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1 Introduction

GroIMP is a software for plant modeling and automatable growth simulation. It is mostly used for
scientific research about the correlation between virtualized plants and virtually generated plants. In
nature, plants consist of many structural components, like roots, trunk sections, branches, leaves, fruits,
and many more details. Like in nature, the plant growth simulation in GroIMP is usually constructed
with fundamental 3D objects, like spheres, cylinders, frustums, cones, boxes, and many more. To let the
virtual plants grow or „live“ under different circumstances, the parameters of certain objects are then
changed or objects are added, replaced or removed in the current plant model. Goal of most of the
projects with GroIMP is to find realistic growth behaviors of selected plant species.

Plants in GroIMP can be represented in two different (commonly used) ways. Assume, a plant has been
scanned with a 3D laser scanner. The laser scanner outputs files with all 3D positions that have been
detected during the scanning process. Depending on the precision and the resolution of the scanner, more
or less points are generated and the surfaces of the scanned object are of higher or lower quality. The
resulting files can be imported into GroIMP as point clouds. Point clouds are lists with points that can
easily be displayed in the 3D view, but do not have any further meaning for the geometry of plants. Due
to their simplicity, point clouds can only be used to visualize the outline of the scanned object.

If plants are generated by XL scripts (or built by hand), they are mostly constructed with objects like
cylinders or frustums. In this way of structuring plants, each component gets an own biological meaning
and an own mathematical object with a position, a direction, a size and maybe a name tag. As we can
see, this way of handling plants is much easier than with point clouds.

A goal of GroIMP is to get detailed information about how plants are structured and how they grow in
nature. The most efficient way could be to scan real plants, import them into GroIMP as point clouds,
and analyze them. But as we have seen, point clouds are relatively useless for automated processing. By
default, point clouds do not contain any metadata about which plant components have been scanned and
how they relate to each other. The extraction of a mathematically and biologically useful plant model
from a point cloud is, of course, a very complicated process.

In the preceding practical report, a density-based algorithm to cluster point clouds has been described
and added to GroIMP. With the results of that work, it became possible to import scanned plants into
GroIMP as point clouds and extract different modules of the plant. Most of the modules, for example
leaves, branches or fruits, can be clustered automatically if the scan result is of a good quality and the
parameters are well chosen for the currently handled point cloud. If modules are clustered wrongly,
they can be edited by hand afterwards. This set of features was an important milestone on the way to
automated analysis of laser scanned plant models.

The next step to reach that goal is to find out which 3D objects would have to be chosen if the objects
should represent the clusters of the point cloud generated by the laser scanner and the belonging compo-
nents of the real plant. Most of the components of real plants have round shapes and can be described
as spheres, cylinders, frustums, and cones.

Goal of this practical report and the belonging course is to design, implement and add following functions
to the core of GroIMP:

• Fitting spheres to point clouds

• Fitting cylinders to point clouds

• Fitting frustums to point clouds

• Fitting cones to point clouds

• Fitting automatically chosen objects to point clouds
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The item „automatically chosen objects“ will be a kind of automatic mode that decides whether a sphere,
a cylinder, a frustum, or a cone describes the point cloud best and returns the best fitting object auto-
matically.

As in the added functions of the preceding practical report, all functions of this project will also be
available for XL scripts and in the graphical user interface. All functions in the graphical user interface
are designed to be used on one or multiple selected point clouds in the 3D view. Also the XL functions
are available for single point clouds and for point cloud arrays.

Note: The XL functions can also be used in headless mode, because they do not require graphical
interaction with the user.

In analogy to the practical report about point cloud clustering, also this report describes the planning,
the design, the implementation and the possible results of the new functions in the main chapters. In the
implementation part and the conclusion, also experiences, problems, and solutions of the implementation
process are explained and discussed. This could be interesting for future developers. In the appendix, an
overview about the new functions in XL and in the point cloud menu is given. This could be interesting
for users that want to work with laser scanned plants.

2 Preparation

All required installation and setup steps for Eclipse, Java, GroIMP, and other software are described
in detail in the preceding document „Installing and Running GroIMP in Eclipse“ (see references). The
setup for the development of the new point cloud fitting functions is the same as that for the preceding
development of the point cloud clustering functions. To avoid redundancy, the setup process is not
described in this report again and can be reused.

Note: GroIMP was updated to Java 11 in the meantime. Depending on the current version, the Java
versions and the compiler versions may differ from the installation guide.

The development of the point cloud fitting algorithms for this report is based on the features that have
been added with the preceding practical report „Implementation of point cloud tools in GroIMP“ (see
references). The code base is reused, improved and extended in this project.

Recommendation: As further reading you can read the practical report „Implementierung von
Hüllkörpern in der Plattform GroIMP für Pflanzenmodellierung“ by Jan Tristan Koch (see references).
In the report, J. T. Koch introduced a concept to calculate enveloping ellipsoids for other objects by using
principal component analysis. The concept of principal component analysis is not directly used in the
implementation of the point cloud fitting algorithms, but has led to a provisional algorithm for cylinder
fitting by principal component analysis. The algorithm is explained in the chapter about the software
design, but not implemented in GroIMP. The reasons why it was not used in the final implementation
are also discussed there.
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3 Design

The most important goal of the project described in this practical report is to describe and implement
an algorithm to fit a cylinder to a point cloud in GroIMP. To understand what such an algorithm should
do in detail, it becomes necessary to look at the mathematical differences between point clouds and
cylinders. A point cloud is a low level data structure with raw information about measured positions in
a three dimensional space. Mostly, point clouds were created by laser scanners and do not contain any
information about the scanned object or parts of it. The only practical way to do something with point
clouds is to display them on the screen and try to determine some of their properties by hand.

In contrast to point clouds, cylinders provide much more geometrical information. If a cylinder is stored
as object in GroIMP, it provides a position, a direction, a length and a radius. This makes it a high level
data structure, compared with a point cloud. Of course, high level data structures have many advantages
for plant modeling and growth simulations. This is the reason why an algorithm to transform a low level
data structure to a high level data structure is in the interest of GroIMP.

Other high level data structures that are fitted in this project are spheres, frustums, and cones. Frustums
and cones are like cylinders, but with different radii. Spheres do not have a direction and a length, but
can also be categorized to high level data structures because they have a center point and a radius.

Coming back to cylinders, these can be fitted in many different ways. The question is which is the
most appropriate way for this project and the implementation in GroIMP. The first idea was to look
into published papers that already describe the problem of fitting cylinders to point clouds in detail.
After looking into multiple papers, it became clear that this can not be the most appropriate solution.
The implementation of algorithms introduced in most of the papers would be too complicated and time-
consuming, because the mathematical strategies often contain integrals, derivations, or other complex
numeric transformations that are not supported by Java by default. There are external libraries for these
algorithms, but including a further library also means an administrative dependency of the software.

3.1 Fitting cylinders with principal component analysis

So the only way was to think about an other way to fit cylinders to point clouds. An efficient approach of
fitting ellipsoids to other objects was introduced in the practical report „Implementierung von Hüllkörpern
in der Plattform GroIMP für Pflanzenmodellierung“ by J. T. Koch (see references). In the paper, the
principal component analysis was introduced to find object directions, based on their longest length in
the three dimensional space. In theory, this algorithm could also be used for cylinder fitting. But in
practice, there are some reasons why an algorithm based on principal component analysis is not the best
approach for cylinders. In nature, there are not only long thin cylindrical shapes. For example, a slice of
a tree trunk could have been scanned and analyzed. Then, the longest length would be the diameter of
that slice, but not the direction in which the tree trunk has grown.

To prevent wrong decisions based on long thin cylinders and flat wide cylinders, three components can be
calculated: The first component based on the longest length, the second component as ortogonal vector
to the first component vector, and the third component as cross product (or ortogonal vector) of the
first component vector and the second component vector. By finding three components, three different
cylinders can be calculated and their goodness can be determined by comparing each of them with the
given point cloud. The best one can then be returned.

