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Abstract
There is a need for a realistic physics based behavior of computer tree models. In this work two methods
from literature to calculate the behaviors of cylinder-shaped objects being subject to self-bending under
their own weight are implemented in XL. The rule-based modeling language XL is especially used for
functional-structural plant modeling. The work’s concrete application is located in modeling tree branch
structures with ramification of higher orders. An approximative force-applying approach and a finite element
approach, which also considers reaction wood building and phototropism, are presented. Both methods are
applied to three existing tree models. Furthermore a comparison in terms of phenotype, analysis of sensitivity,
runtime and memory consumption is accomplished.
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Chapter 1

Introduction

Tree simulation models that intend to be realistic need to consider the laws of physics and
biomechanics. Tree models primarily are not static, they are thus dynamic systems. That means
their appearance changes within a more or less complex development process. Because of that,
fixed shapes of branches or fixed lists of rotation angles, even if they are taken from mechanical
calculations or experimental data, can not fully match the request for modeling living organisms.
A programming language that suits the call for the combination of structure and function and is
outstandingly appropriate for plant modeling is the rule-based language XL. XL is a Java-based
implementation of relational growth grammars. The concept of the underlaying relational
growth grammar for functional-structural plant modeling has been developed by [1]. For this
work all implementations are written in XL. Owning a suitable language, tree models with
their development process, which consist of primary and secondary growth, different tropisms
(gravitropism, phototropism) and other reaction mechanisms (reaction wood, leafs, needles), need
to be expanded with sufficient algorithms that suit these demands for a physics based mechanical
shape evolution. This work deals with two such algorithms: an approximative approach and an
incremental finite element formulation.
An approach for a simple force applying bending mechanism for branches has been proposed
by [2]. Several parameters such as discretization, the initial angles of deflection, a material constant
and finally a conicity value can be set. Another parameter that was used in [3] also enables the
possibility of the branch to bend upward at a certain point, with the meaning of phototropism. In
favour of simplicity this method makes some approximation assumptions, hence it has only few
parameters.
An incremental finite element approach has been formulated by [4] and [5]. It completely fulfills
the obligation of connection to physics. Fundamental branch properties besides its length or radius
like material characteristics e.g. the Young’s modulus, density distribution etc. are adjustable.
The word incremental in this algorithm is not only based on the fragmentation in finite elements
but also on the feature of an evolution over discrete time steps where branch growth (primary,
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CHAPTER 1. INTRODUCTION 10

secondary) takes place. It also refers to the feature of this algorithm that the branch shape is
updated with the new structure data (weight, length, rotation angles) after every growth step and
by that the correct physical development process occurs within the growth process.
In this work the two mentioned methods from [2] and [4] [5] are implemented in XL. Furthermore
both methods are applied to three existing tree models. After that the algorithms are compared in
terms of phenotype differences, analysis of sensitivity, runtime and memory consumption.

The document structure reveals as follows:

• In chapter 2 the theoretical base of the two methods is expounded.

• In chapter 3 the two methods are implemented with references to the theoretical base handled
in chapter 2.

• In chapter 4 both developed algorithms are applied to three existing tree models. All
adaptation steps are described.

• In chapter 5 a comparison considering the phenotype differences of the two algorithms is
carried out examining various parameter ranges.

• In chapter 6 an analysis of sensitivity examining various parameter ranges for the two
algorithms is accomplished. The working basis is given by two tree models from chapter 4.

• In chapter 7 the differences considering the runtime and memory consumption between the
two algorithms are examined.

• In chapter 8 the overall result is summed up and an outlook to further adaptation possibilities
is given.



Chapter 2

Basics

In this chapter the basics of the underlying physics for the force-applying approximative method
and for the incremental finite element formulation is presented. All methods lean on some
assumptions that specify the character of these methods in terms of physical, mathematical or
biological approximations. The reason for this is no matter which simulation is considered all of
them need to make assumptions of that kind because none of them can fully cover reality and even
needs to do so due to the fact that not all aspects are necesary, due to the limitation of computational
ressources etc. For example both methods approximate branches as cylinder-shaped objects. The
following explanations can be seen as summaries from the principal sources [2] and [4] [5].

2.1 Force-applying approximative method

Gravity is the main physical law plants grow under. The tree shape is fully specified by its organ
parts and every part changes the whole structure as a system. The calculation of a curve formed by
an axis bending can be done with knowledge of the axis profile (length, diameter development),
material characteristics (Young’s modulus, density distribution), the initial angle of deflection
(with respect to the vertical) and finally the direction and the absolute value of the force that is
applied. Formula and solution to this problem is given by the theory of elasticity. A problem to
this approach is the fact that some tree characteristics are not reckoned, for example the growth
process collides with the mechanical law of mass conservation, or the habit of trees to withstand
high deformations by an adaptation of their growth process is neglected. Furthermore wood can
not be seen as homogeneous. The complexity of the growth process does not only depend on the
evolution of length and diameter but also on the accumulation of tree year rings in the growth
process that support a construction differing from a simple homogeneous material distribution.
Thus the real shape of a bending branch is more complex than the pure flexion that occurs by the
straightforward application of force to the end of a homogeneous cylinder-shaped object. Another

11



CHAPTER 2. BASICS 12

phenomenon that is not considered by this approach is the so called orthotropy. It describes the
tendency of a branch to invert the bending against the gravity direction to counteract this gravity.
It is done by changing the growth direction and by the formation of reaction wood. To do a correct
simulation it needs to pay attention to these processes.
In this section an approach for the deformation of conic beams is proposed. Wood is considered as
homogeneous. As a contribution to the mentioned tree reaction phenomena the literature from [3]
proposes an orthotropy parameter which will be implemented to this approach in order to cover it
as well.

Model of pure beam bending
Elementary physical sizes for the model are: E, the Young’s modulus as a material constant for
the elasticity of a material. I(s), the second moment of area for a beam section. r(s), the radius of
curvature at a position on the beam. If r(s) =∞ the beam does not bend. For a circular section it
holds true that

I(s) = π
R4
s

4
. (2.1)

Where Rs is the radius of the beam at a distance of s from the beginning. The theory of elasticity
also delivers the relation

1

r
=
dθ

ds
. (2.2)

That means the curvature is equal to the rate of change of the flexion angle θ. Besides there is a
relation between the moment of force, the second moment of area and the rate of change of the
flexion angle given by the formula

M = EI
dθ

ds
. (2.3)

This equation is the link between force and the bending of the beam. The notations for the following
variables are shown in the figure 2.1.

Figure 2.1: Notations of the model
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It is supposed that a vertical force F is applied on the tip of the beam, whereby the force vector
has the same direction as the gravity. The beam itself is fixed and has an initial angle of deflection
which is defined by θ0 which is measured relative to the vertical axis. The applied force then can
be decomposed into its orthogonal and parallel contributions F sin θ0 and F cos θ0, the first causes
pure flexion and the second causes compression. The length of the beam is given by h. First of
all the beam is supposed to be a cylinder that means for the second moment of area I = const. ω

defines an angle which is an indicator for the overall deformation. The displacement due to the
deformation is measured by e. Corresponding to the figure 2.1 the fundamental equations can be
written directly considering (2.3) and beam theory as:

EI
dθ

ds
= F cos θ0 (e− y) + F sin θ0 (h− x) (2.4)

dx = ds cos θ (2.5)

dy = ds sin θ (2.6)

By the derivation of (2.4) it is obtained that

EI
d2θ

ds2
= F cos θ0 (− sin θ) + F sin θ0 (− cos θ) . (2.7)

Multiplying both sides of equation (2.7) with
(
dθ
ds

)
and integrating with θ from 0 to ω leads to

1

2
EI

(
dθ

ds

)2

= F cos θ0 (cos θ − cosω) + F sin θ0 (sin θ − sinω) . (2.8)

Introducing the variable K and defining it by writing

K2 := 2
F

EI
(2.9)

makes it possible to denote dθ as

dθ = K
√

cos (θ + θ0)− cos (ω + θ0) ds. (2.10)

The curve’s shape function which is a result of the flexion of the beam is obtained by the integration
of ds: ∫

ds = h =

∫ ω

0

1

K
√
cos (θ + θ0)− cos (ω + θ0)

dθ. (2.11)
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Furthermore it is possible to calculate the coordinates x and y at each position s on the beam by

Xs =

∫ s

0

cos (θ0 + θ) ds (2.12)

Ys =

∫ s

0

sin (θ0 + θ) ds (2.13)

θs =

∫ s

0

K
√

cos (θ0 + θ)− cos (ω + θ0) ds. (2.14)

Numerically this equation system can be solved without effort. To do this ds would be chosen
small enough and the start point would be θ = 0. In the process after a defined number of iterations
the curve is drawn step by step. Let x be the step index the sums reveals as:

dθx = K
√

cos (θ0 + θx)− cos (ω + θx) ds (2.15)

θx =
x∑
i=1

dθi (2.16)

Xs =

s∑
i=1

cos (θ0 + θi) ds (2.17)

Ys =
s∑
i=1

sin (θ0 + θi) ds. (2.18)

Considering this approach the variable ω which was defined as the angle of the overall deformation
(see figure 2.1) is still undefined. In addition the beam’s possible cone-shape has also not been
considered yet. These missing regards will be dealt in the following.

Conicity
Let α be the conicity parameter of the beam. It is defined by

α := 1− Rend
Rstart

=
h

H
. (2.19)

Remember that h represents the length of the beam. Rstart is the radius at the beginning of
the beam. Rend denotes the radius at the end. It is not allowed that Rend > Rstart and by that
0 ≤ α ≤ 1. Thus for α = 0 a cylinder-shape, for α = 1 a cone and for 0 < α < 1 a frustum is
preserved. The variable H has no further meaning and was introduced for easier use of conicity
later. The definition from (2.19) implies the relation that at the distance s:

Rs = Rstart

(
1− s

H

)
(2.20)
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and
Rend = (1− α)Rstart. (2.21)

Now when reconsidering the definition from (2.9) and the fact that for a cylinder the second
moment of area is

I = π
R4

4
. (2.22)

I can be made dependent from the distance s:

Is = π
R4
s

4
. (2.23)

where Rs is defined by (2.20). So the parameter K becomes s-dependent and so

Ks =

√√√√2
F

Eπ
R4

start(1− s
H )

4

4

=
K0(

1− s
H

)2 . (2.24)

By that equations (2.10), (2.11) and (2.14) become

K0
ds(

1− s
H

)2 =
dθ√

cos (θ + θ0)− cos (ω + θ0)
, (2.25)

h

1− α
=

∫ ω

0

1

K
√

cos (θ + θ0)− cos (ω + θ0)
dθ. (2.26)

and
θs =

∫ s

1

K0(
1− s

H

)2√cos (θ0 + θ)− cos (ω + θ) ds. (2.27)

Calculating the angle of the overall deformation ω
Supposing the angle θ remains small enough, the approximations

sin θ ≈ θ (2.28)

and
cos θ ≈ 1− θ

2
(2.29)

make it possible to write equation (2.11) as

h =

∫ ω

0

1

K
√
A+Bθ + Cθ2

dθ. (2.30)

The Taylor series of cos (θ + θ0)− cos (ω + θ0) is used to compute the parameters A, B and C. The
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integration of (2.30) finally leads to the solution

ω =
sin θ0

(
1− cos

(
Kh
√

cos θ0

))
cos θ0 cos

(
Kh
√

cos θ0

) . (2.31)

Nevertheless the formula (2.31) contains one problem: the argument cos θ0 for the square root
function could be less than zero that means for θ0 >

π
2 it returns cos θ0 < 0. This is a problem for

most compilers. But it is known that the following holds true:

cos
(
i ∗Kh

√
| cos θ0 |

)
︸ ︷︷ ︸

∈ R

=
exp

(
−Kh

√
cos θ0

)
+ exp

(
Kh
√

cos θ0

)
2

. (2.32)

Therefore in such case the cos (...) expression in equation (2.31) must be replaced by the
right term of formula (2.32). In terms of accuracy the calculation of ω by equation (2.31) is
very good for angles< 45◦. Beyond that ω must be calculated numerically by using equation (2.11).

This calculation for ω neglects the possibility of conicity, but it is very simple to adapt it as well.
The only variable that needs to be replaced is h. Like I in equation (2.23) K must be also dependent
form s. This leads to:

Ks =
K0(

1− s
H

)2 . (2.33)

The variable h through this adaptation then needs to be replaced by h
1−α .

2.2 Incremental finite element method

The use of finite elements for the analysis of mechanical structures is most common. Living
trees can also be seen as mechanical structures with their internal stresses caused by self-weight
and internal growth. Both processes constitute a cumulative process of internal stresses and
deformation of tree parts. This correlation has been variously examined in the theoretical field
for example by [6] [7] [8]. Experimental test have been carried out for example by [9] [10]. In
this approach not only the real physics based mechanical evolution by using finite elements
has been accomplished but also the tree reaction is considered concerning the fact that under
its load history a branch adapts its growth process by changing its growth direction or by the
building of reaction wood. In general the numerical finite element method itself does not contain
an adaption to the biological behavior of living trees. This approach takes into consideration the
growth-induced progressive volume extension process with regards to primary (elongation) and
secondary (thickening) growth. The basic shape is represented by a Bernoulli 3D multi-layer
beam element. That means the branch’s shape is again like in the force-applying method
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approximated by cylinder-shaped objects. The multi-layer context is related to the incremental
formulation that means the beam is divided into layers that represent the tree’s year rings. This
convention furthermore makes it possible to set different properties for each year ring as they
generally do not hold the same material characteristics. Furthermore there is a possibility to add
weight-contributions from entities like snow, wind, needles or leaves to the branch. Another factor
that was discretized for the incremental formulation is the time. At any time step a new domain
which fulfills the equilibrium equations and defines the starting point for the next development
step is reached.
For this work the internal stresses are not examined. The main focus is on the deformation process
caused by self-weight and reaction processes.

Theoretical formulation
For the following notation capital letters indicate matrices, minuscule letters represent vectors
or constants. First of all the definition base for the finite element formulation is the principle of
virtual work (see [11]). The field for the displacement and its discretization is formed by the choice
of control points or nodes and writing it in the form

U = Nq. (2.34)

The column vector U contains Ux, Uy and Uz , the three components of displacement relative to the
global referential axis. The unknown nodal displacements are represented by q. N is the matrix
which holds the shape functions that are polynomials and the degree is determined by the number
of nodes. According to the theory of the virtual work principle the strain field is expressed by

ε = Bq. (2.35)

The matrix B is the derivative of matrix N . Owing the definition of matrix B and discretizing
the time in time slots defined by ∆tn = tn−1 − tn, a new domain Ωn must satisfy the equilibrium
requirement after any time tn. This can be expressed by∫

Ωn

BTσndΩ = fn. (2.36)

Where the column vector σn is holding the stress field components. A main vector appearing in
the equation (2.36) is fn. This vector contains the nodal loads originating for example from the
self-weight of the branches or additional loads like needles or snow. It represents the load that
is applied to the branch at the state Ωn. The process of the domain evolution is expressed by the
relation

Ωn+1 = Ωn + ∆Ωn. (2.37)

This domain evolution process represents the growth of the branch. After every time step ∆tn
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wood material is elaborated and contributes to the weight and shape development. So the new
equilibrium equation according to (2.36) can be written as∫

Ωn+1

BTσn+1dΩ = fn+1. (2.38)

Considering the requirement of incrementalism the equations (2.38) and (2.36) can be substracted
and with respect to the formulation (2.37) it is obtained∫

Ωn

BT (σn+1 − σn) dΩ +

∫
∆Ωn

BTσn+1dΩ = fn+1 − fn. (2.39)

This also makes it appropriate to write

σn+1 = σn + ∆σn ⇔ ∆σn = σn+1 − σn (2.40)

and
fn+1 = fn + ∆fn ⇔ ∆fn = fn+1 − fn. (2.41)

Furthermore considering for domain ∆Ωn that σn = 0 and σn+1 = ∆σn, because ∆Ωn did not exist
before time tn+1, it is possible to formulate the equilibrium equation after elapsed time ∆tn in the
form ∫

Ωn

BT∆σndΩ +

∫
∆Ωn

BT∆σndΩ = ∆fn. (2.42)

Looking again at equation (2.35) which was the relation between strain and displacement it is
possible to write

∆εn = B∆qn. (2.43)

The strain then must be divided into its components of elastic and maturation strain

∆εn = ∆εeln + ∆εMS
n . (2.44)

Maturation strains come from the building of new wood cells while growing. Referring to the
concept of time discretization and domain evolution maturation strain is defined for the domains
by

∆εMS
n = αn for ∆Ωn (2.45)

and
∆εMS

n = 0 for Ωn. (2.46)

Let D be the material stiffness matrix at the current material point then using (2.44),(2.45) and
(2.46) leads to

∆σn = D∆εn −Dαn for ∆Ωn (2.47)
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and
∆σn = D∆εn for Ωn. (2.48)

Substituting the strain increment in equation (2.43) by the one from equation (2.47) and (2.48) it is
possible to subsume the incremental formulation from equation (2.42) to the linear system

Kn∆qn = ∆Fn. (2.49)

