
GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Uploaddatum: 20.09.2025
Uploadzeit: 19:41

Dies ist ein von FlexNow automatisch beim Upload generiertes Deckblatt. Es
dient dazu, die Arbeit automatisiert der Prüfungsakte zuordnen zu können.

This is a machine generated frontpage added by FlexNow.
Its purpose is to link your upload to your examination file.

Matrikelnummer: 21678578

Bachelor’s Thesis
submitted in partial fulfillment of the

requirements for the course “Applied Computer Science”

Design and Implementation of a Modern Database and
Web API for the GroIMP Gallery

David Forys

Institute of Computer Science

Bachelor’s and Master’s Theses
of the Center for Computational Sciences

at the Georg-August-Universität Göttingen

20. September 2025

Georg-August-Universität Göttingen
Institute of Computer Science

Goldschmidtstraße 7
37077 Göttingen
Germany

T +49 (551) 39-172000
t +49 (551) 39-14403
B office@informatik.uni-goettingen.de
m www.informatik.uni-goettingen.de

First Supervisor: Prof. Dr. Winfried Kurth
Second Supervisor: Hon.-Prof. Eckart Dr. Modrow
Additional Technical Guidance: Dr. Gaëtan Heidsieck & Tim Oberländer

mailto:office@informatik.uni-goettingen.de
www.informatik.uni-goettingen.de

I hereby declare that I have written this thesis independently without any help from others and
without the use of documents or aids other than those stated. I have mentioned all used sources
and cited them correctly according to established academic citation rules. Annex: Declaration on
the use of ChatGPT and comparable tools in the context of examinations

In this paper, I have used ChatGPT or another AI as follows.:

□ not at all

□ during brainstorming

□ when creating the outline

□ to write individual passages, altogether to the extent of . . . % of the entire text

□ for the development of software source texts

□ for optimising or restructuring software source texts

■ for proofreading or optimising

■ further, namely: bug fixing aid, Latex formatting

I hereby declare that I have stated all uses completely. Missing or incorrect information will be
considered as an attempt to cheat.

Göttingen, 20. September 2025

Mobile User

Abstract
The open-source Growth Grammar-related Interactive Modelling Platform (GroIMP) serves as a comprehen-
sive framework for functional-structural plant modelling, supporting a diverse community of researchers
and practitioners. However, the existing project sharing infrastructure relies on outdated manual processes
that create significant barriers to community engagement and model accessibility. This work addresses these
limitations by designing and implementing a modern, database-driven gallery system that facilitates efficient
sharing, discovery, and management of GroIMP modelling projects.

The implemented solution comprises three core components: a MongoDB database with a structured schema
for storing project metadata and relationships, a Representational State Transfer (REST)ful Application
Programming Interface (API) built with Node.js and Express for programmatic access, and an intuitive web
interface for browsing and managing projects. The system introduces version control capabilities, enabling
users to maintain multiple iterations of their models, and implements comprehensive search and filtering
functionality through categorization and tagging systems. Authentication and authorization mechanisms
ensure secure access control while maintaining ease of use.

The work included the successful migration of over 300 legacy projects from the file-based storage system to
the new database architecture. Custom Python scripts were developed to convert existing metadata formats
and automate the upload process, ensuring continuity with historical community contributions.

The resulting platform significantly improves upon the previous infrastructure by eliminating manual
processing bottlenecks, providing structured search capabilities, and offering an accessible interface that
serves both experienced model developers and domain expert users who primarily seek to apply existing
models. The system reduces administrative overhead while enhancing discoverability and knowledge
exchange within the GroIMP community, establishing a robust foundation for future collaborative features
and community growth.

Contents

1 Introduction 2
1.1 Background and Motivation . 2
1.2 Related Work . 3
1.3 Objectives . 4
1.4 Scope and Limitations . 4
1.5 Thesis Structure . 5

2 Analysis 6
2.1 Existing Infrastructure and Old Data . 6
2.2 Requirements . 6

2.2.1 Database . 7
2.2.2 API . 7
2.2.3 Web Page . 7

3 Design 8
3.1 Database . 8
3.2 API and Web Page . 10

3.2.1 API . 10
3.2.2 Web Page . 11

3.3 File Management . 11
3.4 Supplementary Scripting and Testing Tools . 12

4 Implementation 13
4.1 Server Overview . 13

4.1.1 Server Initialization and Database Setup . 13
4.1.2 Middleware Stack and Security . 14
4.1.3 Routing Architecture . 14

4.2 Database . 15
4.3 Middleware . 15

iii

CONTENTS iv

4.3.1 Authentication and Authorization Middleware 16
4.3.2 Input Validation and Sanitization . 17
4.3.3 Data Processing Middleware . 17
4.3.4 Utility Middleware . 18

4.4 Routing . 18
4.4.1 Route Organization . 18
4.4.2 Project Data Access . 19

4.5 API Workflow Example . 19
4.5.1 User Authentication . 19
4.5.2 Create Categories . 19
4.5.3 Fetch All Categories . 20
4.5.4 Create New Project . 20
4.5.5 Create a Referencing Project . 21
4.5.6 Fetch Specific Project . 22
4.5.7 Version Management Operations . 22
4.5.8 Session Termination . 23

4.6 Web Interface . 23
4.6.1 Navigation and Functionality . 23
4.6.2 Technical Background . 35

4.7 Legacy Data Migration . 39
4.7.1 Uploading the Legacy Data to the New Server 41

4.8 Conclusion . 42

Bibliography 45

A Legacy Data 46
A.1 DESC File Pattern . 46
A.2 DESC to JSON Conversion . 47

A.2.1 DESC File . 47
A.2.2 JSON File after Refactoring with Python Script 47
A.2.3 Database JSON Document . 48

A.3 Categories . 49

B Database Models 51
B.1 GroIMP Projects Model . 51

B.1.1 Schema Fields . 51
B.2 Versions Model . 52

B.2.1 Schema Fields . 52
B.2.2 File Storage . 52

B.3 Tags Model . 53

CONTENTS v

B.3.1 Schema Fields . 53
B.4 Categories Model . 53

B.4.1 Schema Fields . 53
B.5 Groups Model . 53

B.5.1 Schema Fields . 53
B.6 Database Relationships Overview . 53

C API Reference Documentation 54
C.1 Authentication . 54

C.1.1 Login . 54
C.1.2 Logout . 54

C.2 Project Management (JSON API) . 55
C.2.1 Retrieve Projects . 55
C.2.2 Create Project . 55
C.2.3 Update Project . 56
C.2.4 Delete Project . 57
C.2.5 Version-Specific Operations . 57

C.3 Version Control . 58
C.3.1 Retrieve Version . 58
C.3.2 Create Version . 58
C.3.3 Update Version . 59
C.3.4 Delete Version . 59
C.3.5 Download Version Files . 59

C.4 Category Management . 60
C.4.1 Retrieve Categories . 60
C.4.2 Create Category . 60
C.4.3 Delete Category . 61

C.5 Tag Management . 61
C.5.1 Retrieve Tags . 61
C.5.2 Create Tag . 62
C.5.3 Update Tag . 62
C.5.4 Delete Tag . 62

C.6 Project Gallery (Web Interface) . 63
C.6.1 Gallery Views . 63
C.6.2 Project Detail Views . 64

C.7 Security and Authorization . 64
C.7.1 Authentication Requirements . 64
C.7.2 Authorization Levels . 65
C.7.3 Input Validation and Security . 65

CONTENTS vi

C.8 Error Handling . 65
C.8.1 HTTP Status Codes . 65
C.8.2 Error Response Format . 65
C.8.3 File System Error Handling . 66

C.9 API Usage Examples . 66
C.9.1 Authentication Flow . 66
C.9.2 Project Creation Example . 66
C.9.3 Query Examples . 66

D HTML Sanitization and Allowed Tags 67
D.1 Text Formatting . 67
D.2 Structure and Lists . 67
D.3 Links . 68

List of Abbreviations

GroIMP Growth Grammar-related Interactive Modelling Platform 2
API Application Programming Interface . 6
DBMS Database Management System . 8
ER model Entity-Relationship model . 8
IDE Integrated Development Environment . 10
REST Representational State Transfer . 11
JWT JSON Web Token . 16

1

Chapter 1

Introduction

1.1 Background and Motivation

The open-source Growth Grammar-related Interactive Modelling Platform (GroIMP) is a compre-
hensive software framework for functional-structural plant modelling that combines rule-based
modelling approaches with advanced 3D visualization capabilities. First developed at the BTU
Cottbus and currently under continued development at the University of Göttingen, GroIMP
enables researchers and practitioners to create complex models of plant growth and architecture
using XL programming language, a Java-based extension of the L-system formalism [1]. The
platform has been widely adopted in the plant modelling community for applications ranging
from crop simulation to forest ecosystem modelling, e.g. for the modelling of Norway spruce
trees [2] and for the development of new modelling techniques and frameworks like FSPM-P [3].

The Growth Grammar website (grogra.de) serves as the central hub for the GroIMP community,
providing documentation, tutorials, and a project gallery where users can share their modelling
work. The project gallery serves a particularly crucial role in community development, offering
concrete examples of functional models that demonstrate best practices and implementation
strategies. These examples possess significant didactic value, providing new users with tangible
starting points to understand complex modelling concepts and techniques. For newcomers to
functional-structural plant modelling, such examples are invaluable in bridging the gap between
theoretical documentation and practical application, thereby facilitating community growth and
knowledge transfer.

The GroIMP community encompasses two distinct user groups with different needs and technical
expertise levels. Model developers are typically experienced programmers and modelers who
create new models from scratch or extend existing frameworks. In contrast, model users are often
domain experts—such as biologists, agronomists, or ecologists—who primarily seek to apply
existing models to their research questions without necessarily developing deep programming

2

CHAPTER 1. INTRODUCTION 3

expertise. These model users frequently require only specific configurations of established models
or need to adjust particular parameters for their use cases. However, the current infrastructure
inadequately serves this user group, as accessing and utilizing existing models often requires
extensive communication with developers or learning complex software functionalities that extend
far beyond their actual needs.

Currently, the project sharing mechanism represents a significant bottleneck in community engage-
ment and accessibility. To publish a project on the existing gallery, users must fill out an email form
and wait for manual processing by the website maintainer. Downloaded files are stored directly
within the server’s file system, making both modification and search operations cumbersome and
error-prone. This outdated workflow not only inhibits the collaborative potential of the GroIMP
community but also creates substantial barriers for model users who need straightforward access
to existing models. The lack of searchable metadata and organized categorization particularly
disadvantages newcomers and non-developer users who cannot easily discover relevant models
or assess their applicability without extensive investigation.

Both the software platform and its accompanying website infrastructure are undergoing major
modernization and refactoring work. This includes a new modernized website designed with
WordPress, a comprehensive Wiki for GroIMP users, refactoring of GroIMP’s legacy Java codebase
to support the latest Java versions and new features such as optimized support for point clouds
with new point cloud manipulation tools [4].

1.2 Related Work

The concept of centralized repositories for sharing academic and research resources is well-
established across various domains. Most notably, GitHub [5] has revolutionized code sharing and
collaboration in software development through sophisticated version control, search capabilities,
and community features. In the scientific domain, Zenodo [6] provides researchers with a platform
to share datasets, publications, and software with comprehensive metadata support and persistent
identifiers.

Within the specialized field of biological and agricultural modelling, the BioModels Database [7]
serves as a prominent example of a successful model repository, offering searchable access to
computational models in systems biology with standardized formats and extensive metadata.

These existing platforms demonstrate common features essential for community adoption: intuitive
web interfaces, robust search and filtering capabilities, version control, and standardized metadata
schemas. However, none specifically address the unique requirements of functional-structural
plant models created with rule-based approaches like those used in GroIMP.

CHAPTER 1. INTRODUCTION 4

1.3 Objectives

The primary objective of this work is to implement a modern, database-driven architecture that
provides a centralized platform for saving, sharing, and discovering GroIMP modelling projects.
This platform aims to serve both user groups effectively by providing intuitive access for model
users while maintaining comprehensive functionality for model developers. The specific objectives
include:

• Development of a relational database schema to store project metadata, user information,
and file associations with rich categorization and search capabilities

• Implementation of a RESTful API to enable programmatic access to the repository. For
explanation see REST API Architecture 3.2.1.