But this leads to a further problem. While the longest length of an ellipsoid is the length in the direction
given by the principal direction vector, a cylinder has its longest length in a diagonal direction, compared
to its direction vector. If a principal component analysis would be applied on a cylinder, the diagonal
direction from one point on the circular edge of the base surface to the opposite point on the circular
edge on the top surface would be returned. Depending on the ratio between the length and the radius of
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the cylinder, this diagonal direction vector can not be used to say anything about the cylinder itself.

The principal component analysis will also fail on approximately spherical or cube-shaped point clouds
because the found component is based on random inaccuracies and has nothing to do with the typical
„round“ shape of a cylinder. A pseudo code of the principal component analysis algorithm can be found
in the appendix. Due to the discussed problems, this algorithm is also not implemented in GroIMP.

3.2 Fitting cylinders with Fibonacci sphere analysis

Considering the problems described above, a more appropriate approach for the original goal has to be
found. Because mathematically perfect algorithms are too complicated to implement and a principal
component analysis can not be applied to cylinders, the next idea is to go an approximate way. The idea
with an approximate way is to generate lots of cylinders and decide which one fits best to the given point
cloud. Therefore, cylinders have to be generated with parameters that are nearly uniformly distributed
in the whole range of possibilities. Of course, this is not the most efficient way, but it is simple to
implement and can be very precise with good parameters. Furthermore, it can be improved later by
using an intelligent algorithm that filters the range of possibilities in advance to reduce the number of
tried cylinders as much as possible.

As we have seen in the discussions above, the most error-prone part of the cylinder fitting is to find the
correct direction vector. The optimal solution to solve this in an approximate way is to generate a list of
uniformly distributed direction vectors. To get these direction vectors, a Fibonacci sphere (see references)
can be used.

The Fibonacci sphere is generated so that the center of the sphere is equal to the center position of the
point cloud. The radius of the generated sphere is equal to the distance between the center position of
the point cloud and the position of the point with the most far distance to the center position. This
ensures that all points of the point cloud are contained in the volume of the Fibonacci sphere and the
Fibonacci sphere encloses the point cloud as tight as possible.

In the next step, a list with all potential direction vectors is created. Each vector is calculated by
subtracting the position of one of the points of the Fibonacci sphere from the center position of the point
cloud. Now, the points of the Fibonacci sphere and the direction vectors can be used to generate a first
version of a list of cylinders. For each cylinder, the radius is adapted so that it is as small as possible,
but with all points of the point cloud included. This can be done by comparing the distances of all points
to the belonging direction vector of the currently calculated cylinder. The same is done with the length
and the position. They are adapted so that the bottom surface and the top surface are moved as close
as possible to the point cloud.

After calculating all optimizations for all cylinders (with the uniformly distributed direction vectors), lots
of cylinders remain in the list. The last step is to search for the cylinder with the best score.

Figure 1: This cylindric point cloud was fitted with the maximum-fitting algorithm. All points are located
inside the cylinder and the volume is as minimal as possible.
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3.3 Generating a Fibonacci sphere

Figure 2: In this image, a Fibonacci sphere is dis-
played. It was generated around the origin position
of the coordinate system, has a radius of one meter
and consists of 1000 points.

The algorithm to generate a Fibonacci sphere
requires three parameters. The first one is the
center position of the sphere, the second one is
the radius, and the third one is the number of
points. With this information, as many points as
requested are generated so that they are uniformly
distributed around the surface of such a sphere.

A Fibonacci sphere is generated from the
minimum x position to the maximum x
position in a linear way. The size of
each of the numberOfPoints steps is
diameter/numberOfPoints, so that the fi-
nal distance is equal to 2 · radius. For each x
position, a y value and a z value are calculated by
getting the current radius (the current x value)
and using it with sinus, cosinus and phi for both
directions. This algorithm produces uniformly
distributed points around the sphere surface
because the ratio of points per x distance is equal
for each x value. The ratio of points per distance
is equal because on the beginning of the sphere
and the end of the sphere there are many points
due to a „vertical“ surface while in the middle of
the sphere there are many points due to a greater
radius.

The implementation of the Fibonacci sphere
algorithm is also added as pseudo code in the
appendix of this document.

3.4 Fitting more object types

Later, in the context of this project, it became apparent that it would be appropriate to also implement
fitting algorithms for frustums, cones, and spheres. To fit a sphere to a given point cloud is pretty simple.
The algorithm only has to get the center position of the point cloud and the distance between the center
position and the most far point. The center position is used as position of the sphere and the most far
distance is used as radius. After setting both parameters, the sphere can be returned.

To fit a frustum to a given point cloud is a bit more interesting. It uses the cylinder fitting algorithm to
generate a cylinder that looks like the expected frustum, but with two equal radii on the bottom surface
and the top surface. The bottom and top surfaces are already correct and can be reused. Technically,
these are represented by the position vector and the direction vector of the pregenerated cylinder. The
only parameters that have to be recalculated are the radius on the bottom side and the radius on the
top side. This is done with a linear regression that uses all points of the point cloud and maps them to a
coordinate system in which the direction vector of the frustum represents the x-axis and the plane of the
base surface represents the y-axis. This makes it possible to get the x-value from the distance to the base
surface and the y-value from the distance to the frustum direction vector for each point in the point cloud.
By calculating the linear regression and shifting it to the outer side (increasing the intercept) so that the
point with the maximum distance to the x-axis lies on the regression line, the final function for the new
radii is produced. By calculating the y-values of this function for the x-values 0 and lengthOfCylinder,
the new radii for the base surface (0) and the top surface (lengthOfCylinder) can be calculated. As an
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additional step, the frustum is inverted if the bottom radius is smaller than the top radius.

The cone fitting algorithm is based on the frustum fitting. The first step is to generate a frustum that
looks like the resulting cone, but without the tip. In a second step, the tip is added by calculating the
missing distance between the top surface of the frustum and the theoretical tip of the expected cone.
Then, a cone with the base radius of the frustum and the new length is returned. The remaining distance
can easily be calculated because the used frustum is always oriented so that the smaller surface is the
top surface and the larger one is the base surface.

As an additional feature, an automatic mode is included in the new point cloud fitting feature of GroIMP.
It generates one object of each type (sphere, cylinder, frustum, and cone) and returns the one with the
best score, compared with the given point cloud. The automatic mode has two difficulties with frustums.
The first one concerns the decision between frustums and cones. In nature, no cone is perfect and the
algorithm would always decide to return a frustum, because the mathematically perfect tip of the cone
is (normally) never represented by a laser scanned point. Due to this, a frustum would always be smaller
than a cone and would always be preferred by the score algorithm. To prevent this, a cone is always
returned instead of a frustum if the top radius has a maximum of five percent of the base radius. The
other problem concerns the decision between frustums and cylinders. In nature, no „cylinder“ is perfect
and the algorithm would always decide to return a frustum, because mathematically perfect cylinders do
(normally) not exist in laser scanned point clouds. To prevent this, a cylinder is always returned if the
top radius of a frustum has at least 95 percent or more of the base radius of the frustum.

For all types of objects, an average-radius mode and a maximum-radius mode are available. Mode details
can be found in the appendix about the algorithms.

Figure 3: In this image, the result of an automatic fitting is shown. The sphere, the cylinders, and the
frustum have been fitted with the average fitting algorithm. The cone was fitted with the maximum
algorithm. The types of the 3D objects are guessed by the automatic function, based on the comparison
of the minimum volume of all possible object types.
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Figure 4: The clusters of the plant on the left side were cylinder-fitted with the average mode. Normally,
the points in each leaf of the example plant are on a plane and the cylinder fitting algorithm would return
a cylinder with a length of 0 centimeters. Because objects with a size of 0 are not displayed in GroIMP,
the length is automatically set to one centimeter if it is 0. The clusters of the plant on the right side were
cylinder-fitted with the maximum mode.

3.5 Calculating a score for objects

The score of fitted objects is always calculated in relation to the given point cloud. To get a score,
the average distance between all points and the objects surface is calculated (see mathematical details
in appendix). To prevent the algorithm from preferring objects where all points lie on one part of the
objects surface and the object is much larger than the point cloud, the volume and the surface area of
the generated object are added to the score. Because all objects are generated so that the points are
always contained in the volume of the object, the smallest object is also the best fitting one.
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4 Implementation

In the preceding practical report, the implementation chapter was the most important part since it
contained lots of detailed explanations around all implemented algorithms. In contrast to that the
mathematical and logical topics are outsourced to their own appendices in this report. Therefore, this
chapter will only describe some design and implementation decisions that have been made during the
development of the new point cloud fitting features.