Kn denotes the global stiffness matrix, the vector ∆Fn is the nodal load vector as a sum of
elementary loads issuing from the self-weight increment ∆fn and maturation strain ∆Λn. ∆Λn

and Kn are defined by

∆Λn =

∫
∆Ωn

BTDαndΩ (2.50)

and
Kn =

∫
Ωn

BTDBdΩ +

∫
∆Ωn

BTDBdΩ. (2.51)

However, this finite element approach needs a mesh, a geometrical domain that is discretized
by simply shaped elements. In this method an element-wise subdivision has been chosen. That
implies every element is connected to an elementary stiffness matrix. Formally it is defined by

ken =

∫
Ωe

n

(Be)TDeBedΩ +

∫
∆Ωe

n

(Be)TDeBedΩ. (2.52)

That however implies that the global stiffness matrix and the global load vector are compounded
from their elementary relatives. This assembly procedure will be shown at the end. Modeling this
mesh described above using beam elements as the smallest unit leads to the following derivation
of the elementary units:
Let the definition of Be be

Be := Gbe. (2.53)

Beam elements e are specified by their length and their cross-section area. Let them be denoted by
Le and Sen. Then the elementary stiffness matrix becomes

ken =

∫
Le

∫
Se
n+∆Se

n

(Be)TDeBedΩ. (2.54)

Let p(e) be the date of the creation of an element e, then the definition

Sen :=
n∑

j=p(e)

∆Sej (2.55)

denotes the cross-section area of a beam element e. This formulation is a tribute to the secondary
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growth. Then with the help of formula (2.55) the equation (2.54) can be written as

ken =

∫
Le

(be)T

 n∑
j=p(e)

∫
∆Se

j

GTDe
jGdS

 bedx. (2.56)

De
j is the material stiffness matrix in the layer evolved at time tj . The terms for the nodal loads for

self-weight and maturation strain are given by

∆fen =

∫
Le

(Ne)T∆pendx
e
n with ∆pen =

(∫
∆Se

n
P exdS

∫
∆Se

n
P ey dS

∫
∆Se

n
P ez dS 0

)T
(2.57)

and

∆Λen =

∫
Le

(be)T

[∫
∆Se

j

GTDe
nα

e
ndS

]
dx. (2.58)

The vector ∆pen is holding the distributed loads. Remembering equations (2.45) and (2.46) the
element-wise maturation strain increments can be defined as

(∆εen)MS = αen for ∆Ωn (2.59)

and
(∆εen)MS = 0 for Ωn. (2.60)

By assuming that no transverse shear is induced by the maturation strain process, we get

αen =
(
αeL,n 0 0

)T
. (2.61)

The maturation strain process furthermore is modulated with a hoop variation done by the
trigonometric cosine function

αeL,n = aen +
ςen
2

(ben − aen) (1 + cos (θ − ψen)) . (2.62)

Where θ ∈ [0, 2π] represents the hoop variation variable. It is also defined that

ψen =

ϕen + π if ben ≥ 0

ϕen if ben < 0
. (2.63)

The variables aen and ben define the extreme values of maturation strain. Equation (2.63) contributes
to the fact that trees follow different strategies for the straightening up reaction: reaction wood can
be formed at the upper or lower part of the stem depending on the extreme values of maturation
strain. These values can be found in literature for different trees (see [12]). ϕen is the angle for the
straightening up reaction measured with respect to the local axis attached to the beam element.
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In order to control the sensitivity of this reaction process the variable ςen is introduced and it is
defined that ςen ∈ [0, 1] ⊆ R. So for ςen = 0 no reaction and for ςen = 1 the full reaction takes place.
The previous considerations dealt with the theoretical expressions for the vectors and matrices
involved in this finite element approach. The following paragraph will give the analytical
expressions for them.

Analytical matrix and vector definitions
Starting with equation (2.34) the main vectors and matrices are analytically defined by

ue =
(
uex uey uez ωe

)T
, (2.64)

qe =
(
q1 q2 . . . q12

)T
(2.65)

and

Ne =


Le1 0 0 0 0 0 Le2 0 0 0 0 0

0 He
1 0 0 0 He

2 0 He
3 0 0 0 He

4

0 0 H1 0 −He
2 0 0 0 He

3 0 −He
4 0

0 0 0 Le1 0 0 0 0 0 Le2 0 0

 , (2.66)

where

Le1 = 1− ξ, Le2 = ξ, He
1 = 1− 3ξ2 + 2ξ3, He

2 = Leξ (ξ − 1)
2

He
3 = 3ξ2 − 2ξ3, He

4 = Leξ2 (ξ − 1) ,
(2.67)

and
ξ =

x

Le
. (2.68)

For the decomposition in equation (2.53) it holds true that

be(x) =


dLe

1

dx 0 0 0 0 0
dLe

2

dx 0 0 0 0 0

0
d2He

1

dx2 0 0 0
d2He

2

dx2 0
d2He

3

dx2 0 0 0
d2He

4

dx2

0 0 −d
2He

1

dx2 0
d2He

2

dx2 0 0 0 −d
2He

3

dx2 0
d2He

4

dx2 0

0 0 0
dLe

1

dx 0 0 0 0 0
dLe

2

dx 0 0


(2.69)

and

G(y, z) =

1 −y z 0

0 0 0 −z
0 0 0 y

 . (2.70)

Let tp(e) be the date of creation of an element e. Furthermore let rej.ext and rej.int denote the outer
and inner radii of the tree layers that have been elaborated during the time ∆tj . Also let Eej and
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Gej be the longitudinal Young’s modulus and the shear modulus of the wood elaborated during
the time ∆tj . Then the elementary stiffness matrix (see equation (2.56)) is defined by

ken =



a 0 0 0 0 0 −a 0 0 0 0 0

0 b 0 0 0 c 0 −b 0 0 0 c

0 0 d 0 −e 0 0 0 −d 0 −e 0

0 0 0 f 0 0 0 0 0 −f 0 0

0 0 −e 0 j 0 0 0 0 0 h 0

0 c 0 0 0 i 0 −c 0 0 0 g

−a 0 0 0 0 0 a 0 0 0 0 0

0 −b 0 0 0 −c 0 b 0 0 0 −c
0 0 −d 0 e 0 0 0 d 0 e 0

0 0 0 −f 0 0 0 0 0 f 0 0

0 0 −e 0 h 0 0 0 e 0 j 0

0 c 0 0 0 g 0 −c 0 0 0 i



, (2.71)

where

a =
(ES)en
Le

, b =
12(EIz)

e
n

(Le)3
, c =

6(EIz)
e
n

(Le)2
, d =

12(EIy)en
(Le)3

, e =
6(EIy)en

(Le)2
,

f =
(GJ)en
Le

, g =
2(EIz)

e
n

Le
, h =

2(EIy)en
Le

, i =
4(EIz)

e
n

Le
, j =

4(EIy)en
Le

,

(2.72)

(ES)en = π
n∑

j=p(e)

Eej

((
rej.ext

)2 − (rej.int)2) , (2.73)

(EIy)en = (EIz)
e
n =

π

4

n∑
j=p(e)

Eej

((
rej.ext

)4 − (rej.int)4) , (2.74)

and

(GJ)en =
π

2

n∑
j=p(e)

Gej

((
rej.ext

)4 − (rej.int)4) . (2.75)

Let
(
Zex Zey Zez

)T
be the vertical unit vector that is attached to the beam indicating its local axis.

Furthermore let ρen be the density of the wood elaborated during the time ∆tn. Let the gravity
constant be given by g. Then the nodal load increment vector (equation (see 2.57)) is defined by

∆fen = −ρ
e
ngL

e∆Sen
12

(
6Zx 6Zy 6Zz 0 −LeZz LeZy 6Zx 6Zy 6Zz 0 LeZz −LeZy

)T
,

(2.76)
where

∆Sen = π
((
rej.ext

)2 − (rej.int)2) . (2.77)
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Reconsidering equations (2.58) and (2.62) the analytical expression for the maturation strain
increment is given by

∆Λen =
(
−Ne 0 0 −Me

x −Me
y −Me

z Ne 0 0 Me
x Me

y Me
z

)
, (2.78)

where
Ne = πEen

((
rej.ext

)2 − (rej.int)2)(aen +
ςen
2

(ben − aen)

)
, (2.79)

Me
x = 0, (2.80)

Me
y = −π

6
Eenς

e
n (ben − aen)

((
rej.ext

)3 − (rej.int)3) cosψen, (2.81)

and
Me
z =

π

6
Eenς

e
n (ben − aen)

((
rej.ext

)3 − (rej.int)3) sinψen. (2.82)

Global assembly of the elementary vectors and matrices
The elementary vectors and matrices given in their analytical form (equations (2.71), (2.76) and
(2.78)) are given with respect to the local referential axis that is attached to the beam element. But
for the global formulation of the linear equation system formed by formula (2.49) they are needed
in their global form. To achieve this a change of the basis matrix (rotation matrix) is necessary to
transform the local referential to the global coordinate system. This matrix named Qe is defined by
the relation

∆qe = Qe(∆qe)global (2.83)

The vector qe is the displacement vector for one beam element e. This vector for every node
contains six displacement components according to the following notation (figure taken from [5]).

Figure 2.2: Beam element displacements

Let the number of beam elements (finite elements) be denoted by N . Then the vector that contains
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all displacement components is given by

q =
(
q1 q2 . . . q6(N+1)

)T
. (2.84)

Every beam element is attached to its own coordinate system. Let this basis be denoted by

Re =
(
~xe ~ye ~ze

)
=

x
x
e yxe zxe

xye yye zye

xze yze zze

 . (2.85)

Then the change of basis matrix is defined by

Qe =


Re 0 0 0

0 Re 0 0

0 0 Re 0

0 0 0 Re

 =



xxe yxe zxe 0 0 0 0 0 0 0 0 0

xye yye zye 0 0 0 0 0 0 0 0 0

xze yze zze 0 0 0 0 0 0 0 0 0

0 0 0 xxe yxe zxe 0 0 0 0 0 0

0 0 0 xye yye zye 0 0 0 0 0 0

0 0 0 xze yze zze 0 0 0 0 0 0

0 0 0 0 0 0 xxe yxe zxe 0 0 0

0 0 0 0 0 0 xye yye zye 0 0 0

0 0 0 0 0 0 xze yze zze 0 0 0

0 0 0 0 0 0 0 0 0 xxe yxe zxe

0 0 0 0 0 0 0 0 0 xye yye zye

0 0 0 0 0 0 0 0 0 xze yze zze



. (2.86)

It is supposed that the basis vectors are orthogonal in terms of the standard scalar product. That
implies that Qe is an orthogonal matrix and it holds true that (Qe)T = (Qe)−1. Knowing the matrix
Qe a definition for all the global elementary units can be given as

(fe)global = (Qe)T fe, (2.87)

(Λe)global = (Qe)TΛe, (2.88)

and
(ke)global = (Qe)T keQe. (2.89)

To link all beam elements together an interconnection matrix has to be defined due to correct
placement of the element-wise contribution in the global stiffness matrix for the final linear equation
system. Such matrix denoted by Ce can be gained by the extraction matrix for getting the beam
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elements’ displacements from the vector (2.84) by

qe = Ceq. (2.90)

This matrix fulfillsCe ∈ R12×6(N+1). For the whole assembly procedure it is supposed that all beam
elements are connected one after the other with the meaning e1 − e2 − . . .− eN . This assumption
leads to the analytical definition of Ce

Cei =


0 . . . 0 1 0 . . . 0 . . . 0

...
. . .

...
. . . . . . . . . ...

. . .
...

0 . . . 0︸ ︷︷ ︸
6(i−1) zeros

. . . 0 1 0 . . . 0︸ ︷︷ ︸
6(N−1) zeros

 . (2.91)

Finally after every time step tn the global vectors and matrices are assembled by

Kn =
n∑
i=1

(Cei)T (kein )globalC
ei (2.92)

and

∆Fn =
n∑
i=1

(∆fein )globalC
ei +

n∑
i=1

(∆Λein )globalC
ei . (2.93)

So the unknown nodal displacement increments ∆qn which are the solutions to the finite element
formulation can be obtained by solving the linear equation system

Kn∆qn = ∆Fn (2.94)

after every elapsed time step.



Chapter 3

Implementation

In this chapter the two methods presented in chapter 2 are implemented in XL. References to the
theoretical basis are given. The necessary internal constructions (for example the class for a finite
element) for the code that are needed for the implementation are carried out. Both implementations
for the two methods furthermore need some constructive assumptions. These are explained ahead
of every implementation. As their result of calculations both algorithms return arrays of rotation
angles which define the curvature of the branch. The main advantage of this convention is that in
contrast to 2D-coordinates rotation angles are independent of any choice of coordinate system. By
that a transformation easily can be performed by just adding or subtracting angles to every entry
in the array.

3.1 Force-applying approximative method

The following parameters for this method can be set:

• int disc :
This parameter sets the number of rotation angles (and thus subsections) calculated by the
model. Because of that, the parameter also is equivalent to the number of discretization steps.

• double t0 :
This parameter sets the initial angle of deflection. The angle, in degrees, is measured relatively
to the vertical z-axis. The definition range for this parameter is 0.0 . . . 180.0.

• double K0 :
This non-negative parameter is the model’s material constant. It is related to the physical
term elastic modulus, which defines a material constant for the resistance of a material
against bending deformation.

26
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• double coni :
This parameter sets the conicity of the branch. The definition range is 0.0 . . . 1.0. 0.0 means
the branch has constant diameter, hence it has cylinder shape. 1.0 means it has zero diameter
at the tip and therefore a total cone shape. For values 0.0 < coni < 1.0, the branch is a
frustum.

• double p :
This parameter defines the relative point where the branch starts to bend upwards with the
meaning of phototropism. The definition range is 0.0 . . . 1.0, with 0.0 referring to the base
and 1.0 to the tip.

Source code:

1 double[] GetRotationAnglesApprox(int disc, double t0, double K0, double coni, double p)

{

2
3 double res[] = new double[disc+1];

4 double dx = (double) disc / 10.0;

5 double h = (double) disc / (1 - coni);

6
7 //constants

8 double rad = 180.0/Math.PI;

9 double t0_rad = t0/rad;

10 double cost0 = Math.cos(t0_rad);

11 double sint0 = Math.sin(t0_rad);

12 double eps = 0.17; // corresp. to 10 degree

13
14 //variables

15 double x, t, w=-1.0, dt, t1;

16
17 if (coni == 0.0) {

18 if (cost0 > 0.0) {

19 x = K0 * h * Math.sqrt(cost0);

20 w = sint0 * (1.0 - Math.cos(x))/(cost0 * Math.cos(x));

21 } else {

22 x = K0 * h * Math.sqrt(Math.abs(cost0));

23 w = sint0 * (1.0 - (Math.exp(-x) + Math.exp(x))/2.0) / (cost0 * (Math.exp(-x) +

Math.exp(x))/2.0);

24 }

25 }

26
27 if (coni > 0.0 || K0 * h * Math.sqrt(cost0) * 2.0/Math.PI > 0.8 || Math.abs(w) > 0.8

|| w < 0.0) {

28
29 double a = 0.0;

30 double b = Math.PI - t0_rad;

31
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32 do {

33 w = (a+b)/2.0;

34 t = 0.0; x = 1.0;

35
36 do {

37 dt = dx * Math.sqrt(2.0) * K0 * Math.sqrt(Math.abs(Math.cos(t0_rad + t) -

Math.cos(t0_rad + w)));

38 t += dt;

39 x += dx;

40 } while (t < w);

41
42 if (x < h - dx)

43 a = w;

44 else

45 b = w;

46 } while (b-a > eps);

47 w = (a + b)/2.0;

48 }

49
50 dx = 1.0;

51 t = 0.0;

52 t1 = 0.0;

53
54 res[0] = t0;

55
56 for (int i = 0; i < disc; i++) {

57
58 if (t < w) {

59 t1 = (K0/(1.0 - (coni*(i+1))/disc)**2.0) * Math.sqrt(2.0 * (Math.cos(t + t0_rad

) - Math.cos(w + t0_rad))) * dx;

60 if (i > (double) disc * p)

61 t1 = -t1;

62 t += t1;

63 }

64 res[i+1] = t1 * rad;

65 }

66 return res;

67 }

In line 1 the definition of the function GetRotationAnglesApprox(. . .) takes place. It returns an
array of doubles with the rotation angles that specify the curvature of the branch. In the argument
list the parameters described above the source code can be found again. disc is related to the
variable h which was the length of the branch. The double t0 is the equivalent to the initial angle
of deflection θ0. K0 represents the material constant K0. The double coni is the equivalent to the
conicity parameter α (see definition (2.19)). As an addition to the basic formulation from chapter 2
a phototropism parameter p is introduced (referring to [3]).
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An array for picking up the solution, the rotation angles, can be found in line 3. This ar-
ray’s length is given by disc+ 1 because as a convention the initial deflection angle is also picked
up at the first array index. For its first usage the variable dx (line 4) is needed as a step width
for the calculation of the overall deformation ω (in the code denoted by w) in the case that for
the first attempt ω ≥ 45◦ (see statements after equation (2.32)). Since conicity is considered
the internal definition for h is not equivalent to disc. That is why in line 5 h is defined as the
left side of the equation (2.26). After that the constants for the calculation are set in order to
prevent unnecessary recalculations, for example in the argument list the parameter θ0 is given
in degrees but for all internal trigonometric functions the unit must be radian (line 8-12). The
double eps, defined in line 12, constitutes the accuracy for the calculation of ω (see line 46). In
line 15 space for a bunch of working variables that are needed for the iterative procedure is reserved.