• Creation of a user-friendly web interface for browsing, searching, and downloading projects
that prioritizes accessibility for non-developer users

• Integration of user authentication and project management capabilities

• Establishment of a scalable file storage system to handle diverse project assets

• Design of metadata structures that facilitate discovery and understanding of models for users
with varying technical expertise

The resulting platform should significantly reduce the administrative overhead of project sharing
while enhancing discoverability and promoting knowledge exchange within the GroIMP com-
munity. Particular emphasis is placed on lowering barriers for model users who seek to apply
existing models without requiring extensive technical knowledge or prolonged communication
with developers.

1.4 Scope and Limitations

Due to scope limitations, not every decision regarding tools and packages can be discussed in
detail. However, key architectural components and design choices deemed particularly significant
or non-trivial are explained more thoroughly. In general, technology selections were made based
on availability, development simplicity, and adequate feature completeness to support the core
objectives of this work.

The implementation focuses primarily on the core repository functionality and does not address
advanced features such as collaborative editing, integrated version control, or computational
model execution within the platform. Integration with external authentication providers and
advanced analytics capabilities are also beyond the current scope.

CHAPTER 1. INTRODUCTION 5

1.5 Thesis Structure

The remainder of this thesis is organized as follows: Chapter 2 presents the analysis of existing in-
frastructure and defines the system requirements for database, API, and web interface components.
Chapter 3 details the design decisions, including the selection of technologies and architectural
considerations for each system component. Chapter 4 describes the implementation of the server
infrastructure, database models, API endpoints, web interface, and legacy data migration pro-
cess. Chapter 5 concludes with a discussion of the achieved outcomes, lessons learned during
development and an outlook for future development goals.

Chapter 2

Analysis

2.1 Existing Infrastructure and Old Data

The website grogra.dewas originally hosted on a Windows-based virtual machine and generated
with Apache Forrest, which is no longer supported [8]. During this project’s development time,
the site was migrated to a more modern environment and is now hosted on a Linux-based
XAMPP server stack, integrating an Apache web server, a MySQL database, and PHP to support a
WordPress installation with built-in user management [9].

The old gallery contained over 300 different projects. These projects, from here on called legacy data,
are saved as source code files in .rgg file format (pure code) or .gsz (an archive-like file-format
for a whole project that additionally includes other files and meta data). The projects are structured
in a filesystem according to their topic where the topic is the corresponding folder name. In
addition to the project’s source code file there are two more files per project. First a simple .desc
text-file that holds a number of different text-based meta information including a description, the
author, a list of other models/projects that are related and a date without further description, but
assumed to be the date of the creation or upload of the model. For a full list of options in the
.desc please see Appendix A.1. The second file is an image, usually a snapshot of the model
render in one of three image-formats: .png, .gif or .jpg. All files are placed together in the
same folder, with the exception being .gif files which have a dedicated folder further up in the
folder structure.

2.2 Requirements

A database is appropriate for proper data structuring, searching, filtering, ordering and man-
agement of the data. The data should be accessible through an Application Programming Inter-
face (API) for both GroIMP as well as the newly to be created, dedicated gallery web page. Both

6

CHAPTER 2. ANALYSIS 7

should have a modern state-of-the-art implementation and allow for simple use, maintenance and
new features in the future.

In addition to the existing legacy project structure, it should be possible to save multiple distinct
versions of the same project.

2.2.1 Database

The database needs to hold text-based data from the description file as well as references to binary
data, in form of images and archive files, or hold the data itself.

2.2.2 API

The API needs to be accessible from a dedicated gallery web view as well as from within GroIMP.
Every interaction with the database should happen through the API, this should include functional-
ity for accessing, editing and deleting data and the corresponding authentication and authorisation
of users. For access control the MySQL Wordpress [9] user data is to be used.

2.2.3 Web Page

The user should be able to browse and view existing projects through a graphical web interface,
this includes searching, filtering and sorting of the data. It should also be possible to add new
projects or versions and edit or delete existing ones.

The view should include all the features that where present in the old gallery, this includes showing
the image, showing all the different meta information from the description file as well as providing
a file download for each of the project’s version specific models.

Chapter 3

Design

This chapter outlines the design decisions made for the system, focusing on the selection of
technologies and tools for each major component of the architecture. The discussion covers the
database structure and choice of Database Management System (DBMS), the design of the backend
API and web interface, as well as supporting scripts and testing environments. Emphasis is placed
on practicality, maintainability, and integration between components.

3.1 Database

Figure 3.1 shows an Entity-Relationship model (ER model) [10] as a design draft for the database.
An Entity-Relationship Model (ER model) uses rectangles to represent entities (real-world objects or
concepts), diamonds to represent relationships between entities, and ovals to represent attributes
(properties of entities), with key attributes underlined to indicate primary keys that uniquely
identify entity instances. Relationships are characterized by multiplicities (1:1, 1:n, or n:m) that
define how many instances of one entity can be associated with instances of another entity,
specifying the cardinality constraints between related entities.

The model contains only a limited number of entities. Most of its structure is derived directly
from the legacy data format, with the most significant addition being the concept of versions.
Categories represent the topics under which the projects were classified and correspond to their
placement in the folder structure of the original server files (see appendix for a list of categories).
Tags are a newly introduced feature, allowing users to add searchable keywords as a form of
informal categorization, without expanding the fixed category set maintained by the admin group.
Users and groups are intended to enable access control, although group support was ultimately
considered an optional extension for a later development stage and user data will be fetched from
a pre-existing system.

8

CHAPTER 3. DESIGN 9

Figure 3.1: Entity-Relationship model for the database

For implementation, MongoDB and MySQL are two highly popular open-source choices, especially
for smaller, self-hosted DBMSs. Both systems are viable, offering extensive documentation and
good scalability. MySQL is a conventional SQL-based relational DBMS that performs well with
highly interconnected data. [11] In contrast, MongoDB excels with large, loosely connected datasets.
While performance is a key advantage, MongoDB also provides several other benefits: it integrates
easily with JavaScript (see next section), stores data in JSON format, and simplifies data fetching
and updating. Although it does not follow a relational model, many relational concepts can still be
enforced in MongoDB, albeit with potential efficiency trade-offs, which are acceptable given the
expected volume and size of the data. [12]

In summary, MongoDB is selected for its simplicity and seamless integration with the JavaScript-
based components of the system for the gallery database. While no separate MySQL server will be
set up during this project, MySQL will play a role in user authentication by leveraging the existing
WordPress database infrastructure to avoid separate user management systems and provide users
with a unified authentication experience across GroIMP.

CHAPTER 3. DESIGN 10

3.2 API and Web Page

The system architecture divides functionality between two main components: a backend API and
a frontend web interface. The API is designed to handle all data operations including project
storage, retrieval, user authentication, and file management through standardized endpoints.
The web interface provides browsing capabilities, search functionality, project upload forms, and
administrative tools for content management.

Communication between these components follows a request-response cycle where user interac-
tions trigger HTTP requests that pass through validation and processing layers before generating
appropriate responses. This separation enables independent development of each component
while maintaining clear interfaces and allows for future integration with external clients such as
the GroIMP software itself.

To implement this architecture efficiently, it is advantageous to use a single programming language
for both the frontend and backend. JavaScript is the most prominent candidate for this purpose.

JavaScript offers a wide array of popular tools, libraries, and frameworks that support full-stack
development, while remaining relatively easy to learn [13]. Although alternatives such as Type-
Script—a statically typed superset of JavaScript with an expanding user base—offer more robust
error checking and additional features, they also come with a steeper learning curve [14]. For this
reason, and to avoid unnecessary complexity in a first-time project of this size, plain JavaScript
was chosen.

The de facto standard Integrated Development Environment (IDE) for JavaScript development
is Visual Studio Code, which provides a lightweight yet powerful environment with excellent
support for JavaScript [15].

3.2.1 API

The following sections outline the key architectural decisions and technology selections for imple-
menting the backend API infrastructure.

Node.js Runtime Environment

Node.js was chosen as the runtime environment due to its widespread industry adoption and
strong ecosystem for developing scalable web applications. As a well-established platform for
executing JavaScript on the server, it offers high performance, extensive library support, and
compatibility with modern development practices [16]. Given that JavaScript was already selected
as the main language, Node.js is a natural choice for the backend.

CHAPTER 3. DESIGN 11

REST API Architecture

A RESTful API architecture is planned to structure the communication between frontend and back-
end. Representational State Transfer (REST) is a widely adopted architectural style for web services
that relies on standard HTTP methods such as GET, POST, PUT, DELETE, and PATCH. In this
approach, each endpoint corresponds to a resource—such as a user, dataset, or document—which
can be accessed or modified using these methods. The HTTP methods follow semantic conventions
where GET requests handle the retrieval of data without modifying server state, POST requests
handle the creation of new resources, PUT requests handle the replacement of existing resources in
their entirety, PATCH requests handle partial updates to existing resources, and DELETE requests
handle the removal of resources from the server. This clear and predictable interface simplifies
client-server communication, improves modularity, and allows for independent development of
system components [17].

Express Backend Framework

The Express framework is considered as the backend framework because of its minimal design,
low setup overhead, and flexibility in defining custom routing and middleware. This framework is
well-suited to building RESTful services and is expected to contribute to a clean and maintainable
backend structure [18].

3.2.2 Web Page

For server-side rendering of dynamic web content, the EJS templating engine is used. Although not
inherently part of Express, EJS integrates seamlessly via Express’s view engine interface, enabling
HTML pages to be generated with embedded JavaScript logic. This approach supports consistent
rendering and simplifies template management within the JavaScript-based stack. Naturally,
these templates use standard HTML and CSS to structure and style the web pages, ensuring
compatibility with all modern browsers and ease of design. [19]

3.3 File Management

Uploaded files are stored on the server filesystem using the FILE_LOCATION environment variable
defined in the .env configuration file, which specifies the root directory for the project file structure
containing all uploaded project assets and associated image files.

CHAPTER 3. DESIGN 12

The root directory contains individual project folders, each named according to its unique project
identifier. Within each project folder, you will find the associated image files alongside version sub-
directories, which are named using their respective version identifiers. Each version subdirectory
houses the corresponding project files. In Illustration of this pattern can be seen below:
FILE_LOCATION/

〈project_id〉/
〈imagefile〉
〈version_id〉/

〈projectfile〉

The following structure demonstrates this organization with two example projects: one containing
a single version and another containing two versions:
FILE_LOCATION/

507f1f77bcf86cd799439011/
Image1.jpg
65f8a2b3c4d5e6f7a8b9c0d1/

project1.rgg
507f191e810c19729de860ea/

Image2.gif
65f8a2b3c4d5e6f7a8b9c0d2/

project2.rgg
65f8a2b3c4d5e6f7a8b9c0d3/

project3.gsz

3.4 Supplementary Scripting and Testing Tools

Some preprocessing and scripting was required to convert the legacy data into the desired format
and to automate uploading it to the new API. For this task, simple Python scripts were used, which
play only a minor role in the overall system but are nevertheless part of the process.

Additionally, a local test environment simulating the XAMPP setup with WordPress was created.
This environment supports testing all frontend features, particularly those related to compatibility
and user access control, which is handled through a separate MySQL-based DBMS.

Chapter 4

Implementation

This chapter details the practical implementation of the GroIMP gallery system, covering the
development of each major component designed in Chapter 3. The implementation follows a
modular approach, with distinct sections addressing server infrastructure, database integration,
API development, web interface creation, and legacy data migration. Each section explains
the key implementation decisions, code structure, and technical challenges encountered during
development.

All the relevant files can be found in the gallery_db_server folder, which serves as the project’s
root directory and is publicly available in the GitLab repository at https://gitlab.gwdg.de/
davidjulian.forys/groimp_gallery.

