parameter. If

the tree survives, the nodes are specified as they were in the production statement

on the right-hand side, leaving them intact in the instance graph. Otherwise, the

production statement is left empty, effectively removing the nodes representing a tree

from the instance graph.

A list of parameter values (capitals in code statements) is provided in Table 1. Figure
5 shows screenshots of the model.

S_AGE_COMPETE 8 T_INIT_HCBASE 0

S_DIM_X 16 T_INIT_HD 0

S_DIM_Y 16 T_INIT_HT 0.1

S_GRID_COUNT_X 4 T_INIT_NUMINT 0

S_GRID_COUNT_Y 4 T_RPMAX 0.1

S_LIVE_JUVENILE 0.8 I_ANGLE 80

S_SEED_POOL 26 I_BEND 1

T_CR 0.3 I_ELONG0 0.2

T_CROWN_SHADE 0.9 I_ELONG1 0.1

T_INIT_AGE 0 I_INIT_DBH 0.0575

T_INIT_CI 0 I_PHYLLO 132

T_INIT_DBH 1 I_TROPISM -1.3

Table 1. Constant parameter values. Prefix S, T, and I, for stand, tree, and internode (organ) scales

respectively.

Figure 5. Illustration of 154 trees in a 265 year old stand. Left: Visualization of the crown profiles.

Right: Visualization of organ scale with internodes.

 13

4 Summary and Outlook

We presented the usage of rule-based programming on a single unified data

structure for multiscale models as an alternative to merging scattered software

packages. As shown in the demonstrative model, empirical forest stand and tree

models can be integrated with rule-based modelling of tree architectures. With pre-

defined scale relationships, entities in conventional forest stand and tree models are

readily accessible in the rule-based realm. Potential work in the future is the

integration of process-based or hybrid category models with significantly larger

amounts of data at finer scales. Specific multiscale modelling techniques may be

required to overcome computational barriers associated with large data quantity.

References

Biging, G.S.; Wensel, L.C. (1990): Estimation of crown form for six conifer species of northern California.

Canadian Journal of Forest Research 20 (1990) 1137–1142.

Boudon, F.; Pradal, C.; Cokelaer, T.; Prusinkiewicz, P.; Godin, C. (2012): L-Py: An L-system simulation

framework for modeling plant architecture development based on a dynamic language. Frontiers in

Plant Science 3, Article 76 (20 p.).

Burkhart, H.E.; Tomé, M. (2012): Modeling Forest Trees and Stands. Springer, Dordrecht Heidelberg New York

London.

Burkhart, H.E.; Farrar, K.D.; Amateis, R.L.; Daniels R.F. (1987): Simulation of individual tree growth and stand

development in loblolly pine plantations on cutover, site-prepared areas. Virginia Polytechnic Institute

and State University, Blacksburg, Pub. FWS-1–87.

Cournède, P-H.; Mathieu, A.; Houllier, F.; Barthélémy, D.; de Reffye, P. (2008): Computing competition for light in

the GREENLAB model of plant growth: A contribution to the study of the effects of density on resource

acquisition and architectural development. Annals of Botany 101 (2008) 1207-1219.

Deussen, O.; Hanrahan, P.; Lintermann, B.; Mech, R.; Pharr, M.; Prusinkiewicz, P. (1998): Realistic modeling and

rendering of plant ecosystems. Proceedings SIGGRAPH98, Computer Graphics Proceedings, Annual

Conference Series, 1998, 275–286.

Doruska, P.F.; Mays, J.E. (1998): Crown profile modeling of loblolly pine by nonparametric regression analysis.

Forest Science 44 (1998) 445–453.

Dyer, M.E.; Burkhart, H.E. (1987): Compatible crown ratio and crown height models. Canadian Journal of Forest

Research 17 (1987) 572–574.

Godin, C.; Caraglio, Y. (1998): A multiscale model of plant topological structures. Journal of Theoretical Biology

191 (1998) 1-46.

Godin, C.; Costes, E.; Sinoquet, H. (1999): A method for describing plant architecture which integrates topology

and geometry. Annals of Botany 84 (1999) 343-357.

Grimm, V.; Railsback, S.F. (2005): Individual-based Modeling and Ecology. Princeton University Press, Princeton

Oxford.

Hanan, J. (1992): Parametric L-systems and their application to the modelling and visualization of plants. PhD

Thesis, University of Regina.

Hanan, J. (2013): Functional-structural modelling with L-systems: Where from and where to. Proceedings of the

7th International Conference on Functional-Structural Plant Models FSPM13, Saariselkä, Finland,

2013, 1-3.

Hann, D.W. (1999): An adjustable predictor of crown profile for stand-grown Douglas-fir trees. Forest Science 45

(1999) 217–225.

Kari, L.; Rozenberg, G.; Salomaa, A. (1997): L systems. Handbook of Formal Languages, volume 1, chapter 5,

253-328. Springer, Berlin Heidelberg.

Karwowski, R.; Prusinkiewicz, P. (2004): The L-system-based plant-modeling environment L-studio 4.0. Pro-

ceedings of the 4th International Workshop on Functional-Structural Plant Models FSPM04,

Montpellier, France, 403-405.