After that the first calculation of the angle of the overall deformation ω is accomplished
(line 17-25). Since the value from equation (2.31) is only valid for a total cylinder shape it merely
makes sense to perform the calculations when it holds true that coni = 0 (line 17). In order
to respond to the problem with imaginary numbers stated in formula (2.32) the two different
calculation ways for ω are carried out (line 19-20 and line 22-23).

The next section (line 27-48) is about the numerical calculation of ω for the case when the
accuracy of equation (2.31) is not enough or there is no other way than doing so. For the case that
coni > 0 (line 27) the shape is not a cylinder. Thus ω must be calculated like this. The accuracy
condition ω < 45◦ (see after equation (2.32)) can be found in the second and third term of the
boolean construction (line 27). Furthermore for negative angles of the overall deformation it is also
mandatory. This method in line 27-48 is a search algorithm to find the solution for ω. It is known
that ω ∈ [0, π − θ0]. The variables for this seek area ([a, b]) are defined in line 29-30. By successively
dividing the seek area (line 33 and line 42-46) ω is found when the defined accuracy is reached
(line 46).

Having calculated ω it is now possible to calculate the branch’s curvature: the array of
rotation angles. This is done in line 50-65. The iteration variables are reset in line 50-52. To achieve
sufficient precision the value of dx (line 50) must be chosen small enough in contrast to the dx
value for the calculation of ω where it is permitted to be significantly higher. Besides in line 54 the
first rotation angle is fixed to the initial angle of deflection θ0 as mentioned at the beginning.

The iteration loop in line 56-65 is the numerical calculation of equation (2.15) and (2.27).
Numerical integration is accomplished in the most simple way by the use of a Riemann sum. The
phototropism parameter is responsible for the branch to bend upward at a certain relative point.
This behavior is ensured in line 60-61 by changing the growth direction after reaching the position
disc ∗ p which is the inflection point. All gained rotation angles, measured in degrees, are stored to
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the solution array in line 64. Finally this array of rotation angles is returned in line 66.

3.2 Incremental finite element method

The following parameters for this method can be set:

• int n_FE :
This parameter sets the number of finite elements. Thus it is also the number of discretization
steps for the time. Moreover it is the maximum number of tree year rings. The parameter
furthermore sets the resolution of the finite mesh. In order to achieve reasonable runtime
and sufficient correctness it should hold true that n_FE ∈ [10, 40] ⊆ N.

• int n_GU :
This parameter sets the number of growth units. It is synonymous to the extent of interpola-
tion between the displacement solutions of two finite elements. That means the number of
finite elements is not inevitably equivalent to the number of growth units. Thus it determines
the number of rotation angles in the solution array. The lower limit for this parameter is
the number of finite elements: n_GU ≥ n_FE. For the function it is recommended that
n_GU ∈ [n_FE, 1000] ⊆ N.

• double t0 :
This parameter sets the initial angle of deflection. The angle, in degrees, is measured relatively
to the vertical z-axis. The definition range for this parameter is 0.0 . . . 180.0.

• double rho :
This parameter sets the material density. For the calculations a homogeneous density distri-
bution is supposed. The unit is kg

m3 .

• double E :
This parameter sets the Young’s modulus. It is the material constant of the branch, which
defines the resistance of a material against bending deformation. Again a homogeneous
distribution of the Young’s modulus is supposed. The unit is MPa.

• double grav :
This parameter sets the gravity constant. The unit is m

s2 .

• double Le :
This parameter sets the length of a finite element. Consequently the length of the branch is
defined by n_FE ∗ Le. The unit is m.

• double r_start :
This parameter sets the initial radius of the branch. The unit is m.
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• double r_end :
This parameter sets the end radius of the branch. The unit is m.

• double sigma :
This parameter controls the sensitivity of the reaction wood building process initiated by
maturation strain. The definition range is sigma ∈ [0, 1] ⊆ R. For sigma = 0.0 no reaction
and for sigma = 1.0 the full reaction takes place.

• double phi :
This parameter sets the angle for the direction of the reaction process controlled by sigma.
The angle, in degrees, is measured relatively to the x-y-plane. The definition range for this
parameter is 0.0 . . . 180.0.

• double a :
This parameter sets the minimum value of maturation strain. The unit is µdef (this is
equivalent to 1 ppm that means 1000µdef = 0.1%).

• double b :
This parameter sets the maximum value of maturation strain. The unit is µdef .

• boolean primaryTropism :
This parameter enables the possibility to fix the growth direction of the branch with the
angle t0. That means every new growth unit is set fixed in its growth direction with the
meaning of phototropism.

Source code:

1 const double rad = 180.0/Math.PI; //radian in degrees

2 const int MAX_FE_COUNT = 40; //maximal number of finite elements

3
4 //class for one finite elemenent

5 public class FE {

6
7 double length; //length of the finite element

8 double[] radii; //array of radii for the wood layers

9 double[] densities; //densities for each wood layer

10 double[] young_moduli; //Young’s moduli for the wood layers

11 double GlobalRotation; //angle relative to the global vertical reference

12 double sigma; //growth strategy parameter

13 double phi; //direction of the growth strategy

14 double a; //minimum of the growth stress

15 double b; //maximum of the growth stress

16 double grav; //gravity constant

17 double extraLoad; //extra weight

18 int Layer_count = 0; //number of wood layers

19
20 //constructor
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21 public FE( double length,

22 double init_radius,

23 double init_density,

24 double init_YoungModulus,

25 double GlobalRotation,

26 double sigma,

27 double phi,

28 double a,

29 double b,

30 double grav

31 double extraLoad )

32 {

33
34 this.length = length;

35 this.GlobalRotation = GlobalRotation;

36 this.sigma = sigma;

37 this.phi = phi;

38 this.a = a;

39 this.b = b;

40 this.grav = grav;

41 this.extraLoad = extraLoad;

42 this.radii = new double[MAX_FE_COUNT+1];

43 this.densities = new double[MAX_FE_COUNT];

44 this.young_moduli = new double[MAX_FE_COUNT];

45 //first radius must be 0.0

46 this.radii[0] = 0.0;

47 this.radii[1] = init_radius;

48 this.densities[0] = init_density;

49 this.young_moduli[0] = init_YoungModulus;

50 this.Layer_count++;

51 }

52
53 //add wood layer to the element

54 public void addLayer(double thickness, double density, double YoungModulus) {

55 radii[Layer_count+1] = radii[Layer_count] + thickness;

56 densities[Layer_count] = density;

57 young_moduli[Layer_count] = YoungModulus;

58 Layer_count++;

59 }

60
61 //get StiffnessMatrix for the element

62 public RealMatrix StiffnessMatrix() {

63 double tmp1 = 0.0;

64 double tmp2 = 0.0;

65 double tmp3 = 0.0;

66 for (int i = 0; i < Layer_count; i++) {

67 tmp1 += (young_moduli[i] * (radii[i+1] ** 2 - radii[i] ** 2));

68 tmp2 += (young_moduli[i] * (radii[i+1] ** 4 - radii[i] ** 4));

69 tmp3 += ((young_moduli[i]/3) * (radii[i+1] ** 4 - radii[i] ** 4));
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70 }

71 double ES = Math.PI * tmp1;

72 double EI = Math.PI * 0.25 * tmp2;

73 double GJ = Math.PI * 0.5 * tmp3;

74
75 double var1 = ES/length;

76 double var2 = 12 * EI/(length*length*length);

77 double var3 = 6 * EI/(length*length);

78 double var4 = 12 * EI/(length*length*length);

79 double var5 = 6 * EI/(length*length);

80 double var6 = GJ/length;

81 double var7 = 2 * EI/length;

82 double var8 = 2 * EI/length;

83 double var9 = 4 * EI/length;

84 double var10 = 4 * EI/length;

85
86 double[][] matrix = { {var1,0,0,0,0,0,-var1,0,0,0,0,0},

87 {0,var2,0,0,0,var3,0,-var2,0,0,0,var3},

88 {0,0,var4,0,-var5,0,0,0,-var4,0,-var5,0},

89 {0,0,0,var6,0,0,0,0,0,-var6,0,0},

90 {0,0,-var5,0,var10,0,0,0,0,0,var8,0},

91 {0,var3,0,0,0,var9,0,-var3,0,0,0,var7},

92 {-var1,0,0,0,0,0,var1,0,0,0,0,0},

93 {0,-var2,0,0,0,-var3,0,var2,0,0,0,-var3},

94 {0,0,-var4,0,var5,0,0,0,var4,0,var5,0},

95 {0,0,0,-var6,0,0,0,0,0,var6,0,0},

96 {0,0,-var5,0,var8,0,0,0,var5,0,var10,0},

97 {0,var3,0,0,0,var7,0,-var3,0,0,0,var9} };

98
99 RealMatrix Q = ChangeOfBasisMatrix();

100 return Q.transpose().multiply(MatrixUtils.createRealMatrix(matrix)).multiply(Q);

101 }

102
103 //get the change in nodal loads after primary and secondary growth

104 public ArrayRealVector deltaNodalLoads() {

105
106 ArrayRealVector res = new ArrayRealVector(12);

107 double r_ext = radii[Layer_count];

108 double r_int = radii[Layer_count-1];

109 double fac = -densities[Layer_count-1]*grav*length*Math.PI*(r_ext ** 2 - r_int **
2)/12;

110 double Zx = Math.cos(GlobalRotation);

111 double Zy = 0;

112 double Zz = -Math.sin(GlobalRotation);

113
114 res.setEntry(0, fac*6*Zx);

115 res.setEntry(1, fac*6*Zy);

116 res.setEntry(2, fac*6*Zz);

117 res.setEntry(4, -fac*length*Zz);



CHAPTER 3. IMPLEMENTATION 34

118 res.setEntry(5, fac*length*Zy);

119 res.setEntry(6, fac*6*Zx);

120 res.setEntry(7, fac*6*Zy);

121 res.setEntry(8, fac*6*Zz);

122 res.setEntry(10, fac*length*Zz);

123 res.setEntry(11, -fac*length*Zy);

124
125 RealMatrix Q = ChangeOfBasisMatrix();

126 return new ArrayRealVector(Q.transpose().operate(res));

127 }

128
129 //get the change in maturation strain for the new layer elaborated after primary and

secondary growth

130 public ArrayRealVector deltaMaturationStrain() {

131
132 ArrayRealVector res = new ArrayRealVector(12);

133 double r_ext = radii[Layer_count];

134 double r_int = radii[Layer_count-1];

135 double d = (phi/rad) - GlobalRotation;

136 double psi = b < 0 ? d : d + Math.PI;

137 double Ne = Math.PI * young_moduli[Layer_count-1] * (r_ext ** 2 - r_int ** 2) * (

sigma * (a + 0.5 * (b-a)));

138 double Mx = 0;

139 double My = -Math.PI * young_moduli[Layer_count-1] * sigma * (b-a) * (r_ext ** 3 -

r_int ** 3) * Math.cos(psi)/6;

140 double Mz = Math.PI * young_moduli[Layer_count-1] * sigma * (b-a) * (r_ext ** 3 -

r_int ** 3) * Math.sin(psi)/6;

141 res.setEntry(0, -Ne);

142 res.setEntry(3, -Mx);

143 res.setEntry(4, -My);

144 res.setEntry(5, -Mz);

145 res.setEntry(6, Ne);

146 res.setEntry(9, Mx);

147 res.setEntry(10, My);

148 res.setEntry(11, Mz);

149
150 RealMatrix Q = ChangeOfBasisMatrix();

151 return new ArrayRealVector(Q.transpose().operate(res));

152 }

153
154 //get the change in extra loads

155 ArrayRealVector deltaExtraLoad(int FE_count) {

156
157 ArrayRealVector res = new ArrayRealVector(12);

158
159 double Zx = Math.cos(GlobalRotation);

160 double Zy = 0;

161 double Zz = -Math.sin(GlobalRotation);

162
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163 double fac = -grav*extraLoad/(12.0*FE_count);

164
165 res.setEntry(0, fac*6*Zx);

166 res.setEntry(1, fac*6*Zy);

167 res.setEntry(2, fac*6*Zz);

168 res.setEntry(4, fac*-length*Zz);

169 res.setEntry(5, fac*length*Zy);

170 res.setEntry(6, fac*6*Zx);

171 res.setEntry(7, fac*6*Zy);

172 res.setEntry(8, fac*6*Zz);

173 res.setEntry(10, fac*length*Zz);

174 res.setEntry(11, fac*-length*Zy);

175
176 RealMatrix Q = ChangeOfBasisMatrix();

177 return new ArrayRealVector(Q.transpose().operate(res));

178 }

179
180 //change of basis matrix (rotation matrix), transforms the local referential axis to

the gloabal referential axis

181 public RealMatrix ChangeOfBasisMatrix() {

182 double var11 = Math.sin(GlobalRotation);

183 double var12 = Math.cos(GlobalRotation);

184 double[][] yRotM = { {var12,0,var11}, {0,1,0}, {-var11,0,var12} };

185
186 RealMatrix res = MatrixUtils.createRealMatrix(12,12);

187 res.setSubMatrix(yRotM,0,0);

188 res.setSubMatrix(yRotM,3,3);

189 res.setSubMatrix(yRotM,6,6);

190 res.setSubMatrix(yRotM,9,9);

191
192 return res;

193 }

194
195 //matrix for connecting the finite elements for the later assembly process

196 public RealMatrix getConnextionMatrix(int position, int FE_count) {

197 RealMatrix res = MatrixUtils.createRealMatrix(12,6*(FE_count+1));

198 for (int i=0; i<12; i++) {

199 res.setEntry(i,6*position+i,1.0);

200 }

201 return res;

202 }

203 }

204
205 public double[] getRotationAnglesFE(int n_FE, int n_GU, double t0, double rho, double E,

double grav, double Le, double r_start, double r_end, double sigma, double phi,

double a, double b, boolean primaryTropism) {

206
207 //initial finite element list

208 FE[] FiniteElements = new FE[n_FE];
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209 int element_count = 0;

210
211 //thickness of new wood layers for secondary growth

212 double delta_radii = (r_start - r_end) / (n_FE-1);

213
214 do {

215 //first node of first finite element has fixed rotation (initial angle of

deflection)

216 //all other nodes are linked to the previous finite element (growth unit) or to a

fixed

217 //direction with the meaning of a primary tropism

218 double rot;

219
220 if (element_count==0 || primaryTropism)

221 rot = t0/rad;

222 else

223 rot = FiniteElements[element_count-1].GlobalRotation;

224
225 //primary growth

226 FiniteElements[element_count] = new FE(Le, r_end, rho, E, rot, sigma, phi, a, b);

227 element_count++;

228
229 //secondary growth

230 for (int i=0; i<(element_count-1); i++) {

231 FiniteElements[i].addLayer(delta_radii,rho,E);

232 }

233
234 //elemtary matrices

235 RealMatrix GlobalStiffnessMatrix = MatrixUtils.createRealMatrix(6*(element_count

+1), 6*(element_count+1));

236 RealVector NodalLoadsExternal = new ArrayRealVector(6*(element_count+1));

237 RealVector NodalLoadsInternal = new ArrayRealVector(6*(element_count+1));

238 RealVector NodalLoadsExtra = new ArrayRealVector(6*(element_count+1));

239
240 //assembly

241 for (int i = 0; i < element_count; i++) {

242 FE el = FiniteElements[i];

243 RealMatrix StiffnessMatrix = el.StiffnessMatrix();

244 RealMatrix C = el.getConnextionMatrix(i,element_count);

245
246 //assembly of global stiffness matrix

247 GlobalStiffnessMatrix = GlobalStiffnessMatrix.add(C.transpose().multiply(

StiffnessMatrix).multiply(C));

248
249 //assembly of nodal load vector

250 double[] loaddata = el.deltaNodalLoads(grav).toArray();

251 RealMatrix A = MatrixUtils.createRealMatrix(1,12);

252 A.setRow(0,loaddata);

253 NodalLoadsExternal = NodalLoadsExternal.add(new ArrayRealVector(A.multiply(C).
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getRow(0)));

254
255 //assembly of maturation strain vector

256 loaddata = el.deltaMaturationStrain().toArray();

257 A.setRow(0,loaddata);

258 NodalLoadsInternal = NodalLoadsInternal.add(new ArrayRealVector(A.multiply(C).

getRow(0)));

259
260 //assembly of extra load vector

261 loaddata = el.deltaExtraLoad().toArray();

262 A.setRow(0,loaddata);

263 NodalLoadsExtra = NodalLoadsExtra.add(new ArrayRealVector(A.multiply(C).getRow

(0)));

264 }

265
266 //solve the LES

267 DecompositionSolver solver = new SingularValueDecomposition(GlobalStiffnessMatrix)

.getSolver();

268 RealVector Solution = solver.solve(NodalLoadsExternal.add(NodalLoadsInternal).add(

NodalLoadsExtra));

269
270 //apply the displacements to all finite elements

271 for (int i = 0; i < element_count; i++) {

272 FE el = FiniteElements[i];

273 RealVector dqe = el.getConnextionMatrix(i, element_count).operate(Solution);

274 double rot_y = dqe.getEntry(4);

275 el.GlobalRotation += rot_y;

276 }

277
278 } while (n_FE != element_count);

279
280 //extract rotation angles from finite elements

281 double[] angles = new double[n_FE];

282 double[] range = new double[n_FE];

283
284 for (int i = 0; i < n_FE; i++) {

285 FE el = FiniteElements[i];

286 angles[i] = rad * el.GlobalRotation;

287 range[i] = ((double)i)/(n_FE-1);

288 }

289
290 //interpolation

291 AkimaSplineInterpolator Interpolator = new AkimaSplineInterpolator();

292 PolynomialSplineFunction function = Interpolator.interpolate(range, angles);

293
294 //number of growth units not less than number of finite elements

295 n_GU = n_GU < n_FE ? n_FE : n_GU;

296
297 double[] res = new double[n_GU];
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298 double prev = 0.0;

299
300 for (int i = 0; i < n_GU; i++) {

301 double angle = function.value(((double)i)/(n_GU-1));

302 res[i] = angle - prev;

303 prev = angle;

304 }

305
306 return res;

307 }

In line 1-2 the definition for the constants that are frequently needed for the code is accomplished.
Like stated above the number of finite elements is limited. The constant MAX_FE_COUNT
holds this number. It is needed for array definitions in line 42-44.