4.1 Server Overview

This section provides a brief overview of the server architecture and core functionality. Detailed
implementation specifics for individual features are covered in later sections.

4.1.1 Server Initialization and Database Setup

The application can be started using two different commands depending on the development
context:

• run start launches the production server using Node.js

• run devStart runs the server with nodemon for development, enabling automatic server
restarts when saving server file changes to improve the debugging process

At startup, the server establishes pooled connections to both MySQL for user authentication
and MongoDB for the actual data handling. This is handled in the top-level server.js file.
MongoDB is accessed via Mongoose [20] with a configured maxPoolSize, while MySQL uses the

13

https://gitlab.gwdg.de/davidjulian.forys/groimp_gallery
https://gitlab.gwdg.de/davidjulian.forys/groimp_gallery

CHAPTER 4. IMPLEMENTATION 14

mysql2/promise [21] library to create a connection pool with defined concurrency limits. Both
connection pools are attached to app.locals so that they can be reused across route handlers
without repeatedly opening new connections. To ensure system reliability, a periodic health check
is executed every five minutes to verify that both databases remain reachable and operational.

Once started, the application listens on port 3000, providing both the API and the web interface
through a single, integrated access point at http://localhost:3000/. This server is designed
for local access and requires proxy forwarding from a hosting server to be publicly accessible.
Currently, this is implemented at gallery.grogra.de, where the application is made available
to the public through the grogra.de hosting infrastructure.

4.1.2 Middleware Stack and Security

The server’s middleware stack ensures correct and secure processing of requests. Body parsing
is provided by express.json() and express.urlencoded() to support both JSON and
form-encoded request bodies. Cookie handling is implemented via cookie-parser to manage
authentication state and other persistent session data.

Input sanitization is performed using sanitize-html, configured to allow only a restricted
subset of HTML tags and attributes. This prevents cross-site scripting (XSS) when displaying
user-generated content. Static asset delivery is handled by express.static(), which serves
files such as CSS and images from the /static directory.

4.1.3 Routing Architecture

Routing follows a modular structure, with each API resource or feature implemented as an
independent router in the routes/ directory. The main routes include:

• project_json for creation, retrieval, updating, and deletion of project metadata and
associated files

• project_gallery for serving the HTML gallery interface

• versions for managing version metadata

• categories and tags for providing categorization and tagging functionality

• login and logout for implementing authentication endpoints that allow API clients and
the web interface to obtain and invalidate session tokens

The root route (/) redirects users to /project_gallery, which acts as the main entry point for
the public-facing web interface. All API endpoints return JSON-encoded responses, whereas web
routes render EJS templates with sanitized dynamic content.

CHAPTER 4. IMPLEMENTATION 15

4.2 Database

The relevant server files for the database can be found in the sub folder db_models. All the files
correspond to their respective collections inside the database and have an id attribute that has
unique ids:

categories.js This includes a descriptive name.

groimp_projects.js This includes multiple String based metadata fields as well as well as
references (IDs) to versions, related projects, categories and tags as well as an access field
that for now only dictates if it is accessible by non admin/uploader users. This will handle
group access in the future.

groups.js Not implemented yet, only a placeholder file.

tags.js This includes a descriptive name.

versions.js This includes a version number, a description and a list of dependencies.

The schema definitions always start by importing the Mongoose library which provides a simple
way to define a schema. See Appendix B for a full list of the fields of all the database models.

4.3 Middleware

Middleware in Express.js refers to functions that execute during the request-response cycle, having
access to the request object (req), the response object (res), and the next middleware function in
the application’s request-response cycle. These functions can execute code, make changes to the
request and response objects, end the request-response cycle, or call the next middleware function
in the stack. In this implementation, middleware functions serve critical roles in authentication,
authorization, input validation, logging, and data processing.

To illustrate the middleware execution pattern, consider a typical POST request to create a new
project version at /version/:project_id. The request traverses through a defined middleware
stack where each component performs specific operations before passing control to the next:

1 router.post('/:project_id', jwtCheck, uploaderCheck,

uploadFiles.single('gszfile'), sanitizeFile, sanitizeInput,

logRequestResponse, async (req, res) => {

↪→

↪→

2 // Route handler logic

3 });

The execution flow proceeds sequentially: jwtCheck validates the user’s authentication token and
sets req.isAuthenticated and user information; uploaderCheck verifies that the authenti-
cated user has permission to modify the specified project; uploadFiles.single(’gszfile’)
processes the file upload and attaches it to req.file; sanitizeFile sanitizes the uploaded

CHAPTER 4. IMPLEMENTATION 16

filename; sanitizeInput processes and sanitizes all request body parameters; and finally
logRequestResponse logs the request details before the route handler executes. Each mid-
dleware calls next() to advance to the subsequent component, or terminates the request early by
sending an error response if validation fails.

The middleware components are organized in the middleware directory and consist of seven
distinct modules: authentication checking, model retrieval, JSON Web Token (JWT) verification,
request-response logging, version creation processing, input sanitization, and uploader authoriza-
tion checking.

The following sections detail their functionality with accompanying code examples.

4.3.1 Authentication and Authorization Middleware

The jwtCheck.js middleware handles user authentication by verifying JWTs stored in HTTP
cookies. This middleware extracts the token from the request, validates it against the server’s
secret key, and enriches the request object with user information. The core authentication logic
uses Node.js’s jwt.verify() method to validate the token:

1 jwt.verify(token, process.env.SECRET_KEY, async (err, decoded) => {

2 if (err) {

3 req.isAuthenticated = false;

4 req.isAdmin = false;

5 return next();

6 }

7 req.tokenPayload = decoded;

8 req.userId = decoded.userId;

9 req.isAuthenticated = true;

10 // Additional database queries for admin privileges...

11 });

When token verification succeeds, the middleware extracts the user information from the decoded
payload and sets authentication flags on the request object. The req.isAuthenticated flag
indicates successful authentication, while req.userId provides access to the user’s unique identi-
fier for subsequent operations. In cases where verification fails, the middleware gracefully handles
the error by setting both authentication and admin flags to false, allowing the request to continue
with limited privileges. The middleware then queries the MySQL database to determine user
capabilities, particularly checking for administrator privileges by deserializing PHP-serialized
capability data from the WordPress user metadata. The uploaderCheck.js middleware pro-
vides fine-grained authorization control by ensuring that only the original uploader of a project or
system administrators can modify project data. This middleware retrieves the project from the
database and compares the authenticated user’s username with the project’s uploadedBy field,
implementing a role-based access control system that prevents unauthorized modifications while

CHAPTER 4. IMPLEMENTATION 17

maintaining administrative oversight capabilities.

4.3.2 Input Validation and Sanitization

The sanitize.jsmiddleware implements comprehensive input sanitization to prevent cross-site
scripting (XSS) attacks and ensure data integrity. This middleware processes all incoming data
through the express-validator library [22], sanitizing HTML content while preserving safe
formatting tags such as bold, italic, and paragraph elements. The middleware handles both form
data and file uploads, sanitizing filenames to prevent directory traversal attacks.

The sanitization process converts newline characters to HTML break tags and restricts allowed
HTML tags to a predefined whitelist, ensuring that malicious script injection is prevented while
maintaining basic text formatting capabilities. See Appendix D for a comprehensive list.

4.3.3 Data Processing Middleware

The processVersionCreation.js middleware encapsulates the complex logic required for
creating new project versions. This middleware handles file system operations, database record
creation, and directory structure management. The implementation follows a structured approach
where request data is first extracted and parsed from the JSON payload:

1 const processVersionCreation = async (req, res, next) => {

2 const { project_id, version, dependencies, description} =

JSON.parse(req.body.data);↪→

3 const newVersion = await Version.create({

4 dependencies, version, description,

5 });

6 const versionFolder = path.join(projectFolder, newVersion._id.toString());

7 await fsExtra.ensureDir(versionFolder);

8 // File movement and cleanup operations...

9 res.locals.createdObjectId = newVersion._id;

10 next();

11 };

After parsing the incoming data, the middleware creates a new version record in the MongoDB
database using the Version.create() method. The newly created version object provides
a unique identifier that is used to establish a corresponding directory structure in the file sys-
tem. The path.join() operation constructs the full path to the version-specific folder, while
fsExtra.ensureDir() guarantees that the directory hierarchy exists before any file operations
occur. Finally, the middleware stores the created object’s ID in res.locals for use by subsequent
middleware in the chain and calls next() to continue processing. This middleware demonstrates
the separation of concerns principle by isolating complex file and database operations into a
reusable component that can be called from multiple routes.

CHAPTER 4. IMPLEMENTATION 18

4.3.4 Utility Middleware

The getModel.js middleware provides a standardized mechanism for retrieving project models
from the database based on URL parameters. This middleware reduces code duplication across
routes by centralizing the model retrieval logic and error handling, attaching the retrieved model
to the response object for subsequent middleware and route handlers.

The logRequestResponse.js middleware implements comprehensive request and response
logging, capturing HTTP method, URL, query parameters, headers, response status codes, and
request duration. This middleware is essential for debugging, performance monitoring, and
security auditing, providing detailed insights into API usage patterns and potential issues.

The middleware architecture ensures that cross-cutting concerns such as authentication, authoriza-
tion, validation, and logging are handled consistently across all routes while maintaining code
modularity and reusability.

4.4 Routing

The routes are split into different files located in the routes folder. This improves code maintain-
ability by organizing related endpoints together, making it easier for future developers to locate
and modify specific functionality without navigating through a monolithic route file.

The gallery server implements a RESTful API architecture with multiple route modules, each
handling specific resource types. The server follows standard REST conventions where route
names correspond to the resources they manage, and HTTP methods indicate the type of operation
being performed.

4.4.1 Route Organization

The application organizes routes into logical modules based on resource types:

• /project_json - Provides JSON API endpoints for project data manipulation

• /project_gallery - Serves the web-based gallery interface for projects

• /version - Manages project version control and history

• /category - Handles project categorization endpoints

• /tags - Manages project tagging system

• /login - Authentication endpoint for user login

• /logout - Authentication endpoint for user logout

CHAPTER 4. IMPLEMENTATION 19

4.4.2 Project Data Access

The server provides two distinct approaches to accessing project data:

Project JSON Routes (/project_json) deliver raw project data in JSON format, designed for
programmatic access and API consumption. These endpoints follow the standard REST patterns.

Project Gallery Routes (/project_gallery) serve rendered HTML pages for human interaction,
providing a visual interface for browsing and managing projects. This route handles the web-based
user interface and will be examined in detail in the following Web Page section.

4.5 API Workflow Example

This section demonstrates a complete API workflow, showing how to authenticate, create categories
and projects, manage versions, and establish relationships between models. The example walks
through creating two projects with different versions, illustrating a full exemplary cycle from
user login to project creation and management. For a comprehensive API documentation see
Appendix C. All examples use localhost:3000 as the domain, but as already stated this can be
replaced with gallery.grogra.de where the API is currently hosted.

4.5.1 User Authentication

The authentication process requires sending user credentials via a POST request to establish a
session token that will be automatically included in subsequent requests.

1 # Login with credentials

2 POST http://localhost:3000/login

3 Content-Type: application/x-www-form-urlencoded

4

5 username=researcher&password=your_password

6

7 # Response sets HTTP-only authentication cookie automatically

8 # Response: {"message": "Login successful"}

4.5.2 Create Categories

Before uploading projects, categories must be created to enable proper project classification and
organization within the gallery system.

1 # Create first category

2 POST http://localhost:3000/category

3 Content-Type: application/json

4 # Authentication cookie included automatically

5

CHAPTER 4. IMPLEMENTATION 20

6 {

7 "name": "Simulation"

8 }

9

10 # Create second category

11 POST http://localhost:3000/category

12 Content-Type: application/json

13

14 {

15 "name": "Plants"

16 }

4.5.3 Fetch All Categories

This request retrieves all available categories from the system, providing both their database IDs
and display names for use in project creation.