A special peculiarity of the added pointcloud package is that some classes are redundant to the already
existing java classes in the objects package. Normally, such a redundancy should be avoided. But for
the implementation of the fitting algorithms, the objects (spheres, cylinders, frustums, and cones) needed
some more fundamental properties that did not fit to the structure how the already existing objects
are stored and used. To avoid a collision between the new fitting functions and the already existing
functions, the most justifiable solution was to create new data structures that are fully independent from
the existing ones, but can then be converted to them when the fitting algorithm terminates.

Another noticeable peculiarity of the PointCloudTools class is that it also contains the point cloud
fitting functions, especially if there is also a PointCloudFittingTools class. This makes it easier to use
the functions in XL with the same import statement.

All implemented functions work equally in XL and in the graphical menu. In both environments, all five
fitting functions (sphere, cylinder, frustum, cone, and automatic fitting) are implemented so that they
can be used with one or with multiple point clouds at the same time. The automatic mode has the special
feature that the returned objects can have different types. This is useful in the graphical mode because
lots of point clouds can be selected, for example after using the clustering function, and be processed
directly. In XL, the automatic fitting function returns an array of graph node objects. This makes it
possible to handle different objects at the same time and distinguish between the types later. The usage
of the XL functions is explained in detail in the appendix of this document and in the example project
„Advanced Point Cloud Fitting Tools“.

In the final implementation of the preceding point cloud tools project there was a strange behavior of
point clouds. All point clouds had their 3D marker (the red-green-blue arrows to move the object around)
on the origin position of the coordinate system. This has been fixed in the implementation of this project.
The issue was that the points in a point cloud had their absolute position inside the point cloud, but
the point cloud itself had no position (0/0/0). Now, there is an additional optimization function that
translates the point cloud to the position of its own points and moves the internal positions of the points
in the opposite direction. This leads to the effect that the 3D marker is no longer displayed anywhere in
the 3D view, but directly next to the concerning point cloud.

The 3D rotation of point clouds is ignored in the current version of all newly implemented point cloud
tools, but can be added later if it becomes necessary for future projects. The non-implementation has
multiple reasons. Normally, point clouds are imported from files that are generated by laser scanners.
Laser scanners do not produce rotated point clouds, because they do not know whether the scanned
object is rotated or not. The rotation is then represented by deviating point positions in the returned
point cloud. If point clouds are split, clustered or merged with the functions from the preceding project,
also no rotated point clouds are generated. Another reason is that point clouds are normally not used in
RGG trees or automatically generated plants.

All texts that can occur in the graphical user interface are translatable. In the package
de.grogra.imp3d.pointcloud, there is a text file Resources.properties with a set of key-value pairs.
Each of the keys is used in the code as placeholder for a finally displayed text. The value is the en-
glish text that should appear in that situation. By adding a file with a language identifier contained
in the file name, a file with translations can be added for another language. The language depends on
the users system language or the JVM parameter -Duser.language=zh. In this example, a file named
Resources_zh.properties could be added and can then contain the chinese translations.
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5 Conclusion

5.1 Difficulties and solutions

In order to succeed in this project, lots of difficulties had to be solved. The most important of them are
listed here:

• GroIMP is a very large and old software and was not developed and managed by professional soft-
ware engineers all the time. This means that GroIMP is very complicated to understand nowadays
because lots of different people have worked on it with their own ideas and skills. This makes it
very difficult to understand larger concepts and to add new features so that they work reliably.
With a lot of experience and patience it becomes possible to solve this issue.

• The current navigation in the 3D view is complicated to use and some preferences have to be done
each time after the software was restarted. This leads to a very time-consuming procedure of testing
newly implemented features. Probably, this can be solved soon in an other current project that is
focused on improving the 3D navigation.

• It could have been simple to use or implement an already existing algorithm to fit cylinders or other
objects to point clouds in GroIMP. But the problem with most of the „mathematically perfect“ al-
gorithms is that they are very difficult to implement in a programming language like Java because
lots of mathematical concepts (like integration or derivation) are not supported by default and
dependencies on third-party software should rather be avoided in order to be able to maintain the
software more easily. An own approach with an approximative algorithm has lead to an applicable
solution.

• The score calculation did not work as explained in the design chapter. To only compare the volumes
is much easier and works for simple objects like spheres, cylinders, frustums, or cones.

• The 3D rotation and Euler matrices are difficult to use and to debug in general. In combination with
the time-consuming restart procedure of GroIMP it becomes an imposition to implement complex
features that rely on 3D rotation.

5.2 Available results

With the completion of this project, multiple results can be reused by interested people in the future:

• The java code that contains the whole point cloud feature implementation is located in the
package IMP-3D/de.grogra.imp3d.pointcloud. Some entries have been added in the files
IMP-3D/plugin.xml, IMP-3D/plugin.properties and in the list of example projects. The source
code can be found in the official GroIMP repository, see references. Because the code is further
developed, a point cloud tag will be added (unfortunately after the submission of this report) in
the repository.

• The complete code is documented with JavaDoc. In a new version of the automatically generated
java documentation, the whole package will be documented with descriptive comments.

• Of course, the features are usable directly in GroIMP. The XL functions are introduced in the
belonging example project „Advanced Point Cloud Fitting Tools“. The graphical functions are
designed to be intuitive with graphical information boxes, input dialogs and error output boxes.

• In addition to this practical report, also the previous one „Implementation of point cloud tools in
GroIMP“ and the installation guide are recommended if one is interested in the development of
further point cloud features in GroIMP.
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5.3 Future possibilities

Of course, the completion of this practical course does not mean that the possibilities of processing point
clouds in GroIMP are exhausted. To fit spheres, cylinders, frustums, and cones to point clouds is only one
of many scopes of applications. Here is a list with further ideas that could be implemented in GroIMP in
the future.

• The complexity of the Fibonacci sphere based fitting algorithm is really high, because the algorithm
calculates as many potential cylinders as declared by the precision parameter. Until now, all
potential cylinders are generated and checked, regardless of how good or bad they are. By checking
the potential cylinders in an other order and looking for maximum scores around the Fibonacci
sphere, it could be possible to reduce the runtime of the fitting algorithm a lot.

• For now, only the object translation is considered during the fitting, clustering, merging, and
splitting of point clouds. In practice, this is enough because point clouds are nearly always generated
by laser scanners or the clustering algorithm and these tools do not use rotated point clouds. But
from mathematical point of view, the rotation would be necessary to always have results as expected.

• The score system is good, but not optimal. In the current implementation, the cylinders and other
shapes are generated so that they surround the given point cloud. By using the objects volume
as score, the one with the minimum volume can be used and the results are sufficient for most of
the point clouds. If this result is not precise enough, a new score system should be implemented in
the future as explained in the design chapter and as shown in the appendix. A better score system
should consider the volume, the surface, and the matching of the generated object and the given
point cloud.

• Goal of this project was to fit round objects (spheres, cylinders, frustums, and cones) to point clouds
by searching for a principal axis for the generated object. To be able to fit other kinds of objects,
for example boxes, other fitting strategies have to be used and could be an interesting project for
an other practical course.

• Due to special requirements, the import and export functions for point clouds are located in the
„Edit Point Clouds“ menu. For a better user experience, it would make sense to integrate these
functions to the general „Import file“ and „Export file“ option. But one thing has to be considered:
There are lots of conventions to store point clouds and there are no standardized file name endings.
With the new import and export functions, point cloud files can be processed independently from
their file name endings. This behavior was necessary during the development and could be very
difficult or impossible to integrate into the general file import and export function of GroIMP.