Every finite element is represented by an own object as an instance of a special class for
a finite element. This class is named FE (line 5-177). Every finite element consists of its own
properties and elementary vector and matrix definitions that are especially connected to it.
Furthermore the tree layer structure and the incremental evolution must be implemented as well.
This construction facilitates the overall view and the storage of structural information as well as
the assembly of the linear equation system. Since the finite elements are beam elements, for the
following these designations will be used synonymously.

In line 7-18 the properties of the class FE are defined. The double length denotes the pa-
rameter Le which was the length of a finite element. Considering the fact that the tree’s year rings
do not all possess the same properties the arrays in line 8-10 pick up the layer specific properties.
For the thickness, an array of doubles (line 8) picks up the radii evolution of the finite element
where the thickness of a layer elaborated at the time tn is given by radii[n + 1] − radii[n]. The
same train of thoughts leads to the arrays for the density and the Young’s modulus. The first item
in the arrays in line 9-10 holds the properties for the first inner year ring. A main property that is
needed for the translation of local to global formulation of elementary vectors (see (2.85)-(2.89))
and matrices is the global orientation angle GlobalRotation (line 11). This one-dimensional value
is completely sufficient to determine the local referential axis and by that the change of basis
matrix Qe (see (2.83)). The next properties sigma, phi, a, b (line 12-15) are the equivalent to the
parameters ςe, ϕe, ae and be (see (2.62) ff.). They were defined as the variables that control the
sensitivity of the reaction wood formation process, the angle for the direction of the reaction
process, the minimum and maximum value of maturation strain. The gravity constant can be
found in line 16. A possibility to add extra loads like snow or needles to the beam element is given
by the variable extraLoad (line 17). After that the total number of wood layers is picked up by the
integer Layer_count (line 18).
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The constructor for an object of type FE can be found in line 21-51. By calling with the
argument list from line 21-31 it initially creates the first wood layer and sets its common properties
(line 34-50). The arrays, sized by the constant MAX_FE_COUNT , for the layer properties are
initialized in line 42-44. As a particularity the array for the radii (line 42) contains one item more.
This is due to the reason of the differential formulation for the radii evolution. That is why in line
46 the first item in this array must be set to 0.0. Finally after setting all properties the counter for
the number of layers can be increased (line 50). For modeling the process of secondary growth the
routine addLayer(..) (line 54-59) is responsible. In line 55 the radii thickening is accomplished.
After that the density and the Young’s modulus of the new developed layer are set. At the end the
counter for the number of layers must be increased (line 58).

For the implementation in XL the class definitions for matrices, vectors and operations
among them, especially matrix multiplication and solving linear equation systems, are carried out
by the use of the "Apache Commons Math 3.6.1 API" library. When creating matrices or vectors
with class definitions from this library the entries are initialized with zeros.

The function StiffnessMatrix() (line 62-101) returns the global definition of the elemen-
tary stiffness matrix (ken)global according to equation (2.89). First of all it is necessary to construct
the local definition of the elementary stiffness matrix considering equations (2.71)-(2.75). This
is done in line 63-97. The variables tmp1, tmp2 and tmp3 are used to calculate the sum in the
equations (2.73)-(2.75) for (ES)en, (EIy)en = (EIz)

e
n and (GJ)en. The equivalents in line 71-73 are

the doubles ES, EI and GJ . The modulus of rigidity Gej is set to Ee
j

3 after the Poisson’s ratio
relation between Young’s modulus and shear modulus (line 69). In the iteration loop in line 66-70
the iteration variable i runs from 0 to Layer_count− 1. This formulation is equivalent to the one
from equations (2.73)-(2.75) where the indices of the sums start at p(e), which indicated the date of
creation of an finite element, and run until n, the current time step index from time tn. Afterwards
the entries for the elementary stiffness matrix a, b, c, d, e, f , g, h, i and j according to the equations
in (2.72) can be found in the declaration of the variables var1, var2, var3, var4, var5, var6, var7,
var8, var9 and var10 (line 75-84). The final local elementary stiffness matrix then is defined in line
86-97. This represents the analytic definition referring to equation (2.71).

In line 99 the function that returns the current change of basis matrix ChangeOfBasisMatrix() is
called. The result of such call is dependent of the finite element’s state of global position. The
return value (line 100) is determined like in equation (2.89) and it transforms the local to the global
formulation of the elementary stiffness matrix.

The equivalent function for the global nodal loads increment (∆fen)global (equation (2.87))
can be found in line 104-127 with deltaNodalLoads(). The ∆ refers to the incremental formulation
and means only the load for the last wood layer of this finite element is returned. Moreover the
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return value of this function is, like the global elementary stiffness matrix, dependent on the current
state of the finite element’s global orientation and on the time (secondary growth). In line 106 space
for the vector ∆fen with its 12 entries is reserved. After that the variable fac (line 109) denotes the

pre-factor from equation (2.76) for the vector ∆fen. The components of the vector
(
Zex Zey Zez

)T
used in equation (2.76) are defined in line 110-112 by the variables Zx, Zy and Zz. As stated above
the single value for the relative global rotation angle between the finite element and the global
z-axis is completely sufficient to calculate the ascending vertical unity vector that is attached to

the beam element by
(
Zex Zey Zez

)T
=
(

cos(globalRotation) 0 − sin(globalRotation)
)T

. The
entries of the local definition of ∆fen are set in line 114-123. Obtaining the change of basis matrix
Qe by calling the appropriate function in line 125 the final return value (line 126) of the function
deltaNodalLoads() is the global nodal loads increment vector following equation (2.87).

Maturation strain increments (∆Λen)global (equation (2.88)) are modeled by the function
deltaMaturationStrain() (line 130-152). Again it is first essential to define the local elementary
definition of maturation strain ∆Λen (equation (2.78)). This is done in line 132-148. In line 132 space
for the vector ∆Λen with its 12 entries is reserved. Afterwards the variables that are needed for the
construction of the solution vector are defined (line 133-140). The external and internal radii reext
and reint considering the concept of layering find their representation with the doubles r_ext and
r_int (line 133-134). In line 135 the angle for the straightening up reaction ϕen is given by d. Paying
attention to the fact that ϕen is given relatively to the global z-axis it must be transformed in a local
direction relative to the beam element. This is done by subtracting the finite element’s global
rotation angle (line 135) and using the variable d instead of phi. Regarding equation (2.63) ψen,
which was the shift of the angle for the straightening up reaction considering the different ways of
reaction wood building, is given by the variable psi (line 136). The construction of the variables
Ne, Mx, My and Mz follows equations (2.79)-(2.82). The individual entries of the vector Λen are
set in line 141-148 by the use of equation (2.78). Getting the change of basis matrix Qe in line 150
the final return value (line 151) of the function deltaMaturationStrain() is the global maturation
strain increment vector following equation (2.88).

Looking upon the possibility to consider extra weights of a finite element the function
deltaExtraLoad(. . .) (line 155- 178) is appropriate. In order to distribute the weight and by that
the resulting force equally to all wood layers the function deltaExtraLoad(. . .) needs an argument
that specifies the total end number of layers when the growth process is fully accomplished. This
is represented by the integer FE_count (line 155). In line 157 space for the local incremental extra

load vector with its 12 entries is reserved. The components
(
Zex Zey Zez

)T
that are needed for

the vertical ascending unity vector can be found in line 159-161. Depending on the value of the
variable extraLoad, the gravity constant grav and the number of layers the pre-factor for the
incremental extra load vector in its local form is defined in line 163 by the double fac. The entries
of this vector are set in line 165-174. The transformation from local to global is done in line 176-177.
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In line 177 the final return value is the global formulation of the incremental extra load vector.

The functional representation of the change of basis matrix Qe (see equations (2.83)-(2.86))
is given by ChangeOfBasisMatrix() in line 181-203. As already mentioned the one dimensional
value of the relative angle between the global z-axis and the finite element is sufficient to determine
the ascending vertical unity vector and also the rotation matrix that transforms the local to the
global referential axis. The basis of the coordinate system referring to equation (2.85) is constructed
in line 182-184. The matrix in line 184 is the representation of Re. In line 186 space for the 12× 12

sized result matrix is reserved. The diagonal change of basis matrix Qe, regarding equation (2.86),
is put together in line 187-190 by the matrix-wise setting of its diagonal entries. Finally it is
returned in line 192.

The interconnection matrix that was introduced in equation (2.90) can be obtained by the
call of the function getConnectionMatrix(. . .) (line 196-202). The resulting matrix is dependent
on the index position of the finite element and on the total number of finite elements. In equation
(2.91) the index of a finite element ei was denoted by i and the total number of finite elements by
N . Both parameters are represented as arguments of the function getConnectionMatrix(. . .) by
the integers position and FE_count (line 196). In line 197 space for the 12× 6(N + 1) dimensioned
result matrix is reserved. Afterwards (line 198-200) the diagonal entries with ones are set according
to the position information from equation (2.91). Finally the interconnection matrix is returned in
line 201. The definition of class FE is finished in line 203.

Owning the representation of a finite element, the main concept of primary and secondary growth
as well as the assembly operations for the linear equation system can be carried out. At the end
it leads to the function GetRotationAnglesFE(. . .) (line 205-306) delivering an array of rotation
angles that defines the curvature of the branch.

In the function’s argument list (line 205) the parameters defined above the source code
can be found again. As stated after equation (2.90) it is supposed that all finite elements are
connected one after the other: e1 − e2 − . . . − eN . A simple array is the natural choice for such
arrangement. This array can be found in line 208. As the maximum number of finite elements
is restricted and a counter element_count (line 209) for the current number of finite elements is
established, a list is not necessary and an array is completely sufficient. Since a constant growth
velocity is supposed the change rate of the radii delta_radii (line 212) can be set. The growth
process and with it the successive application of the incremental displacement results, coming from
the solutions of the time-dependent linear equation systems, to the finite elements is accomplished
in the loop in line 214-277. This loop is performed until all beam elements have been elaborated
and by that the growth process ends (line 277).
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First of all before its creation the relative position of a finite element must be determined.
The variable rot (line 217) is the initial angle between a new finite element and the global z-axis.
The first beam element’s direction is given by the initial angle of deflection t0. That’s why in line
220-221 rot is set to t0 when it holds true that element_count = 0. Reconsidering the parameter
primaryTropism, which fixed the growth direction to the value of t0, rot must also set to t0 when
it is true (line 220). All other new created beam elements are linked to the predecessor. Thus the
angle must be set to the value from the previous one (line 223).

Primary growth is modeled in line 226-227 by creating a new finite element with its properties from
the argument list (line 205) and adding it to the array FiniteElements. Descriptively this array
can be seen as the branch. In order to model the secondary growth (radial thickening) for all beam
elements, except the one originated from the primary growth before, the function addLayer(. . .) is
called in a loop in line 230-232. As already mentioned homogeneous material distribution and
properties are supposed. That is why again the radii constant thickening parameter as well as the
density and Young’s modulus can be found as arguments for the function addLayer(. . .) in line 231.

Afterwards in line 235-238 space for the global stiffness matrix (see equation (2.92)) and
for the load vectors is reserved. It should be noted that the vector NodalLoadsExternal

is responsible for the load induced by self-weight, the vector NodalLoadsInternal for the
maturation strain and the vector NodalLoadsExtra for the additional weight. The size of
the global stiffness matrix depends on the current number of finite elements and is given by
6(element_count+ 1)× 6(element_count+ 1) (line 235).

The assembly procedure, in order to preserve the linear equation system, is carried out
according to the formulations (2.92)-(2.94) in a loop in line 241-264. For every finite element (line
242) the elementary stiffness matrix in its global form and the interconnection matrix Ce are
obtained by calling the appropriate function of this element (line 243-244). Following equation
(2.92) the global stiffness matrix Kn is assembled in the loop (line 247). Then the three components
(self-weight, maturation strain and extra load) for the vector ∆Fn (see equation (2.93)) are
calculated in line 250-263. Concerning the vector by matrix multiplication it is necessary to create a
row vector represented by the matrix A in line 251 to be able to build the product of the row vector
of the loads with the interconnection matrix C. This is done for all three load components (line 253,
258 and 263).

After exiting the loop all incremental load vectors are present in their global form. Thus
the linear equation system can be formulated and finally solved. A singular value decomposition
of the global stiffness matrix has been chosen in order to solve the linear equation system. That is
why in line 267 the global stiffness matrix is decomposed correspondingly. The solution vector
that contains all nodal displacement components is obtained in line 268. The argument vector in
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this linear equation system is the sum of the global incremental load vectors (line 268) calculated
in the loop before. After solving this system the vector Solution represents the increment in
displacements

(
∆q1 ∆q2 . . . ∆q6(element_count+1)

)
. It should be remembered that for a finite

element ei it is defined ∆qei =
(

∆q6i−5 ∆q6i−4 . . . ∆q6(i+1)

)
. It is also recommended to

reconsider figure 2.2 for the notation.

To update the whole structure it is required to apply the respective displacement solution
to the single finite elements. This is done in a loop in line 271-276. According to equation (2.90)
the displacement for the current finite element is extracted from the solution vector with the
help of the interconnection matrix (line 272-273). Afterwards the fourth entry of the vector ∆qe

is extracted because referring to figure 2.2 this component represents the incremental rotation
about the local y-axis. Since the rotation angle is the same regardless of whether global or local
coordinate system, it then instantly can be added to the property GlobalRotation, which was the
relative angle measured between the global z-axis and that of the finite element. When all growth
processes are finished (line 278) the curvature of the branch is translated into an array of rotation
angles in line 281-304.

Since there is the possibility for interpolation by the variable n_GU it is necessary to de-
fine the domain and codomain for the resulting rotation angles. Both are denoted by the arrays
angles and range (line 281-282). In the loop in line 284-288 the rotation angles are extracted from
the finite elements (line 286). Let [0, 1] be the codomain and let ang(i) be the function that returns
the i-th roation angle. Then the simple mapping function ang(i) 7→ i

n_FE−1 defines the codomain
constructed in line 287. The Akima spline interpolation has been used to interpolate between the
rotation angles. The interpolation function is defined in line 291-292. Line 295 considers the fact
that the number of growth units must not be less than the number of finite elements.

The n_GU -sized solution array is defined in line 297. Since the array of rotation angles is
supposed to be differential, that means each item in the list only is the rotational difference to its
predecessor, the help variable prev is defined in line 298. Finally with the help of the interpolation
function the rotation angles are obtained in the loop in line 300-304. At the end the curvature of
the branch represented by an array of rotation angles is returned in line 306.



Chapter 4

Application in three tree models

In this chapter the algorithms developed in chapter 3 are individually applied to three tree models
which have been implemented before: a spruce, a beech and a sympodial tree. The original source
codes for the spruce and the beech tree can be found in [13] and [1, pp. 317-326]. The model
for the sympodial tree was taken from the example section of the GroIMP software ( [14]). The
differences to the original tree model and the adaptation steps needed in order to apply the branch
bending behavior to the tree models are documented. Since tree branches can be seen as ramified
structures the successively occurring gain in mass through ramification is also considered. In order
to recognize the adaptation steps the code that is supplemented or modified is highlighted bold.

4.1 Spruce tree

4.1.1 Force-applying approximative method

This topic has been accomplished by the author in a previous work and can be found in [15][pp.
18-22].