1 # Retrieve all available categories

2 GET http://localhost:3000/category

3

4 # Response includes ObjectIds and names:

5 # [

6 # {"_id": "64a7b8c9d1e2f3g4h5i6j7k8", "name": "Simulation"},

7 # {"_id": "507f1f77bcf86cd799439011", "name": "Plants"}

8 #]

4.5.4 Create New Project

The project creation request uses multipart form data to handle both metadata and file uploads.
The request is structured into distinct parts: projectdata contains the main project metadata
including title, description, categories, and access settings, while versiondata holds version-
specific information such as version number, dependencies, and version description. Additionally,
two files are uploaded: imagefile for the project preview image and gszfile containing the
GroIMP model file.

Note: Categories are provided as names (not IDs) and are automatically converted to their
respective ObjectIds internally.

This example demonstrates creating a complete project entry with both metadata and file uploads
using multipart form data encoding.

1 # Create project with multipart form data

2 POST http://localhost:3000/project_json

3 Content-Type: multipart/form-data

CHAPTER 4. IMPLEMENTATION 21

4 # Authentication cookie included automatically

5

6 # Form fields:

7 projectdata: {

8 "title": "Tree Growth Simulator",

9 "shortdescription": "Models realistic tree development",

10 "description": "Detailed project description here",

11 "categories": ["Simulation", "Plants"],

12 "howitworks": "Implementation details",

13 "access": {"public": true}

14 }

15

16 versiondata: {

17 "version": "1.0.0",

18 "dependencies": ["plugin1"],

19 "description": "Initial version release"

20 }

21

22 # File uploads:

23 imagefile: [binary file data - project preview image]

24 gszfile: [binary file data - GroIMP model file]

25

26 # Response includes both project and version IDs:

27 # {

28 # "newProject": {"_id": "64a7b8c9d1e2f3g4h5i6j7k8", ...},

29 # "newVersion": {"_id": "507f1f77bcf86cd799439011"}

30 # }

4.5.5 Create a Referencing Project

This request creates a second project that establishes a relationship with the previously created
project through the relatedmodels field.

1 # Create second project that references the first

2 POST http://localhost:3000/project_json

3 Content-Type: multipart/form-data

4

5 projectdata: {

6 "title": "Advanced Tree Growth Model",

7 "shortdescription": "Enhanced version with additional features",

8 "description": "Extended project description",

9 "categories": ["Simulation", "Plants"],

10 "relatedmodels": ["64a7b8c9d1e2f3g4h5i6j7k8"], #ID of above project

CHAPTER 4. IMPLEMENTATION 22

11 "access": {"public": true}

12 }

13

14 versiondata: {

15 "version": "1.0.0",

16 "dependencies": ["plugin2"],

17 "description": "Initial version with enhanced features"

18 }

19

20 imagefile: [binary file data]

21 gszfile: [binary file data]

Important Note: The relatedmodels field creates a unidirectional reference. The first project’s
relatedmodels array is not automatically updated - a manual update via a PATCH-request is
needed if bidirectional references are desired.

4.5.6 Fetch Specific Project

This GET request retrieves detailed information about a specific project, including all associated
metadata, version references, and relationship data.

1 # Retrieve the first project with all details

2 GET http://localhost:3000/project_json/64a7b8c9d1e2f3g4h5i6j7k8

3

4 # Response includes populated project data with:

5 # - All project metadata

6 # - Array of version ObjectIds

7 # - Category ObjectIds (resolved from names during creation)

8 # - Related model references

4.5.7 Version Management Operations

The following examples demonstrate adding new versions to existing projects and removing
outdated versions from the system.

1 # Add new version to the project

2 POST http://localhost:3000/version/64a7b8c9d1e2f3g4h5i6j7k8

3 Content-Type: multipart/form-data

4

5 version: 2.0.0

6 dependencies: plugin3

7 description: Major update with performance improvements

8 gszfile: [binary file data - updated model]

9

CHAPTER 4. IMPLEMENTATION 23

10 # Response: {"newVersion": {"_id": "new_version_object_id"}}

This DELETE request removes a specific version from the project, cleaning up both database
records and associated files from the filesystem.

1 # Delete the original version (first version)

2 DELETE http://localhost:3000/version/507f1f77bcf86cd799439011

3

4 # This removes:

5 # - Version document from database

6 # - Associated files from filesystem

7 # - Version ID from project's versions array

4.5.8 Session Termination

The logout request terminates the user session by invalidating the authentication cookie and
clearing it from the client.

1 # Logout and clear authentication cookie

2 POST http://localhost:3000/logout

3

4 # Response: {"message": "Logout successful"}

5 # Authentication cookie is cleared (maxAge: 0)

4.6 Web Interface

The project gallery web interface represents the primary user-facing component of the application
and is currently hosted on gallery.grogra.de/project_gallery. It can be also accessed
from grogra.de via the menu point Gallery.

This module provides project browsing, detailed project viewing, and user interaction capabilities
through a web browser interface.

Some functionality requires a grogra.de user account, namely uploading and editing projects.
The rest of the features is available for accountless users as well, including searching, filtering,
viewing and downloading projects.

4.6.1 Navigation and Functionality

This section demonstrates the functionality of the new gallery and explains how to navigate its
interface.

CHAPTER 4. IMPLEMENTATION 24

Main Page

When opening the GroIMP Project Gallery on gallery.grogra.de, the user is greeted by its
main page as shown in Figure 4.1.

Figure 4.1: The Main Page of the gallery as it is displayed when not logged in.

At the top is a banner displaying "GroIMP Project Gallery". Clicking the title leads to a clean
version of gallery.grogra.de without any enabled filters, sorting options, search terms, and
other metadata. To the left of the title is a button that leads back to grogra.de. Another button
on the right leads to the Login Page. The banner changes depending on the user’s authentication
status. An authenticated user sees a banner as shown in Figure 4.2 with additional buttons: The
Upload Project button is displayed next to the grogra.de button and leads to the Upload Page. A
Logout button replaces the Login button next to the logged-in user’s username. Clicking this button
logs the user out, clearing the login cookie and terminating the session on the server side, returning
to the main page shown in Figure 4.1.

Figure 4.2: The banner has additional buttons after login.

CHAPTER 4. IMPLEMENTATION 25

On the left is a sidebar titled Categories. It scrolls independently of the rest of the website and
displays all available categories for projects. Clicking a category reloads the main page with the
selected category as a set filter option.

The search box below the banner provides options for entering search terms, filtering, and sorting.
It is possible to search by title, uploader, and description. While the former two directly correspond
to the projects’ metadata fields, the description field searches all text-based metadata informa-
tion fields (see Appendix B for a full list of fields). The search implementation uses MongoDB
aggregation pipelines for efficient filtering (see Main Gallery Endpoint for technical details).

Categories and tags have a suggestions feature. When typing, the server suggests existing
categories and tags (note that there are currently no tags) in a small pop-up as shown in Figure 4.3.
Clicking a suggestion auto-completes the user input. Multiple categories and tags can be added
separated by commas and receive separate suggestions (see Live Suggestion System for technical
implementation details).

Figure 4.3: Example for a suggestion pop-up for the category "AbstractModels"

It is also possible to sort by title, uploader, creation date, and date of last update. By clicking
one of the options once, the options are sorted in ascending order indicated by a small triangle
pointing up next to the clicked option. Another click reverses the order (descending) indicated by
the triangle now pointing down.

The number of results per page can be set by choosing an option (10, 20, 50, 100) from the
drop-down menu.

The results appear below the search box. They can be navigated using page numbers located

CHAPTER 4. IMPLEMENTATION 26

above and below the results and arrows. The single arrows are for next page (>) and previous page
(<) while the double arrows are for first page («) and last page (»). For every result, a title in bold
as well as the uploader, creation date, and date of last update are displayed next to the image
representing the project. Clicking a result redirects to the corresponding Project Detail page.

Login Page

The login page can be seen in Figure 4.4. The banner is replaced by a Return to Overview button in
the top left that leads back to the Main Page on click.

Figure 4.4: On the Login Page the user can log in with his grogra.de credentials.

The login interface in the middle of the page titled Login has two fields for username and password
respectively, a Login button to confirm the user input, and a register hyperlink that leads to the
grogra.de page for registering, though it is currently disabled. Instead, for registration, a
request needs to be made by contacting the department (see grogra.de for contact details). After
a successful login, the user is redirected back to the Main Page with added functionality (see
Authentication Routes for technical implementation details).

Upload Page

The upload page shown in Figure 4.5 serves a form that allows a logged-in user to upload a new
project to the gallery. The banner’s title is changed to Upload New Project and the button that links

CHAPTER 4. IMPLEMENTATION 27

grogra.de is replaced by a Return to Overview button similar to the login page. The top right still
shows the username and Logout button similar to the main page banner.

Figure 4.5: On the Upload Page a logged in user can upload his projects.

The form is split into two parts. The first contains all the fields for the general project metadata.
The second part contains all the version metadata. Most fields are plain text fields, like description
that also allow for simple HTML formatting (see Appendix D for allowed HTML tags) to stylize
the description. Categories and Tags have the suggestion system (Section 4.6.1) implemented here
as well (see Live Suggestion System for technical implementation details). The Related Models field
only accepts valid project IDs separated by comma that will then directly link the corresponding
projects on the Project Detail Page of the created project. The version field is pre-filled with "1.0"
but can still be changed.

The only required fields are the title and the two file uploads at the bottom of the form. To upload
a file, the user has to click the Choose File button; then the standard file selection window for
the browser and operating system in use will pop up as shown in Figure 4.6. The project file is
expected to be a .GSZ or .RGG file, while the image file is expected to be .JPG, .PNG, or .GIF
format and is set up this way in both file selection windows respectively.

CHAPTER 4. IMPLEMENTATION 28

Figure 4.6: Choosing a project file for upload in Mozilla Firefox under Windows 11.

After all required fields are filled and other fields are filled to the user’s satisfaction, clicking the
Submit button sends the form. If the project is created successfully, the user is then redirected to
the just created Project Detail Page.

Project Detail Page

When viewing a project in detail, the page looks similar to Figure 4.7; in this example, the project
"ant" is shown. The page dynamically loads project metadata and version information through
dedicated route handlers (see Project Detail View for implementation details). In the banner, the
Return to Overview button (linking the Main Page) as well as either username and Logout button
(logging out and redirecting to the Main Page) or the Login button (linking the Login Page) are
shown.

CHAPTER 4. IMPLEMENTATION 29

Figure 4.7: The Project Detail page for the project ant as an example.

If the user account has the rights to edit the project, an Edit Project button is displayed. Clicking
the button opens an editing window as shown in Figure 4.8.

CHAPTER 4. IMPLEMENTATION 30

Figure 4.8: Editing window for editing ant

Here the project’s information can be edited, including the upload of a new image (replacing the
old one). At the bottom, below the fields, are three buttons as shown in Figure 4.9.

CHAPTER 4. IMPLEMENTATION 31

Figure 4.9: The three buttons at the bottom of the project edit form

Cancel cancels any changes, Delete deletes the entire project, and Apply applies any changes. All
three options need confirmation.

Further down on the page, all metadata fields that are in use by the project are displayed as seen in
Figure 4.10. In this example, we have the following fields:

ID This field shows the unique project ID that can be referenced in the Related Models field of
other projects and shared with other users for immediate access to the project by navigat-
ing to gallery.grogra.de/project_gallery/<Project-ID> (this is the same as the
project details website link in the browser’s address field).

Uploader This shows the user account that uploaded this project. The name links to the main
page with the username set as a search term.

Short Description A short text-based description.

Created At This displays the date when the project was added to the gallery. Note that this project
is part of the Legacy Data.

Updated At This displays the date of the last update.

Description This is the most general of the many different text-based fields.

Related Models Here are all the projects linked that are somehow related. Clicking a name links
to the respective project detail page.

Categories Here is a list of the categories this project is part of. Clicking a category links to the
Main Page with the category as an enabled filter.

CHAPTER 4. IMPLEMENTATION 32

Figure 4.10: The full project information for ant is shown below its image.

At the bottom of the page is the Version section. Here it is possible to select a version via the
drop-down list as shown in Figure 4.11.

