6. Introduction to rule-based simulation

Examples of processes which are studied by
simulation on a computer:

e growth and crown development of a plant

e chemical reactions in a cell

e population dynamics of competing tree species

e foraging behaviour of ants

e water flow in the soil

e interception of photosynthetically-active
radiation by a canopy

e dynamics of traffic on a road network

e economic decisions of traders on a market

Different formal systems, programming languages
and software platforms are in use which support
such simulations.

As an example, we demonstrate the usage of
graph-grammar rules in the language XL to
simulate the 3-dimensional development of plants.

XL = eXtended L-system language

L-systems (Lindenmayer systems):
rules working on character strings,
named after the botanist

Aristid Lindenmayer (1925-1989)

L-systems (Lindenmayer systems)

rule systems for the replacement of
character strings

In each derivation step parallel
replacement of all characters for
which there is one applicable rule

An L-system mathematically:
a triple (Z, o, R) with:
Y a set of characters, the alphabet,

a a string with characters from X, the start word (also
"Axiom"),

R a set of rules of the form
character — string of characters;

with the characters taken from .

A derivation step (rewriting) of a string consists of the
replacement of all of its characters which occur in left-hand
sides of rules by the corresponding right-hand sides.

characters for which no rule is applicable stay
as they are.

Result;

Derivation chain of strings, developed from the start word
by iterated rewriting.

Example:

alphabet {A, B}, start word A
set of rules:

A—>B
B - AB

derivation chain:
A —-> B > AB - BAB - ABBAB — BABABBAB

— ABBABBABABBAB — BABABBABABBABBABABBAB
- ...

still missing for modelling biological structures in space:
a geometrical interpretation

Thus we add:
a function which assigns to each string a subset of 3-D space

Jnterpreted” L-system processing

oL —> Gy —> G, —> Gy —> ...

VS N
81 82 83

S;, S,, S,, ... can be seen as developmental steps of an
object, a scene or an organism.

For the interpretation: turtle geometry

Turtle:

goes according to commands

&

FO FO RU(90)

Her

FO RU(90) FO

FO RU(90) FO RU(90) LMul(0.5) FO

*_

Jurtle”: virtual device for drawing or construction
in 2-D or 3-D space

- able to store information (graphical and non-
graphical)

- equipped with a memory containing state
Information (important for branch construction)

- current turtle state contains e.g. current line
thickness, step length, colour, further properties
of the object which is constructed next

Turtle commands in XL (selection):

FO "Forward", with construction of an element

(line segment, shoot, internode...),
uses as length the current step size
(the zero stands for ,no explicit specification of length™)

MO forward without construction (Move)

L (x) change current step size (length) to x
LAdd (x) increment the current step size to x
LMul (x) multiply the current step size by x

D (x), DAdd(x), DMul (x) analogously for current
thickness

Repetition of substrings possible with "for"
e.d., for ((1:3)) (ABC)
yields A B CABCABC

Exercise:
what is the result of the interpretation of

L(10) for ((1:6))
(FO RU(90) LMul (0.8)) 7

Example:

L(100) D(3) RU(-90) F(50) RU(90) MO RU(90) D(10) FO FO
D(3) RU(90) FO FO RU(90) F(150) RU(90) F(140) RU(90)
M(30) F(30) M(30) F(30) RU(120) MO Sphere(1l5)

generates

Extension to 3-D graphics:

turtle rotations by 3 axes in space

left

head

*/

up

RL

-

RU

3-D commands:
RU (45) rotation of the turtle around the "up" axis by 45°

RL (...) , RH(...) analogously by "left" and "head" axis

up-, left- and head axis form an orthogonal spatial coordinate
system which is carried by the turtle

Branches:
realization with memory commands

[put current state on stack
("Ablage", Stack)
] take current state from stack

and let it become the current state
(thus: end of branch!)

FO [RU(-20) FO] RU(20) DMul (2) FO

—

How to execute a turtle command sequence
with GrolMP

write into a GrolMP project file (or into a file with filename
extension . rgg):

protected void init()

[
Axiom ==> turtle command sequence ;

]

Example: Drawing a triangle

&

protected void init()
[Axiom ==> RU(30) F(10) RU(120) F(10) RU(120) F(10) 1

see file sm09 e01.rgg

now we make the turtle-generated patterns
dynamic

Interpreted L-system:
The alphabet of the L-system contains the turtle
command language as a subset.