• Currently, the „Edit Point Clouds“ menu is located in the „Objects“ menu. Depending on further
discussions, it can make sense to move it into the „Edit“ menu, because point clouds are edited in
the clustering, merging, and splitting function. On the other hand, new objects are created if the
old ones are kept or objects are fitted to point clouds. However, there are two reasons why the
menu is located in the „Objects“ menu. First reason: The „Objects“ menu is only loaded if a 3D
project is opened. The point cloud tools should also only be available when a 3D project is opened.
Second reason: The „Edit“ menu is located in the IMP module and has no access to the IMP-3D
module. The point cloud features have to be located in the IMP-3D module to be able to operate
with 3D objects.

• To have more possibilities to handle large sets of point clouds and other objects, a better interactive
selection system for the 3D view is required. At the time of completion of this practical report, an
other project has already been started to partially solve this issue.
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Appendix A: Available java functions in XL

This appendix contains the list of available java functions. They can be used in the java code (by
future developers) and in XL code (by GroIMP users). All functions can be used when the class
de.grogra.imp3d.pointcloud.PointCloudTools is imported with the following java/XL command:
import de.grogra.imp3d.pointcloud.PointCloudTools;

All functions are static functions in the PointCloudTools class and not available as object based
functions like pointcloud.function().

The given point clouds and returned 3D objects are always of the following types and fully compatible
to the other objects in the 3D view:

• de.grogra.imp3d.objects.PointCloud

• de.grogra.imp3d.objects.Sphere

• de.grogra.imp3d.objects.Cylinder

• de.grogra.imp3d.objects.Frustum

• de.grogra.imp3d.objects.Cone

• de.grogra.graph.impl.Node

All objects that are created and returned by java functions and called in XL scripts, are not automatically
added to the RGG graph. They only exist as objects in the code context and can be added to the graph
manually if required.

The java functions that can be called in XL scripts exist twice. Each function can be used to fit one point
cloud to one object or to fit an array of point clouds to an array of objects. All of them are listed below:

Parameters and return values are not described in detail here. More information about how to choose
the right parameter values is given in the design chapter.

In headless mode, all functions introduced in this appendix can be used. All parameters and return
values can be used as specified in the belonging description.

Fitting spheres to point clouds

With the following two functions, spheres can be fitted to point clouds. If the first one is used, one point
cloud is required and one sphere is returned. By using the second function, an array of point clouds must
be provided and an array of spheres is returned.

Declaration in PointCloudTools.java:
1 // Fitting one sphere to one point cloud
2 public static Sphere fitSphereToPointCloud(PointCloud pointCloud, boolean average) {
3 ...
4 return sphere;
5 }
6 // Fitting multiple spheres to multiple point clouds
7 public static Sphere[] fitSpheresToPointClouds(PointCloud[] pointClouds, boolean average) {
8 ...
9 return spheres;

10 }
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XL code example:
1 boolean average = true;
2 // Fitting one sphere to one point cloud
3 PointCloud pointCloud = ...;
4 Sphere sphere = PointCloudTools.fitSphereToPointCloud(pointCloud, average);
5 // Fitting multiple spheres to multiple point clouds
6 PointCloud[] pointClouds = ...;
7 Sphere[] spheres = PointCloudTools.fitSpheresToPointClouds(pointClouds, average);

Fitting cylinders to point clouds

With the following two functions, cylinders can be fitted to point clouds. If the first one is used, one
point cloud is required and one cylinder is returned. By using the second function, an array of point
clouds must be provided and an array of cylinders is returned.

Declaration in PointCloudTools.java:
1 // Fitting one cylinder to one point cloud
2 public static Cylinder fitCylinderToPointCloud(PointCloud pointCloud, boolean average, int precision) {
3 ...
4 return cylinder;
5 }
6 // Fitting multiple cylinders to multiple point clouds
7 public static Cylinder[] fitCylindersToPointClouds(PointCloud[] pointClouds, boolean average, int

precision) {
8 ...
9 return cylinders;

10 }

XL code example:
1 boolean average = true;
2 int precision = 1000;
3 // Fitting one cylinder to one point cloud
4 PointCloud pointCloud = ...;
5 Cylinder cylinder = PointCloudTools.fitCylinderToPointCloud(pointCloud, average, precision);
6 // Fitting multiple cylinders to multiple point clouds
7 PointCloud[] pointClouds = ...;
8 Cylinder[] cylinders = PointCloudTools.fitCylindersToPointClouds(pointClouds, average, precision);

Fitting frustums to point clouds

With the following two functions, frustums can be fitted to point clouds. If the first one is used, one point
cloud is required and one frustum is returned. By using the second function, an array of point clouds
must be provided and an array of frustums is returned.

Declaration in PointCloudTools.java:
1 // Fitting one frustum to one point cloud
2 public static Frustum fitFrustumToPointCloud(PointCloud pointCloud, boolean average, int precision) {
3 ...
4 return frustum;
5 }
6 // Fitting multiple frustums to multiple point clouds
7 public static Frustum[] fitFrustumsToPointClouds(PointCloud[] pointClouds, boolean average, int

precision) {
8 ...
9 return frustums;

10 }
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XL code example:
1 boolean average = true;
2 int precision = 1000;
3 // Fitting one frustum to one point cloud
4 PointCloud pointCloud = ...;
5 Frustum frustum = PointCloudTools.fitFrustumToPointCloud(pointCloud, average, precision);
6 // Fitting multiple frustums to multiple point clouds
7 PointCloud[] pointClouds = ...;
8 Frustum[] frustums = PointCloudTools.fitFrustumsToPointClouds(pointClouds, average, precision);

Fitting cones to point clouds

With the following two functions, cones can be fitted to point clouds. If the first one is used, one point
cloud is required and one cone is returned. By using the second function, an array of point clouds must
be provided and an array of cones is returned.

Declaration in PointCloudTools.java:
1 // Fitting one cone to one point cloud
2 public static Cone fitConeToPointCloud(PointCloud pointCloud, boolean average, int precision) {
3 ...
4 return cone;
5 }
6 // Fitting multiple cones to multiple point clouds
7 public static Cone[] fitConesToPointClouds(PointCloud[] pointClouds, boolean average, int precision) {
8 ...
9 return cones;

10 }

XL code example:
1 boolean average = true;
2 int precision = 1000;
3 // Fitting one cone to one point cloud
4 PointCloud pointCloud = ...;
5 Cone cone = PointCloudTools.fitConeToPointCloud(pointCloud, average, precision);
6 // Fitting multiple cones to multiple point clouds
7 PointCloud[] pointClouds = ...;
8 Cone[] cones = PointCloudTools.fitConesToPointClouds(pointClouds, average, precision);

Fitting automatically detected objects to point clouds

With the following two functions, automatically selected objects can be fitted to point clouds. If the first
one is used, one point cloud is required and one node object is returned. By using the second function,
an array of point clouds must be provided and an array of node objects is returned.

Note: These functions return Node objects. Node is the super class of Sphere, Cylinder, Frustum, and
Cone (and all other 3D objects in XL, but that is not important here). This means that a Node object is
like a „category“ type for the other types and the returned node is of one of the other types implicitly.
The algorithm decides automatically which of these fits best to the given point cloud. If multiple point
clouds are given to the automatic function, different types of objects can be contained in the resulting
array of Node objects.
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Declaration in PointCloudTools.java:
1 // Fitting one object to one point cloud
2 public static Node fitAutomaticObjectToPointCloud(PointCloud pointCloud, boolean average, int precision

) {
3 ...
4 return node;
5 }
6 // Fitting multiple objects to multiple point clouds
7 public static Node[] fitAutomaticObjectsToPointClouds(PointCloud[] pointClouds, boolean average, int

precision) {
8 ...
9 return nodes;

10 }

XL code example:
1 boolean average = true;
2 int precision = 1000;
3 // Fitting one object to one point cloud
4 PointCloud pointCloud = ...;
5 Node node = PointCloudTools.fitAutomaticObjectToPointCloud(pointCloud, average, precision);
6 // Fitting multiple objects to multiple point clouds
7 PointCloud[] pointClouds = ...;
8 Node[] nodes = PointCloudTools.fitAutomaticObjectsToPointClouds(pointClouds, average, precision);

The following code example shows how the type can be detected in XL.