Figure 4.11: A version can be selected from the drop-down list

Doing so enables both the Download button and, if the user account has the rights to edit this
project, also the Edit Version button, as shown in Figure 4.12. Additional version information fields
are shown for the selected version below the drop-down menu.

CHAPTER 4. IMPLEMENTATION 33

Figure 4.12: Selecting a version enables version information, downloading and editing.

Clicking the Download button prompts a download of the project file of the selected version for the
project through the browser. If available to the user, the Edit Version button opens a window for
editing the selected version similar to the project editing window as shown in Figure 4.13.

Figure 4.13: The selected version can be modified in the editing window.

CHAPTER 4. IMPLEMENTATION 34

Here the version metadata can be changed as well as a project file uploaded to replace the existing
project file. This form has the same three buttons for canceling and applying changes as well as
deleting the version as the project’s edit page has.

Alternatively to editing versions, an authorized user can also add a new version to the project by
clicking the New Version button. As shown in Figure 4.14, the form for adding versions is very
similar to the edit form.

Figure 4.14: New versions can be added to the project in the Add Version window.

After a version number is entered, a project file is uploaded, and any other optional information
is added, the form can be submitted via the Submit button or the process can be aborted via the

CHAPTER 4. IMPLEMENTATION 35

Cancel button (see Template System Implementation for technical implementation details).

4.6.2 Technical Background

The web view is implemented through the project_gallery.js route handler and its associ-
ated view templates. This router (located in the routes folder) serves as the central controller
for all web-based project interactions, implementing six primary endpoints that handle different
aspects of the gallery functionality.

Main Gallery Endpoint (GET /) implements the core project browsing functionality with fil-
tering and pagination capabilities. The route processes multiple query parameters including
search terms, category filters, tag filters, and uploader-specific views. For example, a request like
/project_gallery?search=leaf&category=plants&page=2 triggers a MongoDB aggre-
gation pipeline that combines text search across project titles and descriptions with category
matching and pagination logic. The implementation constructs dynamic aggregation pipelines to
handle complex filtering scenarios:

1 // Building dynamic aggregation pipeline

2 const pipeline = [];

3

4 if (searchTerm) {

5 pipeline.push({ $match: { $text: { $search: searchTerm } } });

6 }

7

8 if (categoryFilter && categoryFilter.length > 0) {

9 pipeline.push({ $match: { categories: { $in: categoryFilter } } });

10 }

11

12 if (tagFilter && tagFilter.length > 0) {

13 pipeline.push({ $match: { tags: { $in: tagFilter } } });

14 }

15

16 pipeline.push({ $skip: (page - 1) * limit });

17 pipeline.push({ $limit: limit });

The search functionality employs MongoDB text indexing for efficient full-text search across
project titles and descriptions. The route implements pagination with configurable page sizes
and generates navigation metadata for the frontend, including total project counts and page
boundaries.

Project Detail View (GET /:project_id) provides detailed individual project information
retrieval. The route utilizes the getModel middleware to validate project existence and retrieve
project data, then performs additional aggregation operations to gather related version information:

CHAPTER 4. IMPLEMENTATION 36

1 router.get('/:project_id', jwtCheck, sanitizeInput, getModel,

2 logRequestResponse, async (req, res) => {

3 try {

4 const project = res.entry;

5 const versions = await Versions.find({

6 project_id: project._id

7 }).sort({ createdAt: -1 });

8

9 res.render('gallery/show', {

10 project,

11 versions,

12 isAuthenticated: req.isAuthenticated,

13 isAdmin: req.isAdmin,

14 userId: req.userId,

15 tokenPayload: req.tokenPayload

16 });

17 } catch (error) {

18 res.status(500).json({ message: error.message });

19 }

20 });

Upload Interface (GET /upload) serves the project submission form with authentication require-
ments. The route verifies user authentication status through the jwtCheck middleware and
renders the upload interface with user context information.

Authentication Routes includes login interface serving (GET /login) and forbidden access
handling (GET /forbidden), providing consistent error messaging and user guidance for
authentication-related scenarios.

Resource Serving (GET /:project_id/image) handles project image delivery for displaying
on the web page.

Category Endpoint (GET /categories) is a placeholder for a more advanced categories page in
the future.

Each route implements the complete middleware pipeline including JWT authentication checking,
input sanitization, request logging, and appropriate error handling to ensure secure and reliable
operation (see middleware section for more information).

Template System Implementation

The web interface employs four EJS templates (all located in the views/gallery folder) that
work in conjunction with the route handlers to generate dynamic HTML content.

Gallery Main Page Template (index.ejs) implements the main project browsing interface

CHAPTER 4. IMPLEMENTATION 37

with client-side functionality. The template generates responsive project listings with conditional
rendering based on authentication status:

1 <% if (isAuthenticated) { %>

2 Welcome, <%= tokenPayload.username %>

3 Logout

4 <% } else { %>

5 Login

6 <% } %>

The template implements integrated search forms with real-time suggestions, and provides navi-
gation controls including pagination and filtering options. For instance, when a user clicks on a
category filter, the interface constructs URLs like /project_gallery?category=Plants and
updates the display accordingly.

Project Detail Template (show.ejs) renders detailed project information including metadata
display, version management interfaces, and conditional edit capabilities. The template implements
overlay-based editing interfaces for both project information and version management, with form
submission handling through asynchronous JavaScript. Permission-based rendering ensures that
edit controls are only displayed to authorized users (project uploaders or administrators).

Upload Interface Template (upload.ejs) provides a complete project submission form with
integrated file upload capabilities and metadata input fields. The template implements client-side
form validation, progress feedback during file uploads, and integration with the live suggestion
system (see below) for categories and tags.

Authentication Templates includes the login interface (login.ejs) with WordPress data base
integration for user login and the forbidden access page (forbidden.ejs) for consistent error
handling.

Live Suggestion System

The suggestions.js (located in the static folder) module implements a client-side suggestion
system that enhances user experience during data entry. The system provides real-time suggestions
for category and tag input fields through integration with backend API endpoints.

The Core Functionality of the live suggestions centers around the attachLiveSuggestions
function, which accepts an input field identifier and a corresponding API endpoint:

1 function attachLiveSuggestions(inputId, suggestionsEndpoint) {

2 const input = document.getElementById(inputId);

3 const suggestionBox = document.createElement('ul');

4 suggestionBox.classList.add('suggestion-box');

5 input.parentNode.appendChild(suggestionBox);

6

CHAPTER 4. IMPLEMENTATION 38

7 let debounceTimeout;

8

9 const debounce = (func, delay) => {

10 clearTimeout(debounceTimeout);

11 debounceTimeout = setTimeout(func, delay);

12 };

13

14 input.addEventListener('input', () => {

15 const query = input.value.trim();

16 const parts = query.split(',');

17 const currentPart = parts[parts.length - 1].trim();

18

19 if (currentPart.length > 0) {

20 debounce(() => fetchSuggestions(currentPart), 300);

21 } else {

22 suggestionBox.style.display = 'none';

23 }

24 });

25 }

The function creates dynamic suggestion interfaces by generating unordered list elements po-
sitioned adjacent to the input field. The implementation supports multi-value input through
comma-separated parsing. For example, when a user types "Plants, LeafModels" in a cate-
gory field, the system parses the current segment ("LeafModels") and provides suggestions for
that term while preserving the previously selected "Plants" category.

Performance Optimization is achieved by employing a debouncing mechanism to prevent exces-
sive API calls during rapid user input. The system implements a 300-millisecond delay before
triggering another suggestion request, with automatic cancellation of pending requests when new
input is detected. This approach ensures responsive user interaction while minimizing server load.

For API Integration it utilizes asynchronous fetch requests to retrieve suggestion data from
backend endpoints:

1 async function fetchSuggestions(query) {

2 try {

3 const response = await

fetch(̀${suggestionsEndpoint}?q=${encodeURIComponent(query)}̀);↪→

4 if (!response.ok) {

5 throw new Error(̀HTTP error! status: ${response.status}̀);

6 }

7 const suggestions = await response.json();

8

9 suggestionBox.innerHTML = '';

CHAPTER 4. IMPLEMENTATION 39

10 suggestions.forEach(suggestion => {

11 const listItem = document.createElement('li');

12 listItem.textContent = suggestion;

13 listItem.addEventListener('click', () => {

14 selectSuggestion(suggestion);

15 });

16 suggestionBox.appendChild(listItem);

17 });

18

19 suggestionBox.style.display = suggestions.length > 0 ? 'block' :

'none';↪→

20 } catch (error) {

21 console.error('Error fetching suggestions:', error);

22 suggestionBox.style.display = 'none';

23 }

24 }

For instance, typing "Ar" triggers a request to /category/search?q=ar, which returns sug-
gestions like Architecture and ArtificialLife. The system handles API responses through
JSON parsing and implements error handling to maintain system stability during network issues
or API failures.

Finally for User Interface Integration it dynamically generates suggestion lists with a click-to-select
functionality, allowing users to quickly select from available options. The suggestion interface
includes proper styling integration and responsive behavior to maintain consistent user experience.

Static Resource Management

The application serves static resources through Express.js static middleware, with the primary
stylesheet (styles.css) providing basic styling for interface components. The stylesheet im-
plements responsive design principles and defines consistent visual themes for form elements,
navigation components, and interactive elements. Visual design complexity is intentionally min-
imized to focus on functional requirements, with button styling supporting different contexts
including navigation (.return-btn), authentication (.login-btn, .logout-btn), and pri-
mary actions (.upload-btn, .grogra-btn).

4.7 Legacy Data Migration

To migrate the old data to the new gallery, several important refactoring steps were required. First,
the .DESC files were converted into the .JSON format. The Python json package [23] provides
functionality to convert dictionaries into JSON, so a dictionary was created using keys derived
from the different metadata in the pattern file. Some keys were renamed to better reflect their

CHAPTER 4. IMPLEMENTATION 40

meaning in the database context, and additional keys were introduced to provide new information,
such as access control. The date field was split into two parts, createdAt and updatedAt, and
reformatted to match the MongoDB standard. Furthermore, a clear reference to the image file
was added to support personalized naming schemes and enable the possibility of multiple image
uploads in the future (see Appendix A.2 for a full example comparison).

For that purpose, the desc_to_jsonv4_1.py script was created. It reads the .DESC files and
the folder structure in which they are placed, identifies the associated images, and constructs the
.JSON files from the .DESC files.

How to run the Script

The script has the following start options mostly for debugging purposes:

-i for importing directly into mongodb, for that the CLIENT, DB and COLLECTION global variables
need to be filled with the respective information in the main function from the mongoDB
database. They are pre-filled with my testing database as can be seen below.

1 global CLIENT

2 CLIENT = MongoClient('mongodb://localhost:27017/')

3 global DB

4 DB = CLIENT['gallery']

5 global COLLECTION

6 COLLECTION = DB['groimp_projects']

-r for searching sub folders of the current folder as well, which is needed for searching the server
files properly. It is optional to give a path for the folder that will contain the .JSON files as a
last argument, the default path is ./json_files.

-a for only searching the current folder, used mainly for testing purposes. Using this option in
conjunction with ’-r’ can lead to errors or unintended behavior.

neither -r nor -a for converting a single .DESC file to .JSON. This expects a single .DESC file
name as an argument.

For working with the old database files, the script needs to be placed next to or inside the old
gallery server folder gallerySRC and run the file with the following command:

python ./desc_to_json_v4_1.py -r

The code then sifts through the old server files looking for .DESC files and their associated .RGG

or .GSZ file as well as the the image file in either .PNG, .JPG or .GIF file format. All the files are
then copied to new folders at the location of the script. The .RGG and .GSZ files are placed in the
project folder, the images are placed in the images folder and the newly created .JSON files
are placed in the json_file folder (if this was not changed).

CHAPTER 4. IMPLEMENTATION 41

Before rerunning the script any existing .JSON files need to be deleted or moved, as they will NOT
be replaced, leading to duplicates with slightly altered names.