 14

Kniemeyer, O. (2008): Design and Implementation of a Graph Grammar Based Language for Functional-

Structural Plant Modelling. Doctoral dissertation, University of Technology at Cottbus, Fakultät für

Mathematik, Naturwissenschaften und Informatik.

Kurth, W. (1999): Die Simulation der Baumarchitektur mit Wachstumsgrammatiken. Wissenschaftlicher Verlag

Berlin, Berlin.

Kurth, W. (2002): Spezifikation der Simulation der Struktur und Dynamik von Pflanzenbeständen und Tier-

populationen mit sensitiven Wachstumsgrammatiken. In: Wittmann, J.; Gnauck, A. (eds.), Simulation in

Umwelt- und Geowissenschaften. Workshop Cottbus, 7.-8. 3. 2002. Shaker, Aachen, 37-51.

Kurth, W.; Sloboda, B. (1999): Tree and stand architecture and growth described by formal grammars. II.

Sensitive trees and competition. Journal of Forest Science 45 (1999) 53-63.

Kurth, W.; Kniemeyer, O.; Sloboda, B. (2012): Forest structure, competition and plant-herbivore interaction

modelled with relational growth grammars. Lesnícky časopis - Forestry Journal, 58 (2012), 75-91.

Lane, B.; Prusinkiewicz, P. (2002): Generating spatial distributions for multilevel models of plant communities.

Proceedings of Graphics Interface 2002, Calgary, Alberta. Canadian Human-Computer

Communications Society, 2002, 69-80.

Lindenmayer, A. (1968): Mathematical models for cellular interactions in development. Journal of Theoretical Bio-

logy 18 (1968) 280–299, 300–315.

Lintunen, A.; Sievänen, R.; Kaitaniemi, P.; Perttunen, J. (2011): Models of 3D crown structure for Scots pine

(Pinus sylvestris) and silver birch (Betula pendula) grown in mixed forest. Canadian Journal of Forest

Research 41 (2011) 1779-1794.

Marshall, D.D.; Johnson, G.P.; Hann, D.W. (2003): Crown profile equations for stand-grown western hemlock

trees in northwestern Oregon. Canadian Journal of Forest Research 33 (2003) 2059–2066.

Mäkela, A.; Landsberg, J.; Ek, A.R.; Burk, T.E.; Ter-Mikaelian, M.; Agren, G.I.; Oliver, C.D.; Puttonen, P. (2000):

Process-based models for forest ecosystem management: current state of the art and challenges for

practical implementation. Tree Physiology 20 (2000) 289–298.

Mäkela, A. (2003): Process-based modelling of tree and stand growth: towards a hierarchical treatment of

multiscale processes. Canadian Journal of Forest Research 33 (2003) 398-409.

Mohren, G.M.J.; Burkhart, H.E. (1994): Contrasts between biologically-based process models and management-

oriented growth and yield models. Forest Ecology and Management 69 (1994) 1–5.

Nepal, S.K.; Somers, G.L.; Caudill, S.B. (1996): A stochastic frontier model for fitting tree crown shape in loblolly

pine (Pinus taeda L.). Journal of Agricultural, Biological, and Environmental Statistics 1 (1996) 336–

353.

Ong, Y.; Kurth, W. (2012): A graph model and grammar for multi-scale modelling using XL. Proceedings 2012

IEEE International Conference on Bioinformatics and Biomedicine Workshops, Philadelphia, USA,

2012, 1-8.

Ong, Y.; Streit, K.; Henke, M.; Kurth, W. (2014): An approach to multiscale modelling with graph grammars.

Submitted to Annals of Botany.

Pretzsch, H. (2009): Forest Dynamics, Growth and Yield. Springer, Berlin.

Prusinkiewicz, P. (1986): Graphical applications of L-systems. Proceedings of Graphics Interface 86, 1986, 247-

253.

Prusinkiewicz, P.; Lindenmayer, A. (1990): The Algorithmic Beauty of Plants. Springer, New York.

Prusinkiewicz, P.; Hammel, M.; Mjolsness, E. (1993): Animation of plant development. Proceedings SIG-

GRAPH93, 1993, 351-360.

Schober, R. (1995): Ertragstafeln wichtiger Baumarten. Frankfurt am Main: J. D. Sauerländer's Verlag.

Seidl, R.; Rammer, W.; Scheller, R.M.; Spies, T.A. (2012): An individual-based process model to simulate

landscape-scale forest ecosystem dynamics. Ecological Modelling 231 (2012) 87-100.

Smith, A.R. (1984): Plants, fractals, and formal languages. Computer Graphics (ACM/SIGGRAPH), 18 (1984), 1-

10.

Thornley, J.H.M.; Johnson, I.R. (1990): Plant and Crop Modeling. A Mathematical Approach to Plant and Crop

Physiology. Clarendon, Oxford.

Zeide, B.; Gresham, C.A. (1991): Fractal dimensions of tree crowns in three loblolly pine plantations of coastal

South Carolina. Canadian Journal of Forest Research 21 (1991) 1208–1212.

Zeide, B.; Pfeifer, P. (1991): A method for estimation of fractal dimension of tree crowns. Forest Science 37

(1991) 1253–1265.