XL code example:
1 PointCloud pointCloud = ...;
2 boolean average = true;
3 int precision = 1000;
4 Node node = PointCloudTools.fitAutomaticObjectToPointCloud(pointCloud, average, precision);
5 if (node instanceof Sphere) {
6 Sphere sphere = (Sphere)(node);
7 // Do anything with ’sphere’
8 } else if (node instanceof Cylinder) {
9 Cylinder cylinder = (Cylinder)(node);

10 // Do anything with ’cylinder’
11 } else if (node instanceof Frustum) {
12 Frustum frustum = (Frustum)(node);
13 // Do anything with ’frustum’
14 } else if (node instanceof Cone) {
15 Cone cone = (Cone)(node);
16 // Do anything with ’cone’
17 } else {
18 // This case can not happen. ’node’ is never null and never of an unknown type.
19 }

This also works with multiple point clouds.

XL code example:
1 PointCloud[] pointClouds = ...;
2 boolean average = true;
3 int precision = 1000;
4 Node[] nodes = PointCloudTools.fitAutomaticObjectsToPointClouds(pointCloud, average, precision);
5 int index = 0;
6 while (index < nodes.length) {
7 if (nodes[index] instanceof Sphere) {
8 // Do the same distinction as in the example above, but with ’nodes[index]’
9 }

10 // ...
11 index++;
12 }
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Appendix B: Point cloud tools in the objects menu

All features in this appendix are available when a 3D project or an RGG project is opened in GroIMP.
The functions work independently from XL scripts and are only based on the objects that are currently
available in the 3D view.

Figure 5: The point cloud fitting menu is located inside the objects menu and inside the point cloud edit
menu. The floating blue box „Fit Object To Point Cloud“ is the tooltip text. Unfortunately, the mouse
pointer was not captured by the screenshot software.

Warning: In the current version of GroIMP, the shortcut Alt+O does not work. This is due to the fact
that ’O’ is used twice and the wrong menu entry is focused by default. If the objects menu is already
open, the other shortcuts (→ C → [custom key]) work as described.

Overview

Feature Shortcut Selection before Selection after
Fit sphere to point cloud Alt+O → C → F → S Multiple point clouds Multiple spheres
Fit cylinder to point cloud Alt+O → C → F → Y Multiple point clouds Multiple cylinders
Fit frustum to point cloud Alt+O → C → F → F Multiple point clouds Multiple frustums
Fit cone to point cloud Alt+O → C → F → C Multiple point clouds Multiple cones
Fit any object to point cloud Alt+O → C → F → A Multiple point clouds Multiple objects

Detailed description

All functions described here require one or multiple point clouds selected in the current 3D view. Oth-
erwise, an error dialog is shown. If point clouds are selected, a dialog box asks for the fitting mode. In
case of a cylinder, a frustum, a cone, and the automatic mode also the precision parameter is requested.
Another dialog box asks whether the selected point clouds should be kept or removed. After confirming
one of the options, the objects are created, displayed in the 3D view and get selected.
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The differences are as follows:

• The fit sphere to point cloud function does not request for the precision parameter. The precision
parameter is not used since the sphere fitting does not use the Fibonacci sphere fitting algorithm.
After the fitting was executed, spheres are added to the 3D view.

• The fit cylinder to point cloud function adds cylinders to the 3D view.

• The fit frustum to point cloud function adds frustums to the 3D view.

• The fit cone to point cloud function adds cones to the 3D view.

• The fit automatic object to point cloud function adds automatically selected objects to the
3D view. If multiple point clouds are fitted, different objects can be created.

Figure 6: In this dialog box, the fitting parameters can be set. For cylinders, frustums, and cones, the
precision and the fitting mode can be selected. The precision must be a positive integer value. It is used
as the number of points in the internally used Fibonacci sphere. The points of a Fibonacci sphere are
then used as possible direction vectors for the fitted object. Spheres do not need a direction vector and do
not request the precision parameter. The fitting mode can be selected to either „average“, or „maximum“.
It is available for all types of fittable objects and is used to set its radius. In case of a sphere, the radius
is determined by the average or maximum distance of all points in the point cloud to the center position
of the fitted sphere. In case of a cylinder, frustum, or cone, the radius is determined by the average or
maximum distance of all points in the point cloud to the principal axis of the respective object.

Note: All texts in the user interface are provided in English by default. They can be translated with
language depending resource files. Some of the dialog boxes of Java are translated automatically and can
differ from the GroIMP language.

Figure 7: This dialog box is always shown after the parameters have been entered successfully. Here,
the user is asked whether the point cloud should be removed during the fitting process. This can be
useful in some cases, but it can also be disturbing in some other cases. If the fitting function was selected
accidentally, it can also be canceled here. With the function in the graphical user interface, it is possible
to fit one or more point clouds at the same time. If only one point cloud is selected (and fitted later),
the texts are written in singular in this dialog box. Otherwise, plural is used.
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Appendix C: Formulary

This appendix contains some important formula that has been used for the sphere, cylinder, frustum, and
cone fitting. All points, vectors, and other objects are assumed to be used in a 3D context and always
have an x, a y, and a z component.

Conversion from 3D vector to x, y, and z angles

The components (Rx, Ry, and Rz) of a 3D rotation R can be calculated from a 3D vector V as following.
r is the pythagorean length of V .

r =
√
(Vx)2 + (Vy)2 + (Vz)2

Rx = 0

Ry = acos

(
Vz
r

)
Rz = atan2

(
Vy
Vx

)

Note: atan() can not be used to calculate Rz, because atan() only provides results in the upper half of
the sphere. With atan2(), the result works with the whole sphere.

Distance between point and other point, line, and plane

The distance DPQ between the two points P and Q is:

DPQ =
√

(Qx − Px)2 + (Qy − Py)2 + (Qz − Pz)2

The distance DPL between a point P and a line L = LT + LD · x with LT as translation vector and LD

as direction vector can be calculated as follows:

DPL =
|(P − LT )× LD|

|LD|

The distance DPE between a point P and a plane E with ET as translation vector and EN as normal
vector can be calculated as follows:

DPE =
|(P − ET ) · EN |

|EN |
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Distance between point and cylinder, frustum, cone, and sphere surface

Distance between point and cylinder surface

Figure 8: This image shows a
cylinder from the side. The hor-
izontal line in the yellow area
is the top surface, the horizon-
tal line in the red area is the
bottom surface, and the verti-
cal lines in the green and blue
areas are the visible edges of the
lateral surface.

The surface of a cylinder consists of a base surface, a top surface, and
a lateral surface. Depending on where the point is located in the envi-
ronment of the cylinder, one of the areas shown in the image has to be
selected and the distance to that surface has to be calculated.

• The distance of points in the red area is calculated with the dis-
tance to the base surface.

• The distance of points in the white area below the cylinder is
calculated with the distance to the base surface (a circle with the
radius of the cylinder).

• The distance of points in the green or blue area is calculated with
the distance to the cylinder axis minus the radius. This is possible
because the lateral surface is parallel to the direction vector.

• The distance of points in the yellow area is calculated with the
distance to the top surface. The top surface is similar to the base
plane, but with the direction vector added to the position vector.

• The distance of points in the white area above the cylinder is
calculated with the distance to the top surface (a circle with the
radius of the cylinder).

Distance between point and frustum surface

Figure 9: This image shows a
frustum from the side. The hor-
izontal line in the yellow area is
the top surface, the horizontal
line in the red area is the bot-
tom surface, and the diagonal
lines in the green and blue ar-
eas are the visible edges of the
lateral surface.

The surface of a frustum consists of a base surface, a top surface, and
a lateral surface. Depending on where the point is located in the envi-
ronment of the frustum, one of the areas shown in the image has to be
selected and the distance to that surface has to be calculated.

• The distance of points in the red area is calculated with the dis-
tance to the base surface.

• The distance of points in the white area below the frustum is
calculated with the distance to the base surface (a circle with the
base radius of the frustum).

• The distance of points in the green or blue area is calculated
with the distance to the lateral surface. The distance has to be
calculated with the normal vector to that surface. The normal
vector has its base point on the lateral surface and directs to the
point of interest.

• The distance of points in the yellow area is calculated with the
distance to the top surface. The top surface is similar to the base
plane, but with the direction vector added to the position vector.