4.7.1 Uploading the Legacy Data to the New Server

To automate the upload of the legacy data to the new server, I created another script
legacy_data_api_requests_v4_1.py. This is a python module that is to be used in the
interactive python shell. The script needs to be placed in the same folder as the folders created by
the previous script. To start the shell with the module use the following command:

python -i -m legacy_data_api_requests_v4_1

The module contains multiple functions.

List of available functions:

setEnv() - set Environment to prod(uction) or test.

login() - logs in to the API providing a web token for authentification.

addCategories() - Adds categories to the API.

uploadOne(json_file_path) - Uploads a single JSON file to the API.

uploadRelated() - Uploads JSON files with non-empty 'relatedmodels' field

and updates related projects.

uploadAll() - Uploads all JSON files to the API.

uploadNoRelation() - Uploads JSON files with empty 'relatedmodels' field.

version_test() - Sends a test request to the 'version' endpoint.

upload_queue_test() - Tests the upload queue functionality.

process_upload_queue() - Processes the upload queue.

help() - Displays this help message.

The following assumes a freshly set up server: Before uploading the data via the API the user
needs to set the correct environment first, by running the setEnv() function. Providing ’test’ as a
parameter or none at all will set the api_endpoint to test_api_endpoint while providing
’prod’ as a parameter sets it to prod_api_endpoint. The current test_api_endpoint is set to
a locally set up test server while the prod_api_endpoint is set to the new grogra.de gallery
on gallery.grogra.de.

The next step is to log in on the API. For that the user needs an existing grogra.de account, run
the login() function and then enter the grogra.de login credentials. The session token will be
saved automatically and is available as long as the interactive python environment is open or until
it expires on the server side (4 hours).

Now the user can simply run addCategories() to upload all the pre-defined categories from
the script and then uploadAll() to start the upload process for the legacy data. This will first
upload all projects without relations to other projects by calling uploadNoRelation().

CHAPTER 4. IMPLEMENTATION 42

After that uploadRelated() is run to upload all Projects with relation and setting the relation in
the relatedmodels field to the correct ID. When the related Project can not be found it it probably
is a bi-directional relation, so the ID that is returned on database entry creation and information
about the related project are pushed into the upload queue as a tuple.

When all projects are uploaded the processUploadQueue() function is called which works
through the previously created upload queue and sets all the bi-directional relations for the projects.

The projects are now successfully uploaded via API to the server.

4.8 Conclusion

This work successfully achieved its primary objective of designing and implementing a modern,
database-driven gallery system for the GroIMP community. The developed platform introduces
significant improvements through its structured database schema, RESTful API architecture, and
intuitive web interface.

A key accomplishment was the successful migration of legacy data, ensuring continuity with
existing community contributions while enabling enhanced search capabilities, categorization, and
version management. The technology stack of JavaScript, Node.js, Express, and MongoDB proved
effective for rapid development. However, the considerable time spent debugging runtime errors
highlighted that TypeScript would have been a more suitable choice, as its static type checking
would have prevented many issues while maintaining JavaScript’s flexibility [24].

Several areas remain for future development to fully realize the platform’s potential. The tagging
system requires complete web interface integration, and group functionality with authorization
controls needs implementation to enable collaboration and selective project sharing. Most im-
portantly, tighter integration with the GroIMP software itself would provide substantial benefits
through direct API access for seamless project loading and saving.

In summary, this work establishes a robust foundation for a modernized GroIMP gallery system
that substantially improves accessibility, maintainability, user experience and collaboration within
the GroIMP community.

Bibliography

[1] O. Kniemeyer, “Design and implementation of a graph grammar based language
for functional-structural plant modelling,” PhD thesis, Brandenburg University of
Technology Cottbus-Senftenberg, 2008. [Online]. Available: https://opus4.kobv.de/opus4-
btu/frontdoor/index/index/docId/462

[2] M. Fabrika, L. Scheer, R. Sedmák, W. Kurth, and M. Schön, “Crown architecture and
structural development of young Norway spruce trees (Picea abies Karst.): A basis
for more realistic growth modelling,” BioResources, vol. 14, no. 1, pp. 908–921, 2019.
[Online]. Available: https://bioresources.cnr.ncsu.edu/resources/crown-architecture-and-
structural-development-of-young-norway-spruce-trees-picea-abies-karst-a-basis-for-more-
realistic-growth-modelling/

[3] M. Henke, W. Kurth, and G. H. Buck-Sorlin, “Fspm-p: towards a general functional-
structural plant model for robust and comprehensive model development,” Frontiers
of Computer Science, vol. 10, no. 6, pp. 1103–1117, 2016. [Online]. Available: https:
//doi.org/10.1007/s11704-015-4472-8

[4] G. Heidsieck, T. Oberländer, T. Hay, and W. Kurth, “Pointcloud: Implementation of point
clouds as graphs in the 3d plant modeling platform groimp,” Journal of Open Source Software,
vol. 10, no. 110, p. 8062, 2025. [Online]. Available: https://doi.org/10.21105/joss.08062

[5] GitHub, Inc., “GitHub: Where the world builds software,” https://github.com, 2024, accessed:
September 20, 2025.

[6] CERN and OpenAIRE, “Zenodo - Research. Shared.” https://zenodo.org, 2024, digital reposi-
tory for research data and software. Accessed: September 20, 2025.

[7] N. Le Novère, B. Bornstein, A. Broicher, M. Courtot, M. Donizelli, H. Dharuri, L. Li, H. Sauro,
M. Schilstra, B. E. Shapiro, J. L. Snoep, and M. Hucka, “BioModels Database: a free, centralized
database of curated, published, quantitative kinetic models of biochemical and cellular
systems,” Nucleic acids research, vol. 34, no. suppl_1, pp. D689–D691, 2006, https://www.ebi.
ac.uk/biomodels/.

43

https://opus4.kobv.de/opus4-btu/frontdoor/index/index/docId/462
https://opus4.kobv.de/opus4-btu/frontdoor/index/index/docId/462
https://bioresources.cnr.ncsu.edu/resources/crown-architecture-and-structural-development-of-young-norway-spruce-trees-picea-abies-karst-a-basis-for-more-realistic-growth-modelling/
https://bioresources.cnr.ncsu.edu/resources/crown-architecture-and-structural-development-of-young-norway-spruce-trees-picea-abies-karst-a-basis-for-more-realistic-growth-modelling/
https://bioresources.cnr.ncsu.edu/resources/crown-architecture-and-structural-development-of-young-norway-spruce-trees-picea-abies-karst-a-basis-for-more-realistic-growth-modelling/
https://doi.org/10.1007/s11704-015-4472-8
https://doi.org/10.1007/s11704-015-4472-8
https://doi.org/10.21105/joss.08062
https://github.com
https://zenodo.org
https://www.ebi.ac.uk/biomodels/
https://www.ebi.ac.uk/biomodels/

BIBLIOGRAPHY 44

[8] The Apache Software Foundation, “Apache forrest: A publishing framework,” Feb. 2011,
available at: https://forrest.apache.org. Retired project; version 0.9 (2011-02-07). Accessed on
2025-09-16.

[9] WordPress Foundation, “Wordpress developer resources,” https://developer.wordpress.org/,
accessed: 3 September 2025.

[10] P. P. Chen, “The entity–relationship model: Toward a unified view of data,” ACM Transactions
on Database Systems, vol. 1, no. 1, pp. 9–36, 1976, available at: https://dl.acm.org/doi/10.
1145/320434.320440, accessed: 3 September 2025.

[11] Oracle Corporation, “Mysql 8.0 reference manual,” https://dev.mysql.com/doc/refman/8.0/
en/, accessed: 3 September 2025.

[12] MongoDB, Inc., “Mongodb documentation,” https://www.mongodb.com/docs/, accessed:
3 September 2025.

[13] Mozilla Contributors, “Javascript | mdn web docs,” https://developer.mozilla.org/en-US/
docs/Web/JavaScript, accessed: 3 September 2025.

[14] Microsoft Corporation, “Typescript documentation,” https://www.typescriptlang.org/docs/,
accessed: 3 September 2025.

[15] ——, “Visual studio code documentation,” https://code.visualstudio.com/docs, accessed: 3
September 2025.

[16] OpenJS Foundation, “Node.js documentation,” https://nodejs.org/en/docs, accessed: 3
September 2025.

[17] R. T. Fielding, “Architectural styles and the design of network-based software architectures,”
Ph.D. dissertation, University of California, Irvine, 2000, available at: https://www.ics.uci.
edu/~fielding/pubs/dissertation/top.htm, accessed: 3 September 2025.

[18] Express.js Contributors, “Express.js documentation,” https://expressjs.com/, accessed: 3
September 2025.

[19] EJS Contributors, “Ejs: Embedded javascript templates,” https://ejs.co/, accessed: 3 Septem-
ber 2025.

[20] Valeri Karpov and contributors, “Mongoose — elegant mongodb object modeling for node.js,”
https://mongoosejs.com, 2025, accessed on 2025-09-16.

[21] Sidorares, Andrey and contributors, “mysql2/promise — mysql client for node.js,” https:
//github.com/sidorares/node-mysql2, 2025, accessed on 2025-09-16.

[22] E. V. Contributors, “express-validator,” 2024, zugriff am 18. September 2025. [Online].
Available: https://www.npmjs.com/package/express-validator

https://forrest.apache.org
https://developer.wordpress.org/
https://dl.acm.org/doi/10.1145/320434.320440
https://dl.acm.org/doi/10.1145/320434.320440
https://dev.mysql.com/doc/refman/8.0/en/
https://dev.mysql.com/doc/refman/8.0/en/
https://www.mongodb.com/docs/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://www.typescriptlang.org/docs/
https://code.visualstudio.com/docs
https://nodejs.org/en/docs
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://expressjs.com/
https://ejs.co/
https://mongoosejs.com
https://github.com/sidorares/node-mysql2
https://github.com/sidorares/node-mysql2
https://www.npmjs.com/package/express-validator

BIBLIOGRAPHY 45

[23] P. S. Foundation, “json — json encoder and decoder,” 2025, zugriff am 18. September 2025.
[Online]. Available: https://docs.python.org/3/library/json.html

[24] D. Fateh, “TypeScript vs. JavaScript: Explaining the differences,” Oct. 2023, accessed:
29 October 2025. [Online]. Available: https://www.contentful.com/blog/typescript-vs-
javascript-explaining-the-differences/

https://docs.python.org/3/library/json.html
https://www.contentful.com/blog/typescript-vs-javascript-explaining-the-differences/
https://www.contentful.com/blog/typescript-vs-javascript-explaining-the-differences/

Appendix A

Legacy Data

A.1 DESC File Pattern

TITLE:

SHORTDESCRIPTION:

DOWNLOAD: *.gsz

DATE:

AUTHOR:

DESCRIPTION:

HOWITWORKS:

THINGSTONOTICE:

THINGSTOTRY:

EXTENDINGTHEMODEL:

RELATEDMODELS:

CREDITSANDREFERENCES:

46

APPENDIX A. LEGACY DATA 47

A.2 DESC to JSON Conversion

A.2.1 DESC File

1 TITLE: ant

2

3 SHORTDESCRIPTION: A simple ant model.

4

5 DOWNLOAD: ant.gsz.

6

7 DATE: 20.04.2009

8

9 AUTHOR: O. Kniemeyer

10

11 DESCRIPTION: Ants are a popular subject in Artificial Life. A simplistic

simulation can be implemented easily.↪→

12

13 HOWITWORKS:

14

15 THINGSTONOTICE:

16

17 THINGSTOTRY:

18

19 EXTENDINGTHEMODEL:

20

21 RELATEDMODELS: antb, ant_simulation↪→

22

23 CREDITSANDREFERENCES:

A.2.2 JSON File after Refactoring with Python Script

1 {

2 "title": "ant",

3 "shortdescription": "A simple ant model.",

4 "projectfile": "ant.gsz",

5 "author": "O. Kniemeyer",

6 "description": "Ants are a popular subject in Artificial Life. A simplistic

simulation can be implemented easily.",↪→

7 "howitworks": "",

8 "thingstonotice": "",

9 "thingstotry": "",

10 "extendingthemodel": "",

APPENDIX A. LEGACY DATA 48

11 "relatedmodels": [

12 "antb",

13 "ant_simulation"