4.1.2 Incremental finite element method

Source code:

1 module T;

2 module M1;

3 module S1;

4 module M2;

5 module S2;

6 module M3;

7 module S3;

44
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8 module GU(float incd, int age, float diameter, float length, int order) {

9 double init_rot = 0.0;

10 double[] angles;

11 float volume() {

12 return Math.PI * diameter * diameter * 0.25 * length;

13 };

14 };

15 module GUS(float incd, int age, float diameter, float length) extends F0;

16 module BA(int age, super.angle) extends RL(angle);

17 module GA(int age, super.angle) extends RL(angle);

18 module HA(int age, super.angle) extends RL(angle);

19
20 module ROT(super.angle) extends RL(angle);

21 module G(super.length, super.diameter) extends F(length, diameter);

22 const int ang = 45;

23 const int x3 = 0;

24 //const int[] a = { 0, 15, 25, 32, 37, 40 };

25 const int[] gg = { 0, 0, 4 };

26 const int[] hh = { 0, 0, 2, 4, 8 };

27 int n, k;

28 const float[] prob_n = {0.1, 0.4, 0.3, 0.2};

29 const int[] n_subap = {5, 6, 7, 8};

30
31 const int n_FE = 20;

32 int n_GU = 200;

33 double t0 = 100;

34 double rho = 2.0;

35 double E = 70000;

36 double grav = 9.81;

37 const double rad = 180.0/Math.PI;

38 double sigma = 0.0;

39 double phi = 60;

40 double a = -200.0;

41 double b = 2000.0;

42 boolean primaryTropism = true;

43
44 public void grow() {

45 [

46
47 Axiom ==> P(2) D(1) L(100) T;

48
49 x:T ==> Nl(80*TurtleState.length(x)) GUS(2.2, 0, TurtleState.diameter(x), TurtleState.

length(x))

50 RH(random(0, 360)) { k = 0; }

51 for ((1:3))

52 ( [ MRel(random(0.2, 0.85)) RH(k*120+normal(0, 5.5))

53 { k++; } RL(x3+normal(0, 2.2)) BA(0, 0) LMul(0.4) M1 ] )

54 RH(random(0, 360)) { n = n_subap[distribution(prob_n)]; k = 0; }

55 for ((1:n))



CHAPTER 4. APPLICATION IN THREE TREE MODELS 46

56 ( [ MRel(random(0.85, 1)) RH(k*360/n+normal(0, 3.1))

57 { k++; } RL(x3+normal(0, 2.2)) BA(0, 0) LMul(0.65) S1 ] )

58 T;

59 x:S1 ==> Nl(80*TurtleState.length(x)) GU(1.3, 0, TurtleState.diameter(x), TurtleState.

length(x),1)

60 [ MRel(random(0.85, 1)) RH(15)

61 RU(ang+normal(0, 2.2)) AdjustLU LMul(0.7) S2 ]

62 [ MRel(random(0.85, 1)) RH(-15)

63 RU(-ang+normal(0, 2.2)) AdjustLU LMul(0.7) S2 ] GA(0, 0) S1;

64 x:M1 ==> Nl(80*TurtleState.length(x)) GU(0.8, 0, TurtleState.diameter(x), TurtleState.

length(x),1)

65 [ MRel(random(0.85, 1)) RH(15)

66 RU(ang+normal(0, 2.2)) AdjustLU LMul(0.7) M2 ]

67 [ MRel(random(0.85, 1)) RH(-15)

68 RU(-ang+normal(0, 2.2)) AdjustLU LMul(0.7) M2 ] HA(0, 0) M1;

69 x:S2 ==> Nl(80*TurtleState.length(x)) GU(1.3, 0, TurtleState.diameter(x), TurtleState.

length(x),2)

70 [ MRel(random(0.85, 1)) RH(10)

71 RU(ang) AdjustLU LMul(0.7) S3 ]

72 [ MRel(random(0.85, 1)) RH(-10)

73 RU(-ang) AdjustLU LMul(0.7) S3 ] S2;

74 x:M2 ==> Nl(80*TurtleState.length(x)) GU(0.8, 0, TurtleState.diameter(x), TurtleState.

length(x),2)

75 [ MRel(random(0.85, 1)) RH(10)

76 RU(ang) AdjustLU LMul(0.7) M3 ]

77 [ MRel(random(0.85, 1)) RH(-10)

78 RU(-ang) AdjustLU LMul(0.7) M3 ] M2;

79 x:S3 ==> Nl(80*TurtleState.length(x)) GU(1.3, 0, TurtleState.diameter(x), TurtleState.

length(x),3);

80 x:M3 ==> Nl(80*TurtleState.length(x)) GU(0.8, 0, TurtleState.diameter(x), TurtleState.

length(x),3);

81
82 x:GU(incd, a, d, l, o) ==> DlAdd(incd*(a+1)) GU(incd, a+1, TurtleState.diameter(x)+incd

*(a+1), l, o);

83 x:GUS(incd, a, d, l) ==> DlAdd(incd*(a+1)) GUS(incd, a+1, TurtleState.diameter(x)+incd*(

a+1), l);

84 DlAdd(arg) ==> ;

85
86 BA(age, angle) ==> BA(age+1, angle);

87 GA(age, angle) ==> GA(age+1, angle);

88 HA(age, angle) ==> HA(age+1, angle);

89
90 ]

91
92 erase();

93 derive();

94 for (int i=1; i<5; i++) {

95 replace(i);

96 derive();
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97 }

98 }

99
100 public void erase() {

101 [

102 G(a,b) ==> ;

103 ROT ==> ;

104 g:GU ::> {g[angles]= null;}

105 ]

106 }

107
108 public void replace(int order) {

109 [

110 x:GU, (x[order] == order) ==> x

111
112 {GU rootGU = selectWhere((* x (<--)* y:GU, (y[order] == x[order]) *), (1==count((*

y (<--)* z:GU, (z[order]==x[order]) *))));

113
114 GU[] branch = array((* rootGU (-->)* y:GU, (y[order] == rootGU[order]) *));

115
116 double branch_length = sum((* rootGU (-->)* y:GU, (y[order] == rootGU[order]) *)[

length]);

117 int GU_count = (int)count((* rootGU (-->)* y:GU, (y[order] == rootGU[order]) *));

118 double r_start = 0.5 * rootGU[diameter];

119 double r_end = 0.5 * branch[branch.length-1][diameter];

120 double Le = branch_length/n_FE;

121
122 double left = sum((* x (<--)+ y:GU, (y[order] == x[order]) *)[length]);

123 double start = (n_GU-1) * left/branch_length;

124 double end = (n_GU-1) * (left + x[length])/branch_length;

125
126 double[] extraLoads = new double[n_FE];

127 double ll = 0.0;

128
129 GU[] hn = new GU[2*GU_count];

130 int[] rel_hn_index = new int[2*GU_count];

131 int hn_count = 0;

132
133 for (int i = 0; i < branch.length; i++) {

134 GU gr = branch[i];

135 GU[] next_hn = array((* gr -minDescendants-> y:GU, (y[order] > rootGU[order])

*));

136 boolean branched = (next_hn.length != 0);

137 ll += gr.length;

138
139 if (branched) {

140 double extraVolume = 0.0;

141
142 for (int j = 0; j < next_hn.length; j++) {
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143 GU nb = next_hn[j];

144 hn[hn_count] = nb;

145 rel_hn_index[hn_count] = (int) ((n_GU-1)*ll/branch_length);

146 hn_count++;

147
148 extraVolume += sum((* nb (-->)* GU *).volume());

149 }

150
151 int index = (int) Math.ceil((n_FE-1)*ll/branch_length);

152
153 double weight = rho * extraVolume/(index+1);

154 for (int j = 0; j <= index; j++)

155 extraLoads[j] += weight;

156 }

157 }

158
159 double t0_;

160 if (x[order] == 1)

161 t0_ = t0;

162 else

163 t0_ = rootGU[init_rot];

164
165 double[] angles;

166 if (rootGU[angles] != null) {

167 angles = rootGU[angles];

168 } else {

169 angles = getRotationAngles(n_FE, n_GU, t0_, rho, (rootGU[age]+1)*E, grav, Le,

r_start, r_end, sigma, phi, a, b, primaryTropism, extraLoads);

170 rootGU[angles] = angles;

171 }

172
173 for (int i = 0; i < hn_count; i++) {

174 GU gru = hn[i];

175 double f = 0.0;

176 for (int j = 0; j <= rel_hn_index[i]; j++)

177 f += angles[j];

178 gru.init_rot = f;

179 }

180
181 double ring_increment = (r_start - r_end)/(n_GU-1);

182 double l = Le/((double)n_GU/n_FE);

183 }

184 if (left==0 && x[order] > 1) (

185 AdjustLU

186 ROT(-t0_)

187 )

188
189 for (int i = (int)start; i < end; i++) (

190 ROT(angles[i])
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191 G(l, 2*r_start - 2*i*ring_increment)

192 );

193 ]

194 }

The first thing necessary is the identification of the tree model’s growth units. The ones of
the spruce tree are named GU (line 8). They had inherited from the class F0, thus there were
no diameter and length information within the module GU but this information is needed
for the later replacement with the new growth units forming the branch’s curvature. That
is why the float parameters diameter and length have been added to the parameter list of
GU . The determination of the order of the growth units (hierarchic branch structure) is
accomplished by also adding the integer order (line 8) to the parameter list. Therefore in
all appearances of the module GU in the production rules from function grow() the order
information must be added. Moreover the heredity from the class F0 was deleted, because
GU now constitutes a control point, and the entirety of all control points represent and store
the structure information of the tree. Through this fact the control points of type GU can be
expanded with other properties that are needed for the later construction. The initial angle of
deflection must be stored in a GU control point as this information is an essential parameter for the
functionGetRotationAnglesFE(. . .). This property can be found in line 9 with the double init_rot.

Considering unnecessary recalculations it is useful to save the already calculated rotation
angles in a control point. This is carried out in line 10 with the array angles. By that when
replacing the part-wise GU sections there are no further calculations performed, it is needed not
more than using the present angles. For the successively occurring gain in branch mass there must
be a volume function for every control point. In line 11-13 such function can be witnessed.

A distinction between the tree’s stem and branch parts is necessary, because only the
branches are meant for bending. That is why in line 15 a module for the stem parts, named GUS,
can be found. This module is a full copy of GU but with the difference that GUS can not be ranked
and so does not hold the parameter order and furthermore it inherits from F0, thus possesses a
geometrical interpretation.

The growth units and rotation commands from the new branch need to be identified by
their own modules. Because of that in line 20-21 the modules ROT and G are defined. The module
separation is done for identification due to later applied production rules. The parameters for the
function GetRotationAnglesFE(. . .) can be found in line 31-42. The setting of these parameters
determines the amount of discretization, of interpolation and also the branch properties and by
that its bending behavior.

The growth function of the tree is defined in line 44-98 by grow(). In every production
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rule in line 49-83 all occurring GU statements were modified, due to the reason that the tree’s
replacement rules make use of turtle state changing commands (for example MRel or LMul).
Every time a GU control point is set, the turtle states for diameter and length need to be stored in
the module. The tree’s own branch bending mechanism in line 86-88 is abrogated.

Since relational growth grammars are parallel graph replacement systems, there is a need
for a sequential rule application. Thus the functions replace(. . .) (line 108-194) and erase() (line
100-105) separate the different replacement rules, for later sequential invocation. The function
erase() deletes all ROT rotation commands and G growth units. Furthermore for all GU control
points it sets the array of rotation angles to null. This is needed because the tree grows in every
derivation step, thus the branches also need to be updated with a completely new construction.

The function replace(. . .) replaces the original branch growth units by the new ones with
the rotation angles in between constituting the branch’s curvature. This function also contains a
dependency on the branch order. That means only the branches of the specified order are replaced.
This construction pays attention to the later considered implementation of the gain in branch
mass while growing. Having defined functions of that kind after the tree’s production rules the
functions erase() and replace(. . .) can be invoked (line 92-97). The replacement function must be
called in the loop in line 94-97 for all possible ramification orders due to the mentioned reason of
gain in branch mass. The XL function derive() applies all remaining productions to the current
graph and hence ensures the sequential execution of the functions containing the replacement
rules. The function replace(. . .) does only contain one production rule. This rule (line 110-192)
replaces all nodes of type GU with the specified order.

Since the GU nodes represent the control points and all of them constitute the branch
structure they must be sustained (line 110). The graph query in line 112 determines the root
growth unit, which is the most left one having the same order. Starting from the root growth unit
it is possible to obtain all control points which determine the structural branch information. This is
done with the graph query in line 114. Afterwards other branch information like its length or radii
are gathered again by the use of graph queries (line 116-119). The length of the finite elements is
defined in line 120 depending on the length of the branch and the number of finite elements set by
the user. The variable left (line 122) represents the leftward length of the branch measured from
the current control point. It is needed as a position information for the part-wise replacement
of the control points with the matching branch section. That is why in line 123-124 the index
variables start and end determine the range of rotation angles matching the relative control point
position and length.

The additional branch mass that comes from ramification is calculated in line 126-157.
The array extraLoads corresponds to the extra load that can be added to every finite element.



CHAPTER 4. APPLICATION IN THREE TREE MODELS 51

The array hn (line 129) picks up all first successor control points with a higher order and the
array rel_hn_index (line 130) the indices, regarding the new growth unit number, where the
ramification takes place. The integer hn_count (line 131) counts the number of ramification
events. To examine where ramification occurs the loop in line 133-157 runs through all control
points of the branch. The graph query in line 135 generates an array with all higher order
possessing control points. If this array is empty at this position the branch is not branched.
This is expressed by the boolean in line 136. If branched it is necessary to iterate over all
following control points after the ramification positions in order to calculate the additional
weight. A variable considering the volume increase is initialized in line 140. After that in
line 143-146 the array hn is supplemented with the new ramification control points. The
volume which is obtained by graph queries is added in line 148. Considering the density the en-
tries for the vector carrying the additional loads for the finite elements then can be set (line 151-156).

For the calculations in line 159-163 the initial angle of deflection is determined. This an-
gle t0 is only valid for branches of the first order but the side branches’ initial angle of deflection
depends on the orientation of their predecessor growth unit. That is why these angles are
maintained in line 173-179 using the present array hn of successor control points with higher
orders. The mentioned way to prevent unnecessary recalculations can be found in line 165-171. In
the case when the root growth unit contains angles then these are used, otherwise (line 169-170)
the angles are calculated with the appropriate arguments and then stored in the root growth units
for further utilization.

In line 181-182 the values for the radial thickening and the length of a new growth unit
are defined. The condition (left == 0 && x[order] > 1) in line 184 is for the case when the root
growth unit of a side branch is replaced. Then the turtle’s position needs to be corrected, so that
the gravity vector always is identical to the vertical axis and the new growth units are spatially
placed correctly. Afterwards in line 189-192 within the indices range start and end, defined in line
123-124, the rotations are performed and the new growth units are set.

4.2 Beech tree

4.2.1 Force-applying approximative method

This topic has been accomplished by the author in a previous work and can be found in [15][pp.
25-30].
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4.2.2 Incremental finite element method

Source code:

1 [...]

2
3 @de.grogra.xl.lang.ImplicitDoubleToFloat

4 public class BeechModel extends RGG// implements TreeModel

5 {

6 module ROT(super.angle) extends RL(angle);

7 module G(super.length, super.diameter) extends F(length, diameter).(setShader(

branchShader));

8
9 const int n_FE = 20;

10 int n_GU = 100;

11 double rho = 2.0;

12 double E = 300;

13 double grav = 9.81;

14 const double rad = 180.0/Math.PI;

15 double sigma = 0.0;

16 double phi = 60;

17 double a = -200.0;

18 double b = 2000.0;

19 boolean primaryTropism = false;

20
21 const boolean USE_RADIATION = true;

22
23 const Shader leafShader = shader("Beech leaf");

24 const Shader stemShader = shader("Beech stem");

25 const Shader branchShader = shader("Beech branch");

26
27 [...]

28
29 module Organ(super.length, int order, boolean isInternode) extends Cylinder(length,

0.0001)

30 {

31 float len = length;

32 double angles[];

33 double init_rot = 0.0;

34 { if (isInternode && order > 0)

35 length = 0;

36 };

37 float allocatedCarbon;

38 float producedCarbon;

39 float exportedCarbon;

40
41 @Editable

42 public float preference = 1;

43
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44 float volume()

45 {

46 return Math.PI * radius * radius * len;

47 }

48
49 float maintenanceRespiration() // mol CO2 in current year

50 {

51 return 3600 * 24 * 365 * MAINTENANCE_RESPIRATION * 2 * Math.PI

52 * radius * len;

53 }

54
55 void transportCarbon(float imported, float prod, float above)

56 {

57 imported += prod;

58 above += prod;

59 float q = radius / 0.0025;

60 float ex = imported * Math.exp(-0.7 * len * (1 + q) / q);

61 this[allocatedCarbon] = imported - ex;

62 this[exportedCarbon] = ex;

63 this[producedCarbon] = above;

64 }

65
66 void grow(float distributedCarbon)

67 {

68 float input = allocatedCarbon + distributedCarbon;

69 float mr = maintenanceRespiration();

70 float c = input - mr;

71 if (c >= 0)

72 {

73 float m = c * (GROWTH_RESPIRATION_FRACTION * C_MASS / C_FRACTION);

74 this[radius] = Math.sqrt(this[radius]**2 + m/(DENSITY*Math.PI*len));

75 }

76 this[mark] = (order > 0) && (c < 0);

77 }

78 [...]

79 }

80
81 [...]

82
83 module Internode(super.length, super.order) extends Organ(length,order,true)

84 .(setShader((order==0) ? stemShader : branchShader))

85 {

86 {setScaleV(true);setLayer(8);}

87 }

88
89 [...]

90
91 public void step ()

92 {
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93 radiation.compute();

94 transportCarbon();

95 distributeCarbon();

96 [

97 o:Organ, (o[mark]) ==>> ;

98 BeechLeaf ==>> ;

99 ]

100 // sun = direction(graph().getNodeForName("Sun"));

101 grow();

102
103 erase();

104 derive();

105 for (int i=1; i<4; i++) {

106 replace(i);

107 derive();

108 }

109 }

110
111 [...]