• The distance of points in the white area above the frustum is
calculated with the distance to the top surface (a circle with the
top radius of the frustum).
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Distance between point and cone surface

Figure 10: This image shows a
cone from the side. The hori-
zontal line in the red area is the
bottom surface and the diago-
nal lines in the green and blue
areas are the visible edges of the
lateral surface.

The surface of a cone consists of a base surface and a lateral surface.
Depending on where the point is located in the environment of the cone,
one of the areas shown in the image has to be selected and the distance
to that surface has to be calculated.

• The distance of points in the red area is calculated with the dis-
tance to the base surface.

• The distance of points in the white area below the cone is calcu-
lated with the distance to the base surface (a circle with the base
radius of the cone).

• The distance of points in the green or blue area is calculated
with the distance to the lateral surface. The distance has to be
calculated with the normal vector to that surface. The normal
vector has its base point on the lateral surface and directs to the
point of interest.

• The distance of points in the white area above the cone is calcu-
lated with the pythagorean distance between the point and the
tip of the cone.

Distance between point and sphere surface

The distance DPS between a point P and the surface of a sphere S is calculated with the difference
between the radius r of the sphere and the pythagorean distance between the point and the center c of
the sphere:

DPS =
√
(cx − Px)2 + (cy − Py)2 + (cz − Pz)2 − r

The distance DPS is > 0 if the point is outside the sphere volume and < 0 if the point is inside the sphere
volume.

Volume and surface of sphere, cylinder, frustum, and cone

In the following table, the volumes and surface areas of a sphere, a cylinder, a frustum and a cone are
listed. r is the radius and l is the length of the concerning object. In case of a frustum, R is the base
radius and r is the top radius with r < R.

Object Volume Surface

Sphere V = 4
3 · π · r

2 S = 4 · π · r2

Cylinder V = π · r2 · l S = 2 · π · r · (r + l)

Frustum V = 1
3 · π · l ·

(
R2 +R · r + r2

)
S = π ·R2 + π · (R+ r) ·

√
l2 + (R− r)2 + π · r2

Cone V = 1
3 · π · r

2 · l S = π · r ·
(
r +
√
r2 + l2

)
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Appendix D: Algorithms

This appendix contains the most important algorithms that have been used for the object
fitting features. Here, the algorithms are written in pseudocode. The java implemen-
tation of each algorithm can be found in the belonging java code (project IMP-3D, class
de.grogra.imp3d.pointcloud.PointCloudFittingTools.java).

In the pseudocode examples, some further functions are used:

The function GET_CENTER_POINT requires a list of 3D points and returns a new point with the average
position of all given points.

The function GET_POINT_POINT_DISTANCE requires two 3D points and returns the pythagorean distance
between these two points.

The function GET_LINE_POINT_DISTANCE requires a position vector of a 3D line, a direction vector of a
3D line, and a 3D point. It returns the minimum distance between the point and the line.

The function GET_PLANE_POINT_DISTANCE requires a position vector of a 3D plane, a normal vector of a
3D plane, and a 3D point. It returns the minimum distance between the point and the plane.

The function GET_SURFACE_POINT_DISTANCE requires a 3D object (a sphere, a cylinder, a frustum or a
cone), and a 3D point. It returns the minimum distance between the point and the objects surface.

The function SET_VECTOR_LENGTH requires a vector and a numeric value. It multiplies all components of
the vector, so that the pythagorean length of the vector is as long as the given numeric value.

The function LENGTH requires a vector and returns the pythagorean length of the vector.

The function CREATE_POINT requires three values (x, y, and z value) and returns a point object with the
given coordinates.

The function CREATE_SPHERE requires a position vector and a radius. It returns a sphere object.

The function CREATE_CYLINDER requires a position vector, a direction vector, a radius, and a length. It
returns a cylinder object.

The function CREATE_FRUSTUM requires a position vector, a direction vector, a base radius, a top radius,
and a length. It returns a frustum object.

The function CREATE_CONE requires a position vector, a direction vector, a base radius, and a length. It
returns a cone object.

The function SIZE requires an array and returns its number of elements.

The function SUM requires an array and returns the sum of all values in that array.

The function VOLUME requires a sphere, a cylinder, a frustum, or a cone and returns its volume.

The function AREA requires a sphere, a cylinder, a frustum, or a cone and returns its surface area.

The functions SQRT, ABS, SIN and COS require a numeric value and return the square root, the absolute
value, the sinus value, and the cosinus value of the parameter.
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Generating a Fibonacci sphere

A Fibonacci sphere is a list of points, distributed around a sphere surface as evenly as possible. This
function is used to create such a sphere. The center position, the radius and the number of points must
be provided as parameter. With more points, the sphere gets more precise and the result of the object
fitting gets more accurate. On the other hand, a higher precision requires a longer calculation time.

01 FUNCTION CREATE_FIBONACCI_SPHERE(center, radius, number)
02 points := [number]
03 phi := PI * (3 - SQRT(5))
04 index := 0
05 WHILE (index < number)
06 y := radius - (index / (number - 1)) * 2 * radius
07 temporaryRadius := SQRT(radius2 - y2)
08 theta := phi * index
09 x := COS(theta) * temporaryRadius
10 z := SIN(theta) * temporaryRadius
11 points[index] := CREATE_POINT(centerx + x, centery + y, centerz + z)
12 index := index + 1
13 END
14 RETURN points
15 END

Calculating a score to compare objects

The score function is one of the most important parts of the fitting algorithm. The object fitting works
with creating lots of potential objects and comparing them with the original point cloud. Due to this, the
quality of the result of the fitting algorithm is mostly based on this score function. To calculate a score
for an object and a point cloud, the average distance of all points to the objects surface is calculated
first. The distance is always handled as absolute value. Points with a large distance to the object lead
to a worse score and points in the center of the object do also lead to a worse score. In practice, large
point clouds can result in a nearly perfect score, if all points are near to the theoretical object surface,
but most parts of the surface are not used. This phenomena can happen if a small point cloud has only
points on a surface of a much larger object. To prevent this wrong result from being good, the volume
and the surface area of the object are added to the score. This has the effect that objects with a small
volume and a small surface area are preferred in contrast to huge ones with only some point cloud points
in the middle of the surface.

01 FUNCTION GET_SCORE(points[], object)
02 score := 0
03 FOR (point : points)
04 distance := GET_SURFACE_POINT_DISTANCE(object, point)
05 score := score + ABS(distance)
06 END
07 RETURN score / SIZE(points) + VOLUME(object) + AREA(object)
08 END
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Fitting a cylinder with principal component analysis

The principal component analysis was the first attempt (in this practical course) to fit a cylinder to a
point cloud. It expects a point cloud (or a list of points) and calculates the center position of the point
cloud as well as the distance between the two most distant points.

The longest distance is used as direction vector (firstDirection) and principal component of the ana-
lyzed point cloud. With this direction vector, the second direction (secondDirection) is calculated so
that it is orthogonal to the first direction vector and targets the point with the most far distance to the
first direction vector. With the cross product of the first direction vector and the second direction vector,
the third direction vector (thirdDirection) is calculated.

For all three direction vectors, a cylinder is calculated so that it directs into the respective direction. For
each of the cylinders, a score is calculated. The cylinder with the least score is returned.