14],

15 "creditsandreferences": "",

16 "createdAt": "2009-04-20T00:00:00.000+01:00",

17 "updatedAt": "2009-04-20T00:00:00.000+01:00",

18 "categories": [

19 "ArtificialLife"

20],

21 "access": {

22 "public": true,

23 "readAccess": [],

24 "writeAccess": []

25 },

26 "imagefile": "ant.png"

27 }

A.2.3 Database JSON Document

1 {

2 "access": {

3 "public": true,

4 "readAccess": [],

5 "writeAccess": []

6 },

7 "_id": "67053a3e256715cda41c85b5",

8 "title": "ant",

9 "shortdescription": "A simple ant model.",

10 "uploadedBy": "dforys",

11 "description": "Ants are a popular subject in Artificial Life. A simplistic

simulation can be implemented easily.",↪→

12 "howitworks": "",

13 "thingstonotice": "",

14 "thingstotry": "",

15 "extendingthemodel": "",

16 "relatedmodels": [

17 "67053a3e256715cda41c85bb",

18 "67053a3e256715cda41c85c7"

19],

20 "creditsandreferences": "",

21 "categories": [

22 "6705382e256715cda41c7dec"

APPENDIX A. LEGACY DATA 49

23],

24 "tags": [],

25 "imagefile": "ant.png",

26 "versions": [

27 "67053a3e256715cda41c85b7"

28],

29 "createdAt": "2009-04-19T23:00:00.000Z",

30 "updatedAt": "2024-10-08T13:57:23.252Z",

31 "__v": 0

32 }

Associated Version

1 {

2 "_id":"67053a3e256715cda41c85b7",

3 "dependencies":[],

4 "version":"1.0",

5 "description":"",

6 "__v":0

7 }

A.3 Categories

AbstractModels

AlgorithmicBeauty

Architecture

ArtificialLife

CoursesAndTutorials

FSPM

FormalSystems

FractalsAndCurves

Games

GroPhysics

LeafModels

Others

PlantStands

Plants

StepByStep

StepByStep2

Teaching

Technics

APPENDIX A. LEGACY DATA 50

XL4C4D

english

Appendix B

Database Models

B.1 GroIMP Projects Model

File: db_models/groimp_projects.js
Collection Name: groimp_projects
Main Entity: Core project model representing GroIMP modelling projects

B.1.1 Schema Fields

Basic Information

• title (String) – Project title

• shortdescription (String) – Brief project summary

• authors (String) – Project authors/creators

• uploadedBy (String) – User who uploaded the project

• imagefile (String) – Filename of project preview image

Detailed Documentation

• description (String) – Full project description

• howitworks (String) – Technical explanation of project mechanics

• thingstonotice (String) – Important observations for users

• thingstotry (String) – Suggested experiments/modifications

• extendingthemodel (String) – Guide for extending the project

• creditsandreferences (String) – Attribution and citations

51

APPENDIX B. DATABASE MODELS 52

Relationships (ObjectId References)

• relatedmodels (Array) – References to other groimp_projects

• categories (Array) – References to categories collection

• tags (Array) – References to tags collection

• versions (Array) – References to versions collection

Access Control System

• access.public (Boolean, default: false) – Public visibility flag

• access.readAccess (Array) – References to groups with read permissions (not in Use yet)

• access.writeAccess (Array) – References to groups with write permissions (not in Use yet)

Automatic Timestamps

• createdAt – Auto-generated creation timestamp

• updatedAt – Auto-generated last modification timestamp

Format Example:"2023-10-03T14:30:00.000+00:00"

B.2 Versions Model

File: db_models/versions.js
Collection Name: Version
Purpose: Stores different versions/iterations of project files

B.2.1 Schema Fields

• dependencies (Array of Strings) – Required dependencies for this version

• version (String) – Version identifier (e.g., "1.0.0", "v2.1", defaults to 1.0 for first project upload)

• description (String) – Version-specific description/changelog

B.2.2 File Storage

• Actual files (.gsz, .rgg, .zip) stored in filesystem: FILE_LOCATION/project_id/version_id/

• Database only stores metadata, not file content

APPENDIX B. DATABASE MODELS 53

B.3 Tags Model

File: db_models/tags.js
Collection Name: tags
Purpose: tagging system for user made categorization of projects

B.3.1 Schema Fields

• name (String, required, unique) – Tag name/label

B.4 Categories Model

File: db_models/categories.js
Collection Name: categories
Purpose: Admin made categorization system for projects

B.4.1 Schema Fields

• name (String, required, unique) – Category name

B.5 Groups Model

File: db_models/groups.js
Collection Name: groups
Purpose: User group management for access control, still work in progress

B.5.1 Schema Fields

• name (String) – Group identifier

• description (String) – Group purpose/description

• members (Array) – References to users collection

B.6 Database Relationships Overview

groimp_projects (1) ←→ (many) versions

groimp_projects (many) ←→ (many) categories

groimp_projects (many) ←→ (many) tags

groimp_projects (many) ←→ (many) groimp_projects (self-reference)

groimp_projects (many) ←→ (many) groups (via access control)

groups (many) ←→ (many) users (external reference)

Appendix C

API Reference Documentation

This appendix provides a complete reference for all available API endpoints in the gallery database
server. All endpoints follow RESTful conventions with appropriate HTTP methods and status
codes.

C.1 Authentication

C.1.1 Login

Endpoint: POST /login

Description: Authenticate user credentials and establish session

Content-Type: application/x-www-form-urlencoded

Authentication: None required

Request Body: • username (string, required) – User login name

• password (string, required) – User password

Response: Sets HTTP-only authentication cookie

Status Codes: 200 (Success) | 403 (Authentication failed) | 500 (Server error)

C.1.2 Logout

Endpoint: POST /logout

Description: Terminate user session and clear authentication cookie

Authentication: None required

Response: Clears authentication cookie

54

APPENDIX C. API REFERENCE DOCUMENTATION 55

Status Codes: 200 (Success)

C.2 Project Management (JSON API)

C.2.1 Retrieve Projects

Endpoint: GET /project_json

Description: Retrieve all projects with optional filtering

Authentication: None required

Query Parameters: • category (ObjectId) – Filter by category ID

• uploadedBy (string) – Filter by uploader username

• access.public (boolean) – Filter by public access

• Any other project field for exact matching

Status Codes: 200 (Success) | 404 (No projects found) | 500 (Server error)

Endpoint: GET /project_json/:project_id

Description: Retrieve specific project by ID

Authentication: None required

Path Parameters: project_id (ObjectId, required) – Unique project identifier

Status Codes: 200 (Success) | 404 (Project not found) | 500 (Server error)

C.2.2 Create Project

Endpoint: POST /project_json

Description: Create new project with initial version and file uploads

Content-Type: multipart/form-data

Authentication: JWT token required

Form Fields: projectdata (JSON string, required) – Project metadata:

• title (string) – Project title

• shortdescription (string) – Brief description

• description (string) – Detailed description

• categories (array of strings) – Category names

APPENDIX C. API REFERENCE DOCUMENTATION 56

• howitworks (string) – Implementation details

• access (object) – Access control settings

• relatedmodels (array of ObjectIds) – Related project references

versiondata (JSON string, required) – Initial version metadata:

• version (string) – Version identifier

• dependencies (array of strings) – Required dependencies

• description (string) – Version description

File uploads:

• imagefile (file, required) – Project preview image

• gszfile (file, required) – GroIMP model file

File Limits: 1GB maximum per file

Status Codes: 201 (Created) | 400 (Bad request) | 401 (Unauthorized) | 500 (Server error)

C.2.3 Update Project

Endpoint: PUT /project_json/:project_id

Description: Complete replacement of project metadata

Content-Type: application/json

Authentication: JWT token required (owner or admin)

Authorization: Owner or administrator privileges

Request Body: Complete project object

Status Codes: 200 (Success) | 401 (Unauthorized) | 403 (Forbidden) | 404 (Not found) | 500 (Server
error)

Endpoint: PATCH /project_json/:project_id

Description: Partial update of project metadata with optional image replacement

Content-Type: multipart/form-data

Authentication: JWT token required (owner or admin)

Authorization: Owner or administrator privileges

Form Fields: • title (string, optional) – Updated project title

• shortdescription (string, optional) – Updated brief description

APPENDIX C. API REFERENCE DOCUMENTATION 57

• categories (string, optional) – Comma-separated category names

• relatedmodels (string, optional) – Comma-separated project IDs

• current_imagefile (string, optional) – Current image filename for replacement

• imagefile (file, optional) – New project preview image

• Any other project field for partial updates

Status Codes: 200 (Success) | 401 (Unauthorized) | 403 (Forbidden) | 404 (Not found) | 500 (Server
error)

C.2.4 Delete Project

Endpoint: DELETE /project_json/:project_id

Description: Delete project and all associated versions and files

Authentication: JWT token required (owner or admin)

Authorization: Owner or administrator privileges

Side Effects: • Deletes all project versions from database

• Removes all associated files from filesystem

• Cascades deletion to version directory structure

Status Codes: 200 (Success) | 401 (Unauthorized) | 403 (Forbidden) | 404 (Not found) | 500 (Server
error)

C.2.5 Version-Specific Operations

Endpoint: PATCH /project_json/:project_id/:version_id

Description: Update specific project version with file replacement

Content-Type: multipart/form-data

Authentication: JWT token required (owner or admin)

Authorization: Owner or administrator privileges

Form Fields: • imagefile (file, optional) – New model file for version

• Version metadata fields for updates

Status Codes: 200 (Success) | 401 (Unauthorized) | 403 (Forbidden) | 404 (Not found) | 500 (Server
error)

Endpoint: DELETE /project_json/:project_id/:version_id

APPENDIX C. API REFERENCE DOCUMENTATION 58

Description: Delete specific project version

Authentication: JWT token required (owner or admin)

Authorization: Owner or administrator privileges

Side Effects: Removes version files and directory structure

Status Codes: 200 (Success) | 401 (Unauthorized) | 403 (Forbidden) | 404 (Not found) | 500 (Server
error)

C.3 Version Control

C.3.1 Retrieve Version

Endpoint: GET /version/:id

Description: Retrieve specific version metadata by ID

Authentication: None required

Path Parameters: id (ObjectId, required) – Version identifier

Status Codes: 200 (Success) | 404 (Not found) | 500 (Server error)

C.3.2 Create Version

Endpoint: POST /version/:project_id

Description: Add new version to existing project

Content-Type: multipart/form-data

Authentication: JWT token required (owner or admin)

Authorization: Owner or administrator privileges

Form Fields: • version (string, required) – Version identifier

• dependencies (string, required) – Comma-separated dependencies

• description (string, required) – Version description

• gszfile (file, required) – GroIMP model file

Side Effects: Updates parent project’s versions array

Status Codes: 201 (Created) | 400 (Bad request) | 401 (Unauthorized) | 403 (Forbidden) | 500 (Server
error)

APPENDIX C. API REFERENCE DOCUMENTATION 59

C.3.3 Update Version

Endpoint: PATCH /version/:version_id

Description: Update version metadata and optionally replace model file

Content-Type: multipart/form-data

Authentication: JWT token required (owner or admin)

Authorization: Owner or administrator privileges

Form Fields: • version (string, optional) – Updated version identifier

• dependencies (string, optional) – Updated dependencies

• description (string, optional) – Updated description

• project_id (ObjectId, required) – Parent project identifier

• gszfile (file, optional) – New model file

Side Effects: Replaces existing version files when new file provided

Status Codes: 200 (Success) | 401 (Unauthorized) | 403 (Forbidden) | 404 (Not found) | 500 (Server
error)

C.3.4 Delete Version

Endpoint: DELETE /version/:version_id

Description: Delete version and associated files

Authentication: JWT token required (owner or admin)

Authorization: Owner or administrator privileges

Side Effects: Removes version directory and all contained files

Status Codes: 200 (Success) | 401 (Unauthorized) | 403 (Forbidden) | 404 (Not found) | 500 (Server
error)