112
113 protected void grow ()

114 [

115 b:Bud(o, v, s,,, t) ==>

116 {

117 [...]

118 }

119 for (int i : (1 : count))

120 (

121 {

122 int sign = s * (1 - (i&1)*2);

123 boolean terminal = i == count;

124 float q = ((float) i / count) ** VIT_POWER_0;

125 float vit = Math.max(v * VIT_A * q / (1 + VIT_B * q), VIT_MIN);

126 }

127 x:Internode(createShort ? 0.002 : lenDist[i-1]*len, o)

128
129 RU(sign * t.axisAngle(o))

130 //RH(t.twist(o))

131 [...]

132 );

133 ]

134
135 [...]

136
137 public void erase() {

138 [

139 G(a,b) ==> ;

140 ROT ==> ;

141 g:Internode ::> {g[angles]= null;}
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142 ]

143 }

144
145 public void replace(int order) {

146 [

147 x:Internode, (x[order] == order) ==> x

148
149 {Internode rootGU = selectWhere((* x (<--)* y:Internode, (y[order] == x[order]) *)

, (1==count((* y (<--)* z:Internode, (z[order]==x[order]) *))));

150
151 Internode[] branch = array((* rootGU (-->)* y:Internode, (y[order] == rootGU[order

]) *));

152
153 double branch_length = sum((* rootGU (-->)* y:Internode, (y[order] == rootGU[order

]) *)[len]);

154 int Internode_count = (int)count((* rootGU (-->)* y:Internode, (y[order] == rootGU

[order]) *));

155 double r_start = rootGU[radius];

156 double r_end = branch[branch.length-1][radius];

157 double Le = branch_length/n_FE;

158
159 double left = sum((* x (<--)+ y:Internode, (y[order] == x[order]) *)[len]);

160 double start = (n_GU-1) * left/branch_length;

161 double end = (n_GU-1) * (left + x[len])/branch_length;

162
163 double[] extraLoads = new double[n_FE];

164 double ll = 0.0;

165
166 Internode[] hn = new Internode[2*Internode_count];

167 int[] rel_hn_index = new int[2*Internode_count];

168 int hn_count = 0;

169
170 for (int i = 0; i < branch.length; i++) {

171 Internode gr = branch[i];

172 Internode[] next_hn = array((* gr -minDescendants-> y:Internode, (y[order] >

rootGU[order]) *));

173 boolean branched = (next_hn.length != 0);

174 ll += gr.len;

175
176 if (branched) {

177 double extraVolume = 0.0;

178
179 for (int j = 0; j < next_hn.length; j++) {

180 Internode nb = next_hn[j];

181 hn[hn_count] = nb;

182 rel_hn_index[hn_count] = (int) ((n_GU-1)*ll/branch_length);

183 hn_count++;

184
185 extraVolume += sum((* nb (-->)* Internode *).volume());
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186 }

187
188 int index = (int) Math.ceil((n_FE-1)*ll/branch_length);

189
190 double weight = rho * extraVolume/(index+post+1);

191 for (int j = 0; j <= (index+post); j++)

192 extraLoads[j] += weight;

193 }

194 }

195
196 double t0_;

197 if (x[order] == 1) {

198 RL[] a = array((* rootGU -ancestor-> RL *));

199 t0_ = a[0].angle;

200 } else {

201 t0_ = rootGU[init_rot];

202 }

203
204 double[] angles;

205 if (rootGU[angles] != null) {

206 angles = rootGU[angles];

207 } else {

208 angles = getRotationAngles(n_FE, n_GU, t0_, rho, E, grav, Le, r_start, r_end,

sigma, phi, a, b, primaryTropism, extraLoads);

209 rootGU[angles] = angles;

210 }

211
212 for (int i = 0; i < hn_count; i++) {

213 Internode g = hn[i];

214 double f = 0.0;

215 for (int j = 0; j <= rel_hn_index[i]; j++)

216 f += angles[j];

217 g.init_rot = f;

218 }

219
220 double ring_increment = (r_start - r_end)/(n_GU-1);

221 double l = Le/((double)n_GU/n_FE);

222
223 }

224 if (left==0) (

225 AdjustLU

226 ROT(-t0_)

227 )

228
229 for (int i = (int)start; i < end; i++) (

230 ROT(angles[i])

231 G(l, 2*r_start - 2*i*ring_increment)

232 );

233 ]
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234 }

235 }

On account of a complex construction, we limit the source code to the necessary and modified
parts. Code that is not shown is replaced by a [. . .] statement. The module definitions for the
rotation command and growth units can be found in line 6-7. The setShader(branchShader)
statement (line 7) sets the surface coloring of the branch parts. This is done because the original
growth units came up with this coloring and it is not supposed to change.

In line 9-19 the parameters for the branches can be found. The original growth unit of
this beech tree is the module Internode (line 83-87). It inherits from the module Organ (29-79). On
account of the already existing distinguishable module for the growth units, there is no need for
the GU module. Besides, the identification of the stem does not need a separate module. It can
be done with the help of the parameter order (line 83). When order equals zero, it is a growth
unit of the stem. However, the parent class Organ itself contains the geometric interpretation by
inheriting from the class Cylinder. This is the reason why it is not possible to cut the inheritance
from Organ in the module Internode, to make the nodes of type Internode invisible.

The solution for this problem is the additional boolean parameter isInternode in the defi-
nition (line 29). When Internode inherits from Organ, this parameter must be set to true. Now
in the mother class Organ the length of this shape, a cylinder, can be set to zero, when it is of
type Internode and also not a stem part, hence having an order greater than zero (line 34-36).
Furthermore we need a copy of the length parameter, owing to the fact that this parameter is
needed for the internal functions volume(), maintenanceRespiration(), transportCarbon() and
grow() and thus can not be simply set to zero. This duty is done by the float len (line 31), a full
copy of length. All appearances of length must be replaced by len (line 46, 52, 60, 74). In the parent
class of Internode, the module Organ, the properties for the initial angle of deflection and for
the rotation angles have been added in line 32-33 due to the same reason as in the spruce tree:
maintaining the right branch construction details and avoiding unnecessary recalculations.

The function for the tree’s growing step (line 91-109) is enriched by the invocations of the
functions erase() and replace(. . .) in order to replace the current branch construction by first
deleting the old growth units and then replacing the control points with the growth units of
the new branch. The XL function derive() (line 104,107) applies all remaining productions to
the current graph and hence it ensures the sequential execution of the functions containing the
replacement rules. Like in the spruce tree the function replace(. . .) again has a dependency on the
branch order due to the replacement rule and successively occurring gain in branch mass caused
by ramification. That’s why this function is called in a loop in line 105-108.

The beech tree’s internal vertical branch rotations are commented out (line 130) in the
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function grow(), because the bending is only supposed to be determined by our new model. The
definition of the function erase() is identical to the one from the spruce tree. The same nearly
holds true for the function replace(. . .), because both functions rely on the same train of thoughts.
Therefore just marginal changes need to be carried out. The module for the control points is,
like mentioned, of type Internode. Because of that all appearances of GU need to be replaced
by Internode. Due to the fact that stem parts also are of type Internode this may be seen as a
problem. But the function replace(. . .) is only called for order ≥ 1 and because stem parts possess
order zero there is no identification problem.

Another difference is the definition of the variables r_start and r_end (line 155-156). The
module Internode makes use of radii whereas GU uses diameters. That is why in the spruce tree
they had been divided by two. Furthermore the last adaptation point comes from the circumstance
that for the beech tree a general initial angle of deflection can not be given. Owing to the fact
that this tree contains some random stochastic behavior, the angle just can be gained from the
tree structure itself. On this account in line 198 a graph query obtains this angle by getting the
argument of the first RL rotation command before the root growth unit, which is equivalent to the
initial angle of deflection.

4.3 Sympodial tree

4.3.1 Force-applying approximative method

This topic has been accomplished by the author in a previous work and can be found in [15][pp.
22-25].

4.3.2 Incremental finite element method

Source code:

1 module A(float l, float w);

2 module B(float l, float w, int o);

3
4 module GU(float length, float diameter, int order)

5 {

6 double init_rot = 0.0;

7 float volume() {

8 return Math.PI * diameter * diameter * 0.25 * length;

9 };

10 };

11 module GUS(super.length, super.diameter) extends F(length, diameter);

12 module ROT(super.angle) extends RL(angle);



CHAPTER 4. APPLICATION IN THREE TREE MODELS 59

13 module G(super.length, super.diameter) extends F(length, diameter);

14
15 const float r1 = 0.9f;

16 const float r2 = 0.8f;

17 const float a1 = 30;

18 const float a2 = 30;

19 const float wr = 0.707f;

20
21 protected void init()

22 [

23 Axiom ==> A(1, 0.1f);

24 ]

25
26 const int n_FE = 15;

27 int n_GU = n_FE;

28 double t0 = a1;

29 double rho = 2.0;

30 double E = 20;

31 double grav = 9.81;

32 const double rad = 180.0/Math.PI;

33 double sigma = 0.0;

34 double phi = 60;

35 double a = -200.0;

36 double b = 2000.0;

37 boolean primaryTropism = false;

38
39 public void grow() {

40 [

41 A(l,w) ==> GUS(l,w) [B(l*r1, w*wr,1)]

42 RH(180) [B(l*r2, w*wr,1)];

43
44 B(l,w,o) ==> GU(l,w,o) [RU(-a1) AdjustLU B(l*r1, w*wr,o+1)]

45 [RU(a2) AdjustLU B(l*r2, w*wr,o+1)];

46 ]

47 erase();

48 derive();

49 for (int i=1; i<10; i++) {

50 replace(i);

51 derive();

52 }

53 }

54
55 public void erase() {

56 [

57 G(a,b) ==> ;

58 ROT ==> ;

59 ]

60 }

61
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62 public void replace(int order) {

63 [

64 x:GU, (x[order] == order) ==> x

65
66 {double r_start = 0.5 * x[diameter];

67 double r_end = r_start;

68 double Le = x[length]/n_FE;

69
70 double[] extraLoads = new double[n_FE];

71
72 double extraVolume = sum((* x (-->)+ GU *).volume());

73 double weight = rho * extraVolume/n_FE;

74 for (int j = 0; j < n_FE; j++)

75 extraLoads[j] += weight;

76
77 double _t0 = (x[order] == 1 ? t0 : x[init_rot]);

78
79 double[] angles = getRotationAngles(n_FE, n_GU, _t0, rho, E, grav, Le, r_start,

r_end, sigma, phi, a, b, primaryTropism, extraLoads);

80
81 GU[] higher_neighbours = array((* x -minDescendants-> y:GU, (y[order] > x[order])

*));

82 for (int i = 0; i < higher_neighbours.length; i++) {

83 GU g = higher_neighbours[i];

84 double f = 0.0;

85 for (int j = 0; j < n_GU; j++)

86 f += angles[j];

87 g.init_rot = f;

88 }

89
90 double ring_increment = 2*(r_start - r_end)/(n_GU-1);

91 double l = Le/((double)n_GU/n_FE);

92
93 }

94 if (x[order] > 1) (

95 AdjustLU

96 ROT(-_t0)

97 )

98
99 for (int i = 0; i < n_GU; i++) (

100 ROT(angles[i])

101 G(l, 2*r_start - i*ring_increment)

102 );

103 ]

104 }

Like in the spruce tree there are 4 module definitions needed: one for the control points (old
growth units), the stem parts and for the new rotation commands and growth units. This has
been carried out in line 4-13. Again the parameter order has been added to the parameter list of
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the control points. Hence the module B, which is the module that models the tree’s growth (line
44-45), also needs the addition of the parameter order. Furthermore a property that is used to store
the initial angle of deflection and a volume function is supplemented. Due to a binary ramification
behavior of the sympodial tree it is not required to also add an array for the rotation angles,
because every control point in this tree corresponds to an own branch. In line 26-37 the parameters
for the branches can be found. The appearances of GU statements in the production rule of the
tree’s growth function grow() (line 39-53) then need to be replenished with the order information
(line 44). The function furthermore is enriched by the invocations of the common functions erase()
and replace(. . .) in order to replace the current branch construction by first deleting the old growth
units and then replacing the control points with the growth units of the new branch.

The XL function derive() (line 104,107) applies all remaining productions to the current
graph and hence it ensures the sequential execution of the functions containing the replacement
rules. Like in all other trees the function replace(. . .) again has a dependency on the branch order
due to the replacement rule and successively occurring gain in branch mass caused by ramification.
That’s why this function is called in a loop in line 49-52. In comparison to the replacement function
of the other trees the one for the sympodial tree can be simplified. In line 66-68 the radii and the
lengths of the finite elements are calculated. The extra load vector in composed in line 70-75 by
just using graph queries to obtain the volume of all successor control points (line 72), multiplying
it with the density (line 73) and finally constructing the vector by distributing the load (line 74-75).

After the determination of the initial angle of deflection (line 77) the function
GetRotationAnglesFE(. . .) can be called to get the rotation angles, as they determine the
branch’s curvature. In line 81-88 the information of the initial angle of deflection for all following
control points, that will be replaced afterwards, is maintained by setting the property init_rot. At
the end the radius and length of the new growth units is calculated (line 90-91). In the case when
not the first control point is replaced, identified by the condition order > 1 (line 94), the turtle’s
orientation must be corrected. After that the final new branch, bending under its self-weight, is
put together in line 99-102.



Chapter 5

Phenotype differences

In this chapter the analysis of phenotype differences between the results of the two algorithms
is carried out. The working basis is a branch with constant order 1. Since the two methods
rely on several different parameters it is necessary to determine the relationship between them
and also to define transformations. This is done in order to obtain an equivalent working basis
formulation. This mainly is important for the elasticity behavior of both methods. As a convention
the parameters of the approximative method shall be given by the matching parameters from the
finite element method. The first difference applicable is that the approximative method does not
contain radii information. This information is included in the construction of the parameter K0.
The only time this information is needed is the conicity parameter coni. But this problem is solved
by the application of the definition from (2.19):

coni = 1− r_end
r_start

. (5.1)

The branch’s length information and some others also seem to be missing but they are also included
in the K0 parameter. That is why K0 is defined like in equation (2.9). Through this definition it
already contains the parameters defining the radius, length, density, gravity or Young’s modulus.
Thus K0 can be calculated as:

(K0)2 := 2
F

EI
=⇒ K0 =

√
2
F

EI
=

√
2
grav ∗ rho ∗ π ∗ n_FE ∗ Le ∗ r_start2

E π∗r_start4
4

(5.2)

For examining phenotype differences it is necessary to possess an indicator to express these.
For this purpose the minimal difference between a fixed position on the branch built from the
approximative algorithm and the one from the finite element algorithm has been measured. Due
to the fact that the approximative algorithm does not contain any interpolation possibilities, the
discretization given by the parameter disc is equal to the number of fixed positions where the
difference is measured. For the following the function measuring this difference will be called

62



CHAPTER 5. PHENOTYPE DIFFERENCES 63

dmin. For the interpolation between the values in order to be able to calculate an overall error by
an integrative function, the function dmin must be expanded to intermediate values. That is why it
holds true that i ∈ R. Let dmin be defined by:

dmin(i) =



min ( δ ((xappi |y
app
i ), B)) for i ∈ {1; 2; . . . ; disc+ 1}

min
(
δ
(

(xappbic |y
app
bic ), B

))
+
[
min

(
δ
(

(xappdie |y
app
die ), B

))
−min

(
δ
(

(xappbic |y
app
bic ), B

))]
(i− bic) else

(5.3)

Where (xappi |y
app
i ) ∈ A. The set of points

A :=
{

(xapp1 |yapp1 ); (xapp2 |yapp2 ); . . . ; (xappdisc+1|y
app
disc+1)

}
(5.4)

constitutes the branch built by the approximative algorithm and

B :=
{

(xFE1 |yFE1 ); (xFE2 |yFE2 ); . . . ; (xFEn_GU |yFEn_GU )
}

(5.5)

the branch built by the finite element algorithm. The distance function δ is defined by

δ ((xappi |y
app
i ), B) :=

{√
(xFE1 − xappi )2 + (yFE1 − yappi )2 ;

√
(xFE2 − xappi )2 + (yFE2 − yappi )2 ;

. . . ;
√

(xFEn_GU − x
app
i )2 + (yFEn_GU − y

app
i )2

}
. (5.6)

Where i ∈ {1; 2; . . . ; disc+ 1}. Finally the error function error, that gives a dimension-less value
as an indicator for the phenotype difference. It can be defined as

error =

∫ disc+1

1

dmin(i) di . (5.7)

Owning the function dmin it is possible to examine where the phenotype differences occur for a
fixed setting. The function error furthermore makes it possible to find out the error dependency
of a certain parameter by traveling through various parameter ranges. Both subjects will be
addressed in the following. Considering the amount of possible parameter settings only the main
results from these examinations are shown.
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5.1 Parameter E

The parameter E which is the elasticity constant, the Young’s modulus, was examined in a range
of 50.0 ≤ E ≤ 100000.0. It was found that for the range of 500.0 ≤ E ≤ 6000.0 and for small initial
angles of deflection in the range 0.0 ≤ t0 ≤ 40.0 the main error occurred. Figure 5.1 shows the
application of the function dmin for the setting E = 800.0 and t0 = 20.0. What can be recognized
is that the branches grow apart. The strength of this behavior slightly decreases until reaching
E = 6000. Over and below this range the values for the differences were much lower, but also
dependent on the initial angle of deflection.