01 FUNCTION FIT_CYLINDER_WITH_PRINCIPAL_COMPONENT_ANALYSIS(points[])
02 center := GET_CENTER_POINT(points)
03 mostFarPoint := NULL
04 mostFarDistance := 0
05 FOR (point : points)
06 distance := GET_POINT_POINT_DISTANCE(point, center)
07 IF (distance > mostFarDistance)
08 mostFarPoint := point
09 mostFarDistance := distance
10 END
11 END
12 firstDirection := mostFarPoint - center
13 orthogonalMostFarPoint := NULL
14 orthogonalMostFarDistance := 0
15 FOR (point : points)
16 distance := GET_LINE_POINT_DISTANCE(center, firstDirection, point)
17 IF (distance > orthogonalMostFarDistance)
18 orthogonalMostFarPoint := point
19 orthogonalMostFarDistance := distance
20 END
21 END
22 diagonalVector := orthogonalMostFarPoint - center
23 diagonalDistance := LENGTH(diagonalVector)
24 distanceOnLine := SQRT(diagonalDistance2 - orthogonalMostFarDistance2)
25 negative := firstDirection * diagonalVector
26 SET_VECTOR_LENGTH(newVector, (negative < 0 ? -1 : 1) * distanceOnLine)
27 footPoint := center + newVector
28 secondDirection := orthogonalMostFarPoint - footPoint
29 thirdDirection := firstDirection × secondDirection
30 thirdMostFarDistance := 0
31 FOR (point : points)
32 distance := GET_PLANE_POINT_DISTANCE(center, thirdDirection, point)
33 IF (distance > thirdMostFarDistance)
34 thirdMostFarDistance := distance
35 END
36 END
37 SET_VECTOR_LENGTH(thirdDirection, thirdMostFarDistance)

...
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...
38 xLength := LENGTH(firstDirection)
39 yLength := LENGTH(secondDirection)
40 zLength := LENGTH(thirdDirection)
41 xPosition := center - firstDirection
42 yPosition := center - secondDirection
43 zPosition := center - thirdDirection
44 xAverage := (yLength + zLength) / 2
45 yAverage := (xLength + zLength) / 2
46 zAverage := (xLength + yLength) / 2
47 xCylinder := CREATE_CYLINDER(xPosition, firstDirection, xAverage, 2 * xLength)
48 yCylinder := CREATE_CYLINDER(yPosition, secondDirection, yAverage, 2 * yLength)
49 zCylinder := CREATE_CYLINDER(zPosition, thirdDirection, zAverage, 2 * zLength)
50 xScore := GET_SCORE(points, xCylinder)
51 yScore := GET_SCORE(points, yCylinder)
52 zScore := GET_SCORE(points, zCylinder)
53 IF (xScore < yScore AND xScore < zScore)
54 RETURN xCylinder
55 ELSE IF (yScore < zScore)
56 RETURN yCylinder
57 ELSE
58 RETURN zCylinder
59 END
60 END

Fitting a cylinder with Fibonacci sphere analysis

The cylinder fitting algorithm with Fibonacci sphere analysis is the final solution for the object fitting
feature in GroIMP. It is split into two algorithms. The main algorithm creates a Fibonacci sphere around
the point cloud. The Fibonacci sphere has a specific number of points (= precision). The algorithm
creates a cylinder for each point of the Fibonacci sphere and calculates the score for each cylinder.
Finally, the scores are compared and the cylinder with the best score is returned.

The cylinder fitting function is later used for the frustum fitting and the cone fitting. This function
provides the most basic information about the point cloud. It returns the position vector and the direction
vector. Later, for the frustums, two different radii can be calculated, based on the cylinder returned by
this function. The cone fitting is based on frustum fitting, but with a custom base radius and an adapted
length. By reusing this algorithm for the other kinds of objects, lots of redundant implementation can
be avoided.
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01 FUNCTION FIT_CYLINDER_WITH_FIBONACCI_SPHERE_ANALYSIS(points[], precision)
02 center := GET_CENTER_POINT(points)
03 mostFarPoint := NULL
04 mostFarDistance := 0
05 FOR (point : points)
06 distance := GET_POINT_POINT_DISTANCE(point, center)
07 IF (distance > mostFarDistance)
08 mostFarPoint := point
09 mostFarDistance := distance
10 END
11 END
12 sphere := CREATE_FIBONACCI_SPHERE(center, mostFarDistance, precision
13 score := INFINITY
14 bestCylinder := NULL
15 FOR (point : sphere)
16 direction := point - center
17 cylinder := FIT_CYLINDER_TO_POINT_WITH_GIVEN_DIRECTION(points, direction)
18 cylinderScore := GET_SCORE(cylinder)
19 IF (cylinderScore < score)
20 score := cylinderScore
21 bestCylinder := cylinder
22 END
23 END
24 RETURN bestCylinder
25 END

The main function of the algorithm to fit a cylinder to a point cloud, using the Fibonacci sphere, is also
using this function to create a cylinder for a given point cloud and a given direction vector. First, this
function requests the center point of the point cloud and uses it for the calculation of the position vector
of the returned cylinder. After that, the radius and the length for the cylinder can be calculated with the
given direction vector. The returned cylinder is not the finally returned cylinder of the fitting algorithm.
It is only used for the test case that tests how good the cylinder is.

01 FUNCTION FIT_CYLINDER_TO_POINT_WITH_GIVEN_DIRECTION(points[], direction)
02 center := GET_CENTER_POINT(points)
03 length := 0
04 radius := 0
05 FOR (point : points)
06 distanceToPlane := GET_LINE_POINT_DISTANCE(center, direction, point)
07 distanceToNormal := GET_PLANE_POINT_DISTANCE(center, direction, point)
08 IF (distanceToPlane < length)
09 length := distanceToPlane
10 END
11 IF (distanceToNormal < radius)
12 radius := distanceToNormal
13 END
14 END
15 lengthVector := direction
16 SET_VECTOR_LENGTH(lengthVector, length)
17 position := center - lengthVector
18 RETURN CREATE_CYLINDER(position, direction, radius, 2 * length)
19 END
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Calculating a linear regression for frustums and cones

The linear regression function is used to calculate the angle of the side surface of a frustum, using a given
cylinder. The idea of this algorithm is to use the positions of the points in the point cloud as data set
and the already fitted cylinder as coordinate system. The direction vector of the cylinder represents the
x-axis, while the base surface (in all directions around the direction vector) represents the y-axis. This
has the advantage that the distance of each point in the point cloud to the direction vector of the cylinder
can be calculated and used as y-value. It is then independent from the angle around the direction vector
of the cylinder. The distance to the base surface is then used as x-value. This function returns an array
with two values. The first value is the slope of the linear regression, the second one is the intercept.

01 FUNCTION LINEAR_REGRESSION(cylinder, points[])
02 position := cylinder.position
03 direction := cylinder.direction
04 positions := [SIZE(points)]
05 values := [SIZE(points)]
06 index := 0
07 FOR (point : points)
08 positions[index] := GET_PLANE_POINT_DISTANCE(position, direction, point)
09 values[index] := GET_LINE_POINT_DISTANCE(position, direction, point)
10 index := index + 1
11 END
12 RETURN LINEAR_REGRESSION(positions, values)
13 END

Internally, the linear regression is done with raw x- and y-values. They are extracted from the given
cylinder and the given point cloud and provided to this function. For the linear regression, the center
x-y-center position of the data set is calculated. Then, the average slope is calculated by analyzing the
local slopes between each data set. Finally, the intercept can be calculated and the regression parameters
can be returned. The returned value is an array that contains the slope in the first field and the intercept
in the second field.

01 FUNCTION LINEAR_REGRESSION(positions[], values[])
02 sumX := SUM(positions)
03 sumY := SUM(values)
04 averageX := sumX / SIZE(positions)
05 averageY := sumY / SIZE(values)
06 sumX := 0
07 sumY := 0
08 index := 0
09 number := SIZE(positions)
10 WHILE (index < number)
11 difference := positions[index] - averageX
12 sumX := sumX + difference * (positions[index] - averageX)
13 sumY := sumY + difference * (values[index] - averageY)
14 index := index + 1
15 END
16 slope := sumY / sumX
17 intercept := averageY - slope * averageX
18 RETURN slope, intercept
19 END
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Fitting spheres to point clouds

A sphere with a maximum radius is fitted to a point cloud in two steps. The first step is to calculate
the center position of the point cloud. In the second step, the point with the maximum distance to the
center position is choosed and stored. The returned sphere is then located at the center position and has
a radius, specified by the maximum distance.

01 FUNCTION FIT_SPHERE_MAXIMUM(points[])
02 center := GET_CENTER_POINT(points)
03 radius := 0
04 FOR (point : points)
05 distance := GET_POINT_POINT_DISTANCE(center, point)
06 IF (distance > radius)
07 radius := distance
08 END
09 END
10 RETURN CREATE_SPHERE(center, radius)
11 END

A sphere with an average radius is also fitted to a point cloud in two steps. The first step is to calculate
the center position of the point cloud. In the second step, the average distance of all points to the center
position is calculated and stored. The returned sphere is then located at the center position and has a
radius, specified by the average distance.