C.3.5 Download Version Files

Endpoint: GET /version/download/:project_id/:version_id

Description: Download model files (.gsz, .rgg, .zip) for specific version

Authentication: None required

Path Parameters: • project_id (ObjectId, required) – Project identifier

• version_id (ObjectId, required) – Version identifier

APPENDIX C. API REFERENCE DOCUMENTATION 60

Response: Binary file download with appropriate content headers

Status Codes: 200 (Success) | 404 (File not found) | 500 (Server error)

C.4 Category Management

C.4.1 Retrieve Categories

Endpoint: GET /category

Description: Retrieve all available categories

Authentication: None required

Response: Array of category objects with _id and name fields

Status Codes: 200 (Success) | 500 (Server error)

Endpoint: GET /category/search?q=:query

Description: Search categories by name prefix (autocomplete functionality)

Authentication: None required

Query Parameters: q (string, required) – Search prefix (case-insensitive)

Response: Limited array of matching categories (max 10 results)

Status Codes: 200 (Success) | 400 (Missing query) | 500 (Server error)

Endpoint: GET /category/:name

Description: Retrieve specific category by name identifier

Authentication: None required

Path Parameters: name (string, required) – Category identifier

Status Codes: 200 (Success) | 404 (Not found) | 500 (Server error)

C.4.2 Create Category

Endpoint: POST /category

Description: Create new category

Content-Type: application/json

Authentication: JWT token required

Request Body: name (string, required) – Category name (must be unique)

APPENDIX C. API REFERENCE DOCUMENTATION 61

Status Codes: 201 (Created) | 400 (Bad request) | 401 (Unauthorized) | 500 (Server error)

C.4.3 Delete Category

Endpoint: DELETE /category/:name

Description: Delete category by name identifier

Authentication: JWT token required

Path Parameters: name (string, required) – Category identifier

Warning: Does not automatically remove category references from existing projects

Status Codes: 200 (Success) | 401 (Unauthorized) | 404 (Not found) | 500 (Server error)

C.5 Tag Management

C.5.1 Retrieve Tags

Endpoint: GET /tags

Description: Retrieve all available tags

Authentication: None required

Response: Array of tag objects with _id and name fields

Status Codes: 200 (Success) | 500 (Server error)

Endpoint: GET /tags/search?q=:query

Description: Search tags by name prefix (autocomplete functionality)

Authentication: None required

Query Parameters: q (string, required) – Search prefix (case-insensitive)

Response: Limited array of matching tags (max 10 results)

Status Codes: 200 (Success) | 400 (Missing query) | 500 (Server error)

Endpoint: GET /tags/:id

Description: Retrieve specific tag by ObjectId

Authentication: None required

Path Parameters: id (ObjectId, required) – Tag identifier

Status Codes: 200 (Success) | 404 (Not found) | 500 (Server error)

APPENDIX C. API REFERENCE DOCUMENTATION 62

C.5.2 Create Tag

Endpoint: POST /tags

Description: Create new tag

Content-Type: application/json

Authentication: JWT token required

Request Body: name (string, required) – Tag name

Status Codes: 201 (Created) | 400 (Bad request) | 401 (Unauthorized) | 500 (Server error)

C.5.3 Update Tag

Endpoint: PUT /tags/:id

Description: Complete replacement of tag name

Content-Type: application/json

Authentication: JWT token required

Request Body: name (string, required) – New tag name

Status Codes: 200 (Success) | 401 (Unauthorized) | 404 (Not found) | 500 (Server error)

Endpoint: PATCH /tags/:id

Description: Partial update of tag name

Content-Type: application/json

Authentication: JWT token required

Request Body: name (string, optional) – Updated tag name

Status Codes: 200 (Success) | 401 (Unauthorized) | 404 (Not found) | 500 (Server error)

C.5.4 Delete Tag

Endpoint: DELETE /tags/:id

Description: Delete tag by ObjectId

Authentication: JWT token required

Path Parameters: id (ObjectId, required) – Tag identifier

Status Codes: 200 (Success) | 401 (Unauthorized) | 404 (Not found) | 500 (Server error)

APPENDIX C. API REFERENCE DOCUMENTATION 63

C.6 Project Gallery (Web Interface)

C.6.1 Gallery Views

Endpoint: GET /project_gallery

Description: Render paginated gallery interface with filtering and search

Authentication: JWT token required

Query Parameters: • title (string, optional) – Search in project titles

• category (string/ObjectId, optional) – Filter by category name or ID

• tag (string/ObjectId, optional) – Filter by tag name or ID

• uploader (string, optional) – Filter by uploader username

• description (string, optional) – Search in all description fields

• page (integer, optional) – Page number for pagination (default: 1)

• limit (integer, optional) – Items per page (default: 10)

• sortBy (string, optional) – Sort field name

• order (string, optional) – Sort order: ’asc’ or ’desc’

Response: Rendered HTML gallery page with pagination controls

Status Codes: 200 (Success) | 401 (Unauthorized) | 500 (Server error)

Endpoint: GET /project_gallery/categories

Description: Render categories overview page

Authentication: None required

Response: Rendered HTML page listing all categories

Status Codes: 200 (Success) | 500 (Server error)

Endpoint: GET /project_gallery/upload

Description: Render project upload form

Authentication: JWT token required

Response: Rendered HTML upload form

Status Codes: 200 (Success) | 401 (Unauthorized)

Endpoint: GET /project_gallery/login

APPENDIX C. API REFERENCE DOCUMENTATION 64

Description: Render login form

Authentication: None required

Response: Rendered HTML login form

Status Codes: 200 (Success)

Endpoint: ALL /project_gallery/forbidden

Description: Render access denied page

Authentication: None required

Response: Rendered HTML forbidden access page

Status Codes: 200 (Success)

C.6.2 Project Detail Views

Endpoint: GET /project_gallery/:project_id

Description: Render detailed project view with versions, related models, categories, and tags

Authentication: JWT token required

Path Parameters: project_id (ObjectId, required) – Project identifier

Response: Rendered HTML project detail page with populated relationships

Status Codes: 200 (Success) | 401 (Unauthorized) | 404 (Not found) | 500 (Server error)

Endpoint: GET /project_gallery/:project_id/image

Description: Serve project preview image file

Authentication: None required

Path Parameters: project_id (ObjectId, required) – Project identifier

Response: Binary image file stream

Status Codes: 200 (Success) | 404 (Image not found)

C.7 Security and Authorization

C.7.1 Authentication Requirements

JWT Tokens: Managed via HTTP-only cookies for security

Token Expiration: 4 hours from login

APPENDIX C. API REFERENCE DOCUMENTATION 65

Secure Cookies: HTTPS-only in production environment

Session Management: Automatic cookie clearing on logout

C.7.2 Authorization Levels

Public Access: GET operations for projects, categories, tags, versions, and downloads

Authenticated Users: Project creation, gallery access, upload interface

Resource Owners: Full read/write access owned projects and versions

Administrators: Full system access, user management capabilities

C.7.3 Input Validation and Security

Sanitization: All user inputs processed through sanitization middleware

File Upload Limits: 1GB maximum file size per upload

XSS Protection: HTML content sanitization for multiline text fields

Path Traversal Protection: Secure file handling with controlled directory access

SQL Injection Prevention: Parameterized queries for MySQL authentication

C.8 Error Handling

C.8.1 HTTP Status Codes

200 OK Successful operation
201 Created Resource created successfully
400 Bad Request Invalid request format or missing required fields
401 Unauthorized Missing or invalid authentication credentials
403 Forbidden Insufficient permissions for requested operation
404 Not Found Requested resource does not exist
500 Internal Server Error Server-side processing error

C.8.2 Error Response Format

All error responses follow a consistent JSON format:

{

"message": "Human-readable error description",

"error": "Technical error identifier" // Optional

}

APPENDIX C. API REFERENCE DOCUMENTATION 66

C.8.3 File System Error Handling

Upload Failures: Automatic cleanup of partially uploaded files

Directory Operations: Graceful handling of file system permission errors

File Replacement: Atomic operations to prevent data corruption

Cleanup on Error: Rollback of file operations when database operations fail

C.9 API Usage Examples

C.9.1 Authentication Flow

Example login request:

POST /login

Content-Type: application/x-www-form-urlencoded

username=john.doe&password=securepassword123

C.9.2 Project Creation Example

Example project creation with file upload:

POST /project_json

Content-Type: multipart/form-data

Authorization: Bearer <jwt-token>

projectdata={"title":"Plant Growth Model","shortdescription":"Simulates plant growth patterns"}

versiondata={"version":"1.0","dependencies":["GroIMP 2.3"],"description":"Initial release"}

imagefile=<binary-image-data>

gszfile=<binary-model-data>

C.9.3 Query Examples

Retrieve public projects in a specific category:

GET /project_json?access.public=true&category=<category-id>

Search projects by uploader:

GET /project_json?uploadedBy=researcher123

Appendix D

HTML Sanitization and Allowed Tags

This appendix details the HTML sanitization policies implemented in the application to prevent
XSS attacks while maintaining essential formatting capabilities. The system employs a whitelist
approach, where all HTML tags, CSS styling, and JavaScript event handlers are automatically
removed from user input to ensure application security. Only the following whitelisted elements
are permitted:

D.1 Text Formatting

• – Bold text formatting

• <i> – Italic text formatting

• – Emphasized text

• – Strong importance text

D.2 Structure and Lists

• <p> – Paragraph elements

•
 – Line breaks

• – Unordered lists

• – Ordered lists

• – List items

67

APPENDIX D. HTML SANITIZATION AND ALLOWED TAGS 68

D.3 Links

• <a> – Hyperlinks (only href attribute allowed)

	Abstract
	Contents
	Introduction
	Background and Motivation
	Related Work
	Objectives
	Scope and Limitations
	Thesis Structure

	Analysis
	Existing Infrastructure and Old Data
	Requirements
	Database
	API
	Web Page

	Design
	Database
	API and Web Page
	API
	Web Page

	File Management
	Supplementary Scripting and Testing Tools

	Implementation
	Server Overview
	Server Initialization and Database Setup
	Middleware Stack and Security
	Routing Architecture

	Database
	Middleware
	Authentication and Authorization Middleware
	Input Validation and Sanitization
	Data Processing Middleware
	Utility Middleware

	Routing
	Route Organization
	Project Data Access

	API Workflow Example
	User Authentication
	Create Categories
	Fetch All Categories
	Create New Project
	Create a Referencing Project
	Fetch Specific Project
	Version Management Operations
	Session Termination

	Web Interface
	Navigation and Functionality
	Technical Background

	Legacy Data Migration
	Uploading the Legacy Data to the New Server

	Conclusion

	Bibliography
	Legacy Data
	DESC File Pattern
	DESC to JSON Conversion
	DESC File
	JSON File after Refactoring with Python Script
	Database JSON Document

	Categories

	Database Models
	GroIMP Projects Model
	Schema Fields

	Versions Model
	Schema Fields
	File Storage

	Tags Model
	Schema Fields

	Categories Model
	Schema Fields

	Groups Model
	Schema Fields

	Database Relationships Overview

	API Reference Documentation
	Authentication
	Login
	Logout

	Project Management (JSON API)
	Retrieve Projects
	Create Project
	Update Project
	Delete Project
	Version-Specific Operations

	Version Control
	Retrieve Version
	Create Version
	Update Version
	Delete Version
	Download Version Files

	Category Management
	Retrieve Categories
	Create Category
	Delete Category

	Tag Management
	Retrieve Tags
	Create Tag
	Update Tag
	Delete Tag

	Project Gallery (Web Interface)
	Gallery Views
	Project Detail Views

	Security and Authorization
	Authentication Requirements
	Authorization Levels
	Input Validation and Security

	Error Handling
	HTTP Status Codes
	Error Response Format
	File System Error Handling

	API Usage Examples
	Authentication Flow
	Project Creation Example
	Query Examples

	HTML Sanitization and Allowed Tags
	Text Formatting
	Structure and Lists
	Links