For values of E ≤ 500.0 the overall error was much less than in the mid range defined
before. This can be seen in figure 5.2 which plots the function error. Nevertheless for deflection
angles of t0 ≤ 20.0 in the lower elasticity ranges it was again high. But afterwards it is significantly
lower than the error occurring in the mid range 500.0 ≤ E ≤ 6000.0. It must be noted that not all
settings provided reasonable calculation results.

For a value E < 80.0 the finite element algorithm failed to do so. Thus in that case the
phenotype difference data had to be discarded. Another interesting consideration is the elasticity
of the branch’s first sections: The bending of the branch built by the approximative algorithm is
less than the one from the finite element method. That is one reason for the higher overall stiffness
of the branch built by the finite element algorithm. For all examinations it holds true that the
overall error was zero for the angle t0 = 180.0, which means the branch points strictly downwards.
That is the only setting where a perfect matching of both branches could be achieved. Generally
with rising growth unit id, the minimum difference also rises. But the intensity of this feature
decreases with rising initial angle of deflection. This effect can be clearly seen in figure 5.3.

Another very interesting result is that in figure 5.2 some discontinuities are visible at
t0 = 103.0 and t0 = 142.0. The reason for this is that the approximative method’s different
calculation ways can be seen. When passing a certain limit the angle of the overall de-
formation is calculated differently and as a result the branch curvature changes. By that the
overall difference (error) also changes because the finite elements calculation are totally continuous.

Contrary to the behavior below E ≤ 6000.0, for values E > 6000.0 the error is lower at
the edges of the angle domain. This can be seen in figure 5.4. The minimum difference like in all
other settings again increased with the growth unit’s id (see again figure 5.1).
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Figure 5.1: Minimum distance, E=800.0, t0=20.0

Figure 5.2: Overall error, E=200.0
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Figure 5.3: Overall error, E=1250.0

Figure 5.4: Overall error, E=10000.0
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5.2 Parameter grav

The parameter grav is the gravity constant. It has been examined in the range 0.0 ≤ grav ≤ 12.0.
As this constant sets the rate of force that acts along the branch, the parameter for the density rho
has equivalent behavior as the parameter grav. Because of that the results for the examination of
the parameter rho are equivalent. For zero gravity both algorithms deliver the same result. Thus
there is no error.

Considering the error evolution with rising gravity the error decreases for nearly the whole
domain of deflection angles. The highest errors occur with low gravity grav < 5.0 and deflection
angles of less than 40.0◦. Outside this range and especially for t0 > 20.0 the errors are within
acceptable ranges. An example can be found in figure 5.5.

Considering the minimum distance as an indicator where these differences appear, it is
visible that like in the elasticity study the branches grow apart for angles t0 < 80.0. Depending on
the value of gravity the branches intersect at some point for deflection angles t0 ≥ 90.0. The higher
the gravity the earlier the intersection takes place. This phenomenon can be seen in the comparison
of figure 5.6 and 5.7. The minimum at the growth unit with the id 42, which is the intersection
point, is shifted to the one with id 24. Like in the examination before some discontinuities are
present as well, due to the mentioned reasons.

As a general rule the differences and errors drop with rising deflection angles. The rate
of this development increases with the gravity. But the maximum error does not change at all. It
remains high in the low deflection angle ranges. Nevertheless an additional slight increase can be
noticed after a certain angle of deflection (for example in figure 5.5 from t0 > 50). But this effect is
so small that it does not put the general statement into doubts.
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Figure 5.5: Overall error, grav=10.0

Figure 5.6: Minimum distance, grav=7.0, t0=90.0
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Figure 5.7: Minimum distance, grav=9.0, t0=90.0

5.3 Parameter r_start

The parameter r_start is the base radius of the branch. Due to the reason that the conicity
parameter coni forbids the start radius to be less than the end radius, a constant radius is supposed
for the examination. That means r_end = r_start and coni = 0. The parameter has been examined
in the range 0.01 ≤ r_start ≤ 0.1. Like the parameter for the gravity grav and the density rho the
parameter r_start is also supposed to be responsible for the branch weight. On this account it is
obvious that a similar behavior is expected. However this is not exactly what is happening.

Within the range 0.01 ≤ r_start ≤ 0.02 in the front part of the branch an intersection be-
tween both simulated shapes occurs. An example for an occurrence can be found in figure 5.8 at
the growth unit id 15. The uneven appearance of the curve is due to the reason that through the
little diameter the stiffness is very low and by that the finite elements branch’s curvature, which
points downwards, is wavy.

As a similarity to the other examinations the overall error slightly decreases with rising
radius. That even holds true for the maximum error, which was not the case for the gravity
parameter. For all examinations it holds true that the overall error is zero for the angle t0 = 180.0,
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which means the branch points strictly downwards. What is very interesting and contrary to
the presumption is the evolution of where the errors take place. This development follows the
elasticity and not the density or gravity behavior. An instance of this fact is visible in figure 5.9.
The discontinuities again can be explained by the different calculation ways in the approximative
algorithm.

For r_start ≥ 0.03 the branches do not intersect anymore. The minimum distance curve
follows the trend of increasing distance for the growth units with the effect that the branches grow
apart. This can be seen in figure 5.10. Nevertheless the overall error decreases with rising radius as
stiffening and thus less bending happens to the branches.

Figure 5.8: Minimum distance, r_start=0.01, t0=70.0
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Figure 5.9: Overall error, r_start=0.07

Figure 5.10: Minimum distance, r_start=0.06, t0=150.0
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5.4 Parameter r_end

The parameter r_end is the tip radius of the branch. The parameter has been examined in the
range 0.01 ≤ r_end ≤ 0.1. By fixing the parameter r_start = 0.1, the maximum of the examination
range, the conicity behavior of both models can be compared. As stated before the parameter coni
yields the branch’s radii information.

For values r_end < 0.02 the branches massively grow apart (see figure 5.11). The one
built from the finite element algorithm points straightly upwards and the one from the approxima-
tive algorithm straightly downwards. Of all examined parameters these differences and errors are
the highest ones measured. So due to the different approaches and assumptions for the algorithms
in case of high conicity both deliver completely different results. Nevertheless with rising radii
this tendency decreases. An example plot for the error dependency on the deflection angle can be
found in figure 5.12.

Passing r_end ≥ 0.03 the branches’ growth occurs in the same direction and as a result
the error rate drops as radius increase leads to stiffening of the branch built by the finite element
algorithm. For all examinations it holds true that the overall error is zero for the angle t0 = 180.0,
which means the branch points strictly downwards.

Considering low conicities, that means 0.06 ≤ r_end < 0.1, the overall error is about 8
times less than for high conicities. Again some discontinuities are visible for r_end ≥ 0.04 by the
already mentioned reasons. This can be seen in figure 5.13.
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Figure 5.11: Minimum distance, r_end=0.01, t0=150.0

Figure 5.12: Overall error, r_end=0.01



CHAPTER 5. PHENOTYPE DIFFERENCES 74

Figure 5.13: Overall error, r_end=0.08

5.5 Parameter p versus parameter primaryTropism

The parameter p from the approximative method is the relative point where the branch starts to
invert the bending direction with the meaning of phototropism. The parameter primaryTropism
from the finite element method is a switch to fix the growth direction of the branch to the value of
the initial angle of deflection.

The examination wants to find if p = 0.5 is comparable to primaryTropism = true. The
first thing noticeable is that the way the branches bend is equivalent. What is different is the
amplitude of this behavior. The finite element method’s branch has much less curvature and the
overall stiffness is higher. Furthermore the start and end directions of the branches also differ: The
branches again grow apart (see figure 5.14). However this effect decreases with rising deflection
angle. That can clearly be recognized in figure 5.15.

Identical to all other examinations is that for t0 ≥ 90 the errors and differences are within an
acceptable range though. Furthermore it holds true that the overall error is zero for the angle
t0 = 180.0, which means the branch points strictly downwards. Finally it must be stated that the
parameter p can compete with primaryTropism given the right selection of the initial deflection
angle.
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Figure 5.14: Minimum distance, t0=90.0, p=0.5, primaryTropism = true

Figure 5.15: Overall error, p=0.5, primaryTropism = true



Chapter 6

Analysis of sensitivity

This chapter deals with the analysis of sensitivity for the variable parameters of both algorithms.
The spruce and the sympodial tree are examined to see how sensitive the tree model’s phenotype
is when slightly changing the parameters within various ranges. That however does not mean it is
desired to precisely evaluate in which parameter range the trees look realistic. It is about to obtain
how stable the overall structure is with respect to the parameters of the model and determine
the dependency for measurable tree appearance readings namely the maximal elongation in x,
y and z direction and the number of discretization steps. All parameters were tested separately.
Considering the maximal elongation, due to the fact that the tree models are more or less radially
symmetric it is supposed that the plots for the x-axis and y-axis correlate. In all plots the corre-
sponding examination range can be read off the abscissa. Regardless of the examined parameter
the other values of the parameters for the different trees can be found in chapter 4.

6.1 Spruce tree

6.1.1 Force-applying approximative method

This topic has been accomplished by the author in a previous work and can be found in [15][pp.
31-36].
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6.1.2 Incremental finite element method

6.1.2.1 Parameter E

Figure 6.1: Sensitivity for the spruce tree, parameter E

The parameter E is the Young’s modulus constant. In the examination the first unusual thing
noticeable is a stochastic vibration through all plot curves. This is due to the stochastic behavior
in the spruce tree model. The number as well as the height of branches are determined within
a random range. That is why a dependency between the number of growth units, which is
equivalent to the level of discretization, and the Young’s modulus is not visible. However such
behavior was not even expected.

Nevertheless the elongation curves’ vibration does not hide the general trend for the x-
axis and y-axis extent: An approximately square root increase in elongation occurs with rising
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elasticity constant. The maximum x-y-plane extent occurs parallel to the maximum of the
examination range with E = 100000.0. This is exactly what was supposed. The overall stiffness
increases with higher elasticity values. Because of the angle near to orthogonality between stem
and branch it leads to flattening of the branch and hence maximal extent is reached.

Considering the tree’s height evolution, represented by the maximal z-axis extent, it is
clear that this value only varies marginally. The ranges with constant value are due to the fact that
the height contribution mainly is from the stem. By that the z-axis development from the branches
is hidden. The peaks in the plot curve are due to different branch arrangements derived from the
stochastic behavior of the spruce tree.

6.1.2.2 Parameter grav

Figure 6.2: Sensitivity for the spruce tree, parameter grav
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The parameter grav is the gravity constant. Hence this parameter is also responsible for the branch
weight. It must be noticed that its behavior is equivalent to the density parameter. That is why the
examination of the gravity constant is sufficient. What again leaps out is the stochastic vibration of
the curves. There is no dependency between the gravitation and the number of growth units as
expected.

The maximal x-axis and y-axis extents show a decrease with rising gravity. This has the
simple reason that when the weight increases with rising gravity the branches become heavier and
by that sag more downwards. Because of that their main curvature slightly shifts to the z-axis
direction. Compared to the elasticity constant the relative extent differences for the gravity are
significantly lower. The relative difference for the gravity is about 30%, whereas the value for the
elasticity is around 150%. Because of that in this setting the sensitivity is much less which is a very
interesting result.

The evolution of the extent along the z-axis again just shows the random behavior of the
spruce tree. Nevertheless it should be noted that the z-axis extent also measures the negative
contribution to the maximal range along the z-axis. This happens in the case when the branches
sag downwards and the tips cross the zero point towards the negative z-axis direction. Relatively
the z-axis behavior only fluctuates about 3%. Hence the overall effect is more or less negligible.
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6.1.2.3 Parameter n_FE

Figure 6.3: Sensitivity for the spruce tree, parameter n_FE

The parameter n_FE is the number of finite elements. The number of growth units which is
equivalent to the amount of discretization directly correlates with the number of finite elements as
expected. This also holds true because interpolation is switched off. This is done by just setting
the value of the parameter n_GU fixed to n_FE. The vibration again represents the stochastic
behavior of the spruce model as a variation in the number of branches occurs.

The maximal extent in the x-y-plane initially stabilizes after n_FE ≥ 10. The reason for
this is that if n_FE < 10 the calculations for solving the linear equation system fail and the
resulting rotation angles are inaccurate. The same phenomenon can be seen in the z-axis plot. The
maximum elongation considerably exceeds the normal stochastic variation effect (3% versus 16%).
Just after passing n_FE ≥ 10 the normal behavior is applicable again.
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Considering sensitivity in the range 10 ≤ n_FE ≤ 20, a linear dependency for the x-y-
plane maximum extent can be seen. In that range the branches gain stiffness and the maximum
elongation goes up. Afterwards for n_FE > 20 the effect almost is negligible or even disappears.
What this examination also demonstrates is the importance of the right choice of discrestization
amount given by the number of finite elements. Too low values lead to solutions with high
inaccuracies.

6.1.2.4 Parameter sigma

Figure 6.4: Sensitivity for the spruce tree, parameter sigma

The parameter sigma controls the sensitivity of the reaction wood formation process initiated by
maturation strain. In the examiniation a very high sensitivity was recognized for high values of
sigma. Because of that for the abzissa axis a logarithmic scale has been chosen for better visibility
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of the behavior in the lower range for 0 ≤ sigma ≤ 10−4. The number of growth units does not
follow some trend. It reflects again the randomness of the spruce model.

The maximal x-axis and y-axis extent plots reveal a little decrease in the range 0.0 ≤ sigma ≤ 10−6.
There a just marginal drop in elongation occurs and hence the sensitivity in that range is very low.
However after passing the extent is cut in half within the range 10−6 ≤ sigma ≤ 10−4. Then, for
sigma > 10−4 a monotonic decrease can be read off the measurements. Nevertheless from then on
the effect of the parameter sigma on the maximal elongation in the x-y-plane heavily fluctuates.
The reason for this is that the reasonableness of the calculation results for too high strengths of the
reaction wood formation process is not given anymore.

This is also the reason for the behavior of the maximal elongation along the z-axis. The
effect from the stochastic vibration is much lower than the effect in the plot caused by too high
values of sigma ≥ 10−4 (3% versus 10%). Another conclusion is that the parameter sigma must be
chosen carefully with also considering the other branch properties in order to achieve reasonable
calculation results.
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6.1.2.5 Parameter phi

Figure 6.5: Sensitivity for the spruce tree, parameter phi

The parameter phi sets the angle for the direction of the reaction process controlled by sigma.
Again there is no dependency between the number of growth units and phi. The plots for the
elongation within the x-y-plane show a really nice sinusoidal curve. This is exactly what was
expected.

For the value phi = 0.0 the reaction direction is equivalent to the branches’ growth direc-
tion. Hence it is not surprising that the first maximum in elongation can be found for circa
phi = 20.0. That is the setting where the reaction wood formation supports the branches so that
they can reach their maximal x-y-plane extent by lowering the overall bending.

The same reason leads to the jump in z-axis elongation as little branches that did not
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bend as much as the bigger ones experience more support in the direction set by phi. Thus their
tips point upward and so the maximal extent along the z-axis is not only given by the stem
height but also by branches overtowering the stem. After the first maximum the curve falls to
the minimum at circa phi = 100.0. But such value would indicate that the tropism source is
underneath the tree which is unrealistic.

At the end it must be stated that the parameter phi possesses no inconsistency in sensitiv-
ity as it works exactly as it is meant to do. Depending on the tree settings, particularly the
initial angle of deflection and by that the growth direction of the branches, the parameter phi in
combination with sigma, a and b considerably influences the branch bending and tropism reaction.

6.1.2.6 Parameter a

Figure 6.6: Sensitivity for the spruce tree, parameter a
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The parameter a sets the minimum value of maturation strain. There is no dependency between
the parameter a and the number of growth units as expected. The curves for the maximal
elongation along the x-axis and y-axis own one maximum and minimum. Starting the examination
with a = −2000.0 the maximum is reached at circa a = 0.0. Nevertheless the strength of the
parameter in the range −2000.0 ≤ a ≤ 0.0 is not as much as it is for a > 0.0.

The minimum in elongation can be seen at a = 1600.0. In the range 0 ≤ a ≤ 1600.0 the
maximal extent drops about 50%. After that the maximal extent in the x-y-plane goes up to the
same value as for a = −2000.0.

The z-axis curve just shows a flat line. This means the stem height is the only contribu-
tion to this value. Considering the overall sensitivity is must be stated that for positive values it is
much higher than for negative values.
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6.1.2.7 Parameter b

Figure 6.7: Sensitivity for the spruce tree, parameter b

The parameter b sets the maximum value of maturation strain. The vibration in the first plot
again represents the stochastic behavior of the spruce model. In the x-axis and y-axis maximal
elongation plots a perspicuous discontinuity is visible at b = 0.0.

It divides the examination range into two sections where a monotonic slope occurs. In
the first section −2000.0 ≤ b ≤ 0.0 the overall level of x-y-plane extent is significantly higher than
in the section afterwards. Additionally the gradient as the rate of change for the curve is also
higher. At the point b = 0.0 which is the minimum the maximal elongation drops more than about
50%.