Example:

rules
A => FO0 [RU(45) B] A ;
B ==> FO B ;

start word A

A —> FO[RU@5B]A —» FO[RU(45)FOB]FO[RU@5 B]A — ..

v v

interpretation” : .
by ’ ;
turtle geometry 4
Fo|
A " /Fo
 PL:
FO FoO

(A and B are normally not interpreted geometrically.)

also modelling of objects different from plants

example space filling curve:

Axiom ==> L(10) RU(-45) X RU(-45) F (1) RU(-45) X;
X ==> X FO X RU(-45) F(1) RU(-45) X FO X

.’3‘.
ORI
S
SN
CREAIALARLAL ALK
O I E BTG SIS
OIS,
OO NN,
S SO S SO S SN LS traditional Indian kolam
A A A A A A A A A A At A A A A A A A A A . i
LN JAnklets of Krishna
50 550 55
o
o

<

O
QRO
9,

@,

S

e

>

@

<

<

3

%o
000000;00000
OO OO OO

O

9,
®
@
>
<
o,
5
9,
7
S
<5
&

&
S
O
Qo
Q
S

D
%,
Q
OO
&

A simple plant with dichotomous branching:
sample file sm09 e03.rgg

/* You learn at this example:
- how to construct a simple plant model (according to architectural model Schoute)
- how to specify branches with [] */

// Example of a simple tree architecture (Schoute architecture)

f/=mm——————— Extensions to the standard alphabet -—---—-—---
//Shoot () is an extension of the turtle-command F() and stands for an annual shoot
module Shoot (float len) extends F(len)

// Bud is an extension of a sphere object and stands for a terminal bud

// its strength controls the length of the produced shoot in the next timestep
module Bud(float strength) extends Sphere(0.2)

{{ setShader (RED); setTransform(0, 0, 0.3),; }}; * 5 %

protected void init ()

[// start structure (a bud)
Axiom ==> Bud(5);

1

public void run ()
[
// a square bracket [] will indicate a branch
// (daughter relation)
// Rotation around upward axis (RU) and head axis (RH)
// Decrease of strength of the Bud (each step by 20%)

Bud(x) ==> Shoot(x) [RU(30) Bud(0.8*x)] [RU(-30) Bud(0.8*x)];

extension of the concept of symbol:

allow real-valued parameters not only for turtle commands like
"RU (45)" and "F (3) ", but for all characters

— parametric L-systems

arbitrarily long, finite lists of parameters
parameters get values when the rule matches

Example:
rue A(x, y) ==> F(7*x+10) B(y/2)

current symbol is e.g.: A(2, 6)
after rule application: F(24) B(3)

parameters can be checked in conditions
(logical conditions with Java syntax):

A(x, v) (x >= 17 && y !'= 0) ==

Stochastic L-systems
usage of pseudo-random numbers

Example:

deterministic stochastic

Axiom ==> L(100) D(5) A; Axiom ==> L(100) D(5) A;

A ==> FO LMul(0.7) DMul(0.7) A ==> FO LMul (0.7) DMul(0.7)
[RU(50) 2] [RU(-10) A]; if (probability(0.5))

([RU(50) A] [RU(-10) A])
else
([RU(-50) A] [RU(10) A]),

XL functions for pseudo-random numbers:

Math.random() (enerates floating-point random number
between O and 1

random(a, b) generates floating point random number
between a and b

probability (x) gives 1 with probability X,
O with probability 1—x

How to create a random distribution in the plane:
Axiom ==> D(0.5) for ((1:300))
([Translate(random(0, 100) , random(0, 100), 0)
F(random(5, 30)) 1)

view from above oblique view

1 AHM

ity lul dl\| |
M“' (m;m] \'\W l't rr‘u

The step towards graph grammars

drawback of L-systems:

* in L-systems with branches (by turtle commands)
only 2 possible relations between objects:
"direct successor" and "branch”

4

extensions:

« to permit additional types of relations
« to permit cycles

— graph grammar

Example of a graph grammar rule:

==> (B)} (%)

» each left-hand side of a rule describes a
subgraph (a pattern of nodes and edges,
which is looked for in the whole graph), which
is replaced when the rule is applied.