01 FUNCTION FIT_SPHERE_AVERAGE(points[])
02 center := GET_CENTER_POINT(points)
03 sum := 0
04 FOR (point : points)
05 sum := sum + GET_POINT_POINT_DISTANCE(center, point)
06 END
07 radius := sum / SIZE(points)
08 RETURN CREATE_SPHERE(center, radius)
09 END

Fitting cylinders to point clouds

The cylinder fitting with maximum radius is already done by the algorithm that fits a cylinder by using the
Fibonacci sphere analysis. This function is only a mapping function (for completeness in this overview).

01 FUNCTION FIT_CYLINDER_MAXIMUM(points[], precision)
02 RETURN FIT_CYLINDER_WITH_FIBONACCI_SPHERE_ANALYSIS(points, precision)
03 END

The cylinder fitting with average radius is a bit more interesting. It first generates a cylinder with
maximum radius. After that, it uses the direction vector of the cylinder as x-axis and the distance of
each point of the point cloud to the direction vector as y-value and calculates the average radius. Finally,
the radius of the found cylinder is changed to the average radius and the cylinder is returned.
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01 FUNCTION FIT_CYLINDER_AVERAGE(points[], precision)
02 cylinder := FIT_CYLINDER_MAXIMUM(points, precision)
03 position := cylinder.position
04 direction := cylinder.direction
05 radiusSum := 0
06 FOR (point : points)
07 radiusSum = radiusSum + GET_LINE_POINT_DISTANCE(position, direction, point)
08 END
09 radius := radiusSum / SIZE(points)
10 RETURN CREATE_CYLINDER(position, direction, radius, cylinder.length)
11 END

Fitting frustums to point clouds

To fit a frustum with average radius is a bit more complex. The first step is to generate a cylinder. The
position vector, the direction vector, and the length are then extracted from the cylinder and reused for
the returned frustum. To get the base radius and the top radius, a linear regression is executed with the
points of the point cloud, oriented on the direction vector of the cylinder. To get the radii, the y-values
of the linear regressions are calculated for the x-values 0 (base surface) and length (top surface). The
resulting y-values are then used as base radius and top radius of the returned frustum. In a second step,
the frustum is flipped if the base radius is smaller than the top radius. This ensures that frustums do
always have a logically deterministic direction.

01 FUNCTION FIT_FRUSTUM_AVERAGE(points[], precision)
02 cylinder := FIT_CYLINDER_AVERAGE(points, precision)
03 regression := LINEAR_REGRESSION(cylinder, points)
04 slope := regression[0]
05 intercept := regression[1]
06 position := cylinder.position
07 direction := cylinder.direction
08 length := cylinder.length
09 baseRadius := slope * 0 + intercept
10 topRadius := slope * length + intercept
11 IF (baseRadius < topRadius)
12 vector := direction
13 SET_VECTOR_LENGTH(vector, length)
14 position := position + vector
15 direction := -1 * direction
16 temporary := topRadius
17 topRadius := baseRadius
18 baseRadius := temporary
19 END
20 RETURN CREATE_FRUSTUM(position, direction, baseRadius, topRadius, length)
21 END

The frustum fitting with maximum radius is based on the respective fitting algorithm with average radius.
This algorithm searches for the point in the point cloud with the maximum distance to the local position
that would have been calculated with linear regression. By doing this, an additional value for the radius
can be calculated and added to the existing radius. It is then added to the base radius and to the top
radius to get a frustum with the same angle as before, but with the surface on the most-outside point.
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01 FUNCTION FIT_FRUSTUM_MAXIMUM(points[], precision)
02 frustum := FIT_FRUSTUM_AVERAGE(points, precision)
03 position := cylinder.position
04 direction := cylinder.direction
05 maximumDistance := 0
06 FOR (point : points)
07 distanceToPrincipalAxis := GET_LINE_POINT_DISTANCE(position, direction,
point)
08 distanceToBasePlane := GET_PLANE_POINT_DISTANCE(position, direction, point)
09 distance := distanceToPrincipalAxis - (slope * distanceToBasePlane +
intercept)
10 IF (distance > maximumDistance)
11 maximumDistance := distance
12 END
13 END
14 frustum.baseRadius := frustum.baseRadius + maximumDistance
15 frustum.topRadius := frustum.topRadius + maximumDistance
16 RETURN frustum
17 END

Fitting cones to point clouds

The calculation of a cone with average radius is based on the calculation of a frustum with average radius.
This function generates a frustum and scales the length so that the angle of the frustum side surface is
kept.

01 FUNCTION FIT_CONE_AVERAGE(points[], precision)
02 frustum := FIT_FRUSTUM_AVERAGE(points, precision)
03 ratio := frustum.baseRadius / frustum.topRadius
04 additionalLength := frustum.length / (ratio - 1)
05 coneLength := additionalLength + frustum.length
06 radius := frustum.baseRadius
07 RETURN CREATE_CONE(frustum.position, frustum.direction, radius, coneLength)
08 END

The calculation of a cone with maximum radius is also based on the calculation of a frustum with
maximum radius. This function also generates a frustum and scales the length so that the angle of the
frustum side surface is kept.

01 FUNCTION FIT_CONE_MAXIMUM(points[], precision)
02 frustum := FIT_FRUSTUM_MAXIMUM(points, precision)
03 ratio := frustum.baseRadius / frustum.topRadius
04 additionalLength := frustum.length / (ratio - 1)
05 coneLength := additionalLength + frustum.length
06 radius := frustum.baseRadius
07 RETURN CREATE_CONE(frustum.position, frustum.direction, radius, coneLength)
08 END
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Fitting automatic objects to point clouds

The automatic fitting function is the most powerful function in the set of point cloud fitting algorithms.
It generates one object of each type (a sphere, a cylinder, a frustum, and a cone) and compares them by
their score. The object with the best score is returned. This function also considers the average/maximum
mode.

Two special cases have to be considered for frustums. In some cylindric or conical test point clouds, only
frustums were returned during the debugging phase. This effect appears because no objects are perfect
in nature.

Cylinders are not perfect. Their radius on the top end and on the bottom end are slightly different. This
brings the algorithm to always return a frustum for natural cylinders. To avoid this, a frustum is only
returned, if the radii differ by at least 5%. For smaller differences, a cylinder is returned.

Cones are also not perfect. The algorithm will only return a cone, if the tip is represented by a point.
Due to floating point unprecision, this is nearly impossible for natural cones. To avoid this effect, a cone
is returned if the top radius of the frustum has 5% of the base radius or less. If the top radius is larger,
a frustum is returned.

01 FUNCTION FIT_AUTOMATIC_OBJECT(points[], precision, average)
02 IF (average)
03 sphereObject := FIT_SPHERE_AVERAGE(points)
04 cylinderObject := FIT_CYLINDER_AVERAGE(points, precision)
05 frustumObject := FIT_FRUSTUM_AVERAGE(points, precision)
06 coneObject := FIT_CONE_AVERAGE(points, precision)
07 ELSE
08 sphereObject := FIT_SPHERE_MAXIMUM(points)
09 cylinderObject := FIT_CYLINDER_MAXIMUM(points, precision)
10 frustumObject := FIT_FRUSTUM_MAXIMUM(points, precision)
11 coneObject := FIT_CONE_MAXIMUM(points, precision)
12 END
13 sphere := GET_SCORE(sphereObject, points)
14 cylinder := GET_SCORE(cylinderObject, points)
15 frustum := GET_SCORE(frustumObject, points)
16 cone := GET_SCORE(coneObject, points)
17 IF (sphere < cylinder && sphere < frustum && sphere < cone)
18 RETURN sphereObject
19 ELSE IF (cylinder < frustum && cylinder < cone)
20 RETURN cylinderObject
21 ELSE IF (frustum < cone)
22 IF (frustum.topRadius < frustum.baseRadius * 0.1)
23 RETURN coneObject
24 ELSE IF (frustum.topRadius > frustum.baseRadius * 0.9)
25 RETURN cylinderObject
26 ELSE
27 RETURN frustumObject
28 END
29 ELSE
30 RETURN coneObject
31 END
32 END