In the section 0.0 ≤ b ≤ 2000.0 the level of x-y-plane elongation remains low and the in-
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crease while reaching b = 2000.0 is noticeably less than in the section before. The behavior
described above also is reflected in the maximal elongation along the z-axis. Corresponding to the
first section −2000.0 ≤ b ≤ 0.0 an increase in extent can be seen. It is not exclusively related to the
stochastic vibration of the spruce tree but mainly correlates with the parameter b. After passing
b = 0.0 the elongation in z-direction stays constant.

6.2 Sympodial tree

6.2.1 Force-applying approximative method

This topic has been accomplished by the author in a previous work and can be found in [15][pp.
37-42].
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6.2.2 Incremental finite element method

6.2.2.1 Parameter E

Figure 6.8: Sensitivity for the sympodial tree, parameter E

The parameter E is the Young’s modulus constant. Due to the reason that the sympodial tree does
not contain any randomness the number of growth units is constant. What is also visible is that the
curves are much smoother in contrast to the spruce tree.

In the plots for the maximal extents along the x-axis and y-axis for E < 10.0 a fluctua-
tion can be recognized. After that the curve stabilizes. The reason for this discontinuity are
instabilities in the calculation of the branch as the elasticity constant is too low and by that the
overall stiffness firstly steadies after passing E = 10.0. Moreover the plots for both axes do not
match entirely. This is due to the fact that the sympodial tree is not fully radially symmetrical. It is
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a binary structure and as a result both axes experience a little different maximal extent evolution.
For E ≥ 10.0 both plots contain a maximum which indicates that the overall stiffness can not
increase anymore. By that the tree is equivalent to its original construction where no bending
occurs.

The development of the extent along the z-axis resembles the x-y-plane behavior. This is
because the stem height is overtowered completely by the branches and additionally the branches’
initial angles of deflection are 30◦. That is why the tree’s dimensioning affects all spacial directions
and so the z-axis as well.

6.2.2.2 Parameter grav

Figure 6.9: Sensitivity for the sympodial tree, parameter grav
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The parameter grav is the gravity constant. It is directly proportional to the parameter rho. As a
result this parameter directly influences the bending behavior of the branches. The number of
growth units is constant as expected.

The x-y-plane extent diagrams show an increase with rising gravity until reaching the
maximum and afterwards an approximately linear drop in elongation. The position where the
extremes occur depend on the tree construction. Considering the sympodial tree the curves are
exactly like expected. The results for zero gravity can be discarded as the elongation mainly comes
from the branch structure itself and the binary emerging angles of ramification. With rising gravity
until reaching the maximum grav = 2.5 (x-axis considered only) the branches’ curvature increases
and thus the bending goes up and the branches sag downwards until the maximal extent is reached.

Then for grav ≥ 2.5 the elongation decreases with rising gravity. This is due to the rea-
son that the growth of the branch tips occurs in the downward direction. The same effect also lets
the extent in z-direction decrease with rising gravity throughout the whole examination domain.
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6.2.2.3 Parameter n_FE

Figure 6.10: Sensitivity for the sympodial tree, parameter n_FE

The parameter n_FE is the number of finite elements. This parameter directly correlates with the
number of growth units and possesses a linear dependence. This is the case because the number of
growth units per branch as an interpolation option, given by n_GU , is fixed to the number of finite
elements.

Considering the maximal extent along the x and y-axis it is clearly visible that the curve
initially stabilizes after passing n_FE = 10. This is due to calculation inaccuracies when solving
the linear equation system. Subsequently with rising number of finite elements the elongation in
the x-y-plane just increases about 30%. Another interesting fact is that these curves likely contain a
maximum which indicates the accuracy can not be enhanced anymore by increasing the number of
finite elements.
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The same train of thoughts holds true for the extent in z-direction. For values n_FE < 10 the
curve just shows the inaccurate calculation results. After that the increase with rising number of
finite elements is slowing down up to the end of the examination range at n_FE = 40.

6.2.2.4 Parameter sigma

Figure 6.11: Sensitivity for the sympodial tree, parameter sigma

The parameter sigma controls the sensitivity of the reaction wood formation process initiated by
maturation strain. In the examiniation a very similar behavior like in the spruce tree has been
observed. Due to a very high sensitivity for high values of sigma for the abzissa axis a logarithmic
scale has been chosen for better visibility of the behavior in the lower range for 0 ≤ sigma ≤ 10−4.
The number of growth units does not follow any trend. It is constant as expected.
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The plots for the maximal extents in the x-y-plane show a marginal increase in the range
0.0 ≤ sigma ≤ 10−5. There just a little jump in elongation occurs and hence the sensitivity in
that range is very low. However after passing 10−5 the extent is cut in half within the range
10−5 ≤ sigma ≤ 10−4. After jumping high to the previous value for sigma > 10−4 a monotonic
decrease can be read off the measurements. Nevertheless from then on the effect of the parameter
sigma on the maximal elongation in the x-y-plane fluctuates. The reason for this is that the
reasonableness of the calculation results for too high strengths of the reaction wood formation
process is not given anymore.

This is also the reason for the behavior of the maximal elongation in z-direction. For val-
ues in the range sigma < 10−4 the curves go the inverted way. This is due to the sympodial
tree’s initial angles of deflection. Finally it again shows that the parameter sigma must be
chosen carefully with also considering the other branch properties in order to achieve reasonable
calculation results.



CHAPTER 6. ANALYSIS OF SENSITIVITY 94

6.2.2.5 Parameter phi

Figure 6.12: Sensitivity for the sympodial tree, parameter phi

The parameter phi sets the angle for the direction of the reaction process controlled by sigma. A
dependency between phi and the number of rotation angles can not be seen. Like in the spruce
model a sinusoidal relation for the maximal extent in the x-y-plane is visible.

For the value phi = 0.0 the first maximum can be read off. In that case the reaction direc-
tion is 90◦, measured relatively to the global z-axis. That is the setting where the reaction wood
formation forces the branches to grow in the horizontal direction and by that they can reach their
maximal elongation in the x-y-plane. However the minimum correspondingly would have to
occur at phi = 90.0. This is exactly what is happening.

The same reason leads to opposite behavior in z-direction. When the growth direction is



CHAPTER 6. ANALYSIS OF SENSITIVITY 95

vertical that means phi = 90.0 and thus the branches’ tips point upward and so the maximal extent
along the z-axis is reached. At the borders of the examination range the two minima can be found
accordingly.

Summarizing it must be stated that the parameter phi has no inconsistency in sensitivity.
In combination with sigma, a and b and depending on the tree settings, particularly the
initial angles of deflection and by that the growth direction of the branches, the parameter phi
considerably influences the growth direction, the bending and the tropism reaction.

6.2.2.6 Parameter a

Figure 6.13: Sensitivity for the sympodial tree, parameter a

The parameter a sets the minimum value of maturation strain. The number of growth units
remains constant throughout the examination. The plots for all spacial directions show similarities.
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For almost the whole range an increase in extent can be recognized. The point at a = 0.0 again
represents a division mark for the examination range.

For −2000.0 ≤ a ≤ 0.0 an approximately linear increase in extent in the x-y-plane takes
place. Afterwards in the range 0.0 ≤ a < 1400.0 the curve nearly stays flat, which indicates
the maturation strain effect has reached its maximum. But eventually for a > 1800.0 the extent
dramatically drops to the minimum at a = 1900.0. This could indicate that the calculation results
are no more within reasonable ranges and the overall stability of the linear equation system
collapses.

The same behavior leads to the appearance of the curve for the maximal elongation in z-
direction. The difference is that at the point a = 1900.0 the drop occurs with a much higher
gradient than in the x-y-plane plots. Hence before a < 1900.0 an increase in extent can be noticed.
That supports the thesis of the maximal achievable maturation strain effect as the maximal possible
straightening up of the branches.
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6.2.2.7 Parameter b

Figure 6.14: Sensitivity for the sympodial tree, parameter b

The parameter b sets the maximum value of maturation strain. A constant number of growth units
can be read off the measurements. The value b = 0.0 in all three plots represents a point that
divides the examination range in two sections of different behavior.

The x-axis plot differs from the y-axis plot in the range −2000.0 ≤ b ≤ 0.0. The curve for
the maximal x-axis extent just stabilizes after passing b = −1900.0. Then a little increase in
extent can be recognized. But in the range −1000.0 ≤ b ≤ 0.0 the curve stays flat. However
the y-axis diagram shows a decrease with rising b in the range −2000.0 ≤ b ≤ 0.0. For values
0.0 ≤ b ≤ 2000.0 in the whole x-y-plane an approximately linear decrease is visible.

In the maximal elongation in z-direction a discontinuity can clearly be seen at b = 0.0. In
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the range −2000.0 ≤ b ≤ −100.0 a decelerated increase occurs. After that the jump to the
maximum elongation occurs at b = 0.0. Then in the range 0.0 ≤ b ≤ 2000.0 a nearly linear decrease
can be seen. This behavior is equivalent to the one in the x-y-plane.



Chapter 7

Runtime and memory consumption

In this chapter the runtime and the memory consumption of the two algorithms are examined.
For the examination both algorithms were tested without any application to tree structure or
ramification. That means just the plain functions developed in chapter 3 were run. The only
dependency between the runtime or memory consumption and the function parameters was found
for the discretization parameter disc and the number of finite elements n_FE. It must be noted
that the measurements for the runtime in every setting was repeated 200 times in order to achieve
valid and reproducible results. The Java function nanoTime() was used for this purpose. Due to
the reason that the language XL is Java-based there is no simple way for memory consumption
measurements. The Java internal garbage collection also makes it nearly impossible to determine
memory consumption on a native way as there is no possibility of turning off garbage collection
and furthermore the time information of its occurrence is not obtainable. Because of that it was
chosen to manually measure the consumption by counting all space reservations and supposing
that the occupied space is not freed until the function fully terminates. All tests were run on an
Intel Core i7-3632QM 2.2 GHz 8.0 GB RAM.
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7.1 Runtime

7.1.1 Force-applying approximative method

Figure 7.1: Runtime, Force-applying approximative method

The first thing visible is the increase in runtime with rising parameter disc. This is exactly what
was expected. The discontinuous look of the curve comes from the resolution limits of the time
measurements. The runtime itself is in the range 0.0 . . . 0.000016 seconds. This indicates that the
approximative algorithm is very fast. It is difficult to give a general functional dependence, for
example exact linearity can not fully be taken off the readings. Firstly for 0 ≤ disc ≤ 40 a linear
relation between the runtime and the discretization parameter disc can be seen. In the mid section
for 40 ≤ disc ≤ 140 initially the gradient for the increase in runtime is higher than afterwards
where it slightly decreases. After passing disc ≥ 140 the runtime stays within a tight range and is
likely to be constant.
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7.1.2 Incremental finite element method

Figure 7.2: Runtime, Incremental finite element method

In contrast to the approximative algorithm’s runtime the curve for the finite element algorithm is
much smoother. The reason for this is that the algorithm is significantly slower. The runtime is in
the range 0.0 . . . 2.5 seconds. Considering the functional dependence a quartic correlation between
the number of finite elements and the runtime can be read off the measurements. The reason for
this is the rising size of the linear equation system that has to be solved after every growth step
leads to higher effort for solving it. Comparing both algorithms in the mid range for example at
disc = 100 and n_FE = 20 the finite element method is about 13250 times slower. Actually at the
end of the examination range this difference once again rises about more than 10 times compared
to the mid range. For n_FE ≤ 30 the runtime considerably remains below ≈ 0.75s.
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Figure 7.3: Runtime variation, Incremental finite element method, n_FE=30

The figure 7.3 shows the stochastic variation of the runtime for the repeatedly carried out ex-
periments. The standard deviation is about 0.0018s. Hence the runtime stays within a small
corridor.



CHAPTER 7. RUNTIME AND MEMORY CONSUMPTION 103

7.2 Memory consumption

7.2.1 Force-applying approximative method

Figure 7.4: Memory consumption, Force-applying approximative method

Between the parameter disc and the memory consumption a linear relation is clearly visible. The
main reason for this behavior is that for the rising number of rotation angles space for the according
number of array entries must be reserved. In the internal calculations the loop variables are reused
and not all intermediate results are stored. The memory consumption is within the range 20 . . . 220

bytes.
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7.2.2 Incremental finite element method

Figure 7.5: Memory consumption, Incremental finite element method

The curve is very similar to the runtime plot. A quartic dependence between the number of finite
elements and the memory consumption is evident. This mainly comes from the size of the linear
equation system as well as the array size for the rotation angles. The memory consumption is
within the range 0 . . . 32 megabytes. This is a scale that resides 106 times higher than the one from
the approximative algorithm.



Chapter 8

Conclusion and outlook

This work dealt with two methods for physics-based simulations of tree branches bending and
growing under their self-weight. The first approach was a force-applying approximative method
that utilizes a cylindrical axis profile and applies a force to its tip as counterpart for its self-weight.
The curvature was obtained by the theory of elasticity. The second was an incremental finite
element approach that divides the branch into beam elements where the tree ring structure as well
as different material characteristics are also considered.

The physical and mathematical basis was precisely explained for both approaches. The
same holds true for the fundamental assumptions that underlie every simulation. Resulting from
the theoretical outline two algorithms were developed and finally implemented in the plant
modeling language XL. Both deliver lists of rotation angles that specify the branch curvature.
Both delivered algorithms comprise the concept of primary and secondary growth, the different
tropisms, namely gravitropism and phototropism, and the finite element approach furthermore
the tree reaction mechanism of reaction wood formation.

In order to show how to adapt the physics of branches to existing XL tree models three
trees with different architecture were supplemented and modified with the developed algorithms.
It was shown what is necessary to obtain the structural information from the tree models to get the
right parameter setting for the application of the algorithms. As a feature it is also shown how
to consider the successively occurring gain in branch mass as tree branches constitute ramified
structures.

In terms of comparing the algorithms’ output results a branch of order 1 was used to ex-
amine the phenotype differences for various parameter ranges. A mathematical way of describing
the differences for a particular setting was developed ahead of the measurements. It was found
out that for most parameter ranges the branches grow apart. Nevertheless for initial deflection

105



CHAPTER 8. CONCLUSION AND OUTLOOK 106

angles over 90◦ the overall difference is acceptable. Thus for the correct choice of parameter setting
the approximative algorithm can deliver reasonable results similar to the finite element method.
Why this is so important and what else is the approximative algorithm’s major advantage is shown
in the later examinations.

The analysis of sensitivity for the algorithms’ parameters then was carried out for two
tree models. The primary insight is that the effect and its sensitivity devolution on the whole
tree structure is different for every parameter. That is why it is shown that the value of some
parameters must be chosen carefully. The secondary outcome is that the strength of the behaviors
also depends on the tree construction itself as this leads to different bases of operations for the
parameters.

At the end the runtime and memory consumption was examined. The approximative al-
gorithm is massively faster than the finite element algorithm which can be considered as its main
advantage. The same relation holds true for the memory consumption. The consumption of space
for the approximative algorithm is linear to the amount of discretization and remains within low
ranges whereby the finite element algorithm has a quadratic dependency on the number of finite
elements and needs space especially for the effort to solve the linear equation system and for the
elementary calculation variables.

Further adaptations
Considering the runtime and memory consumption advantage of the approximative algorithm it
might be of interest to minimize the phenotype differences. A possibility for this could represent
the development of correction factors for the parameter K0 as this parameter mainly is responsible
for the strength of bending. These correction values then are obtained experimentally by applying
a minimization method to the error function while examining the whole parameter range. Two
different possibilities of characterization are imaginable. In one case a table for the various
parameter ranges could contain the corresponding correction factors. In the other case, proceeding
from the table a polynomial interpolation could give a functional dependence on the respective
parameter.

The stem as a main part of a tree has not been considered yet. The whole work only con-
sidered the branches being subject to bending under self-weight. But tree stems also experience
the influence of gravity. An imbalanced distribution of branch weight induces forces that may lead
to stem bending to one side. Lateral forces can be induced by wind. What also can happen is the
so called buckling. Additionally the same phenomenon of reaction wood formation that occurs in
branches even more intensely occurs in tree stems to insure stability.

In the algorithm for the finite element method homogeneous material distribution is sup-
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posed. Through this fact the reality is not fully covered where densities, thicknesses and elasticities
are not the same in all wood layers. However the construction of the class FE for a finite element
holds all mechanisms for setting different densities, elasticities and ring thicknesses. Because of
that it is easy to modify the algorithm by supplementing the parameter list of the function and
then setting these properties for each finite element within the code.

When considering the location of a tree it mostly stands not only by itself. Forests repre-
sent competitive systems where trees fight for light, water and nutrients. As a result the growth of
branches is not only influenced by self-weight but heavily by their location. This leads to different
bending curvatures. This behavior could also be implemented by adding suitable parameters for
the competitive situation as well as other concepts of reaction wood formation.

The displacement vector from the solution of the finite element approach can be used to
calculate tensions and strains inside the wood. This was one major component of the work
in [4] and [5]. This information can be used as a stimulation for the reaction wood formation.
Furthermore based on these calculations the criteria of failure for branches can be implemented in
the model. By that real tree copies in simulations can determine failing branches as a prevention
for upcoming dangers.

The parameter lists for the algorithms represent static material properties and forces. That is why
for simulations of tree dynamics that consider non-stationary forces, for example sudden winds the
properties must evolve dynamically. Additionally every mechanical part owns eigenfrequencies
and hence for dynamic simulations they should also be calculated for the stem and branches.
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