> each right-hand side of a rule defines a new
subgraph which is inserted as substitute for
the removed subgraph.

special variant of graph grammars:
Relational growth grammars (RGG)

- parallel application, same as for L-systems

- attributed vertices and edges

- vertex types with object hierarchy (a vertex type
can inherit properties from another vertex type)

The language XL

specification: Kniemeyer (2008)

e extension of Java

e allows also specification of L-systems and RGGs
(graph grammars) in an intuitive rule notation

imperative blocks, like in Java: {...}

rule-oriented blocks (RGG blocks): [...]

During execution of an XL program, there is one
graph (represented in the computer memory)
which is transformed by the rules

- the nodes (vertices) of this graph are basically
Java objects
(they can also be geometrical objects)

Example:
rules for the fractal curve shown in Chapter 5

public void derivation ()

[
Axiom ==> RU(90) F(10);

F(x) ==> F(x/3) RU(-60) F(x/3) RU(120) F(x/3) RU(-60) F(x/3);
]

nodes of the edges (type ,successor’)
graph

Notation of graphs in XL

example:

(B]—(c]

QT is represented in programme code as
¢ g a:A [-e-> B C] [<-f- D] -g-> E [a]
D)~ A==(F

(>: successor edge, -:-: branch edge)

(the representation is not uniquel)

Queries in the graph
a query is enclosed by (* *)

The elements are given in their expected order, e.g.:
(* A A B *) searches for a subgraph which consists of a
sequence of nodes of the types A A B, connected by

SuUccessor edges.

example for a graph query:

binary tree, growth shall start only if there is enough distance
to other F objects
Axiom ==> F(100) [RU(-30) A(70)] RU(30) A(100);
a:A(s) ==> if (forall(distance(a, (* F *)) > 60))
(RH(180) F(s) [RU(-30) A(70) 1 RU(30) A(100))

without the if* condition with the ,if* condition

Example for modelling a "simple" plant:
a daisy

(following K. Smolenova and R. Hemmerling)
Steps shown here:

@ Gather Data

@ Create Topology

€ Texturing

@ Parameter Calibration and Randomness

Results of data / knowledge collection about daisy
(Bellis perennis):

e Small rounded or spoon-shaped
evergreen leaves, 2-5 cm long, close
to the ground, rosulate arrangement

e Leafless stem, 2-10 cm long
e Green bracts in two rows, usually 13

e Flower base, conical shape, 6 mm
long, 5 mm in diameter

e White flowers, 11 mm long, 2 mm
wide

e Yellow disc flowers

Definitions of the parts of the virtual plant (restricted
to the above-ground part):

module Leaf;
module Stem:
module Bract:
module FlowerBase;
module Flower

Definition of the corresponding parameters:

module Leaf(float length, float diameter);
module Stem(float length, float diameter);
module Bract(float lenth, float diameter);
module FlowerBase(float length, float diameter);
module Flower(float length, float diameter,

int color);

How to assign a shape to a part?

Two possibilities in XL:
e by inheritance from a predefined geometrical
object (using the keyword "extends")

e by instantiation with one or more simpler
objects (using the arrow "==>" in the module
declaration)

module Leaf(float length, float diameter)
==> |eaf(length, diameter);
module Stem(float length, float diameter)
extends Cylinder(length, diameter/2);
module Bract(float lenth, float diameter)
==> |eaf(length, diameter);
module FlowerBase(float length, float diameter)
==> Cone(length , diameter/2);

module Flower(float length, float diameter,
int color)
==> if (color == YELLOW)
(Cylinder(length, diameter/2))
else if (color == WHITE)

(leaf(length , diameter));

Derivation of the leaves at the base of the plant:

Axiom ==>
// create rosette of 7 leaves,
// diameter is half of their length
for (int i:1:7)
(I
RH(i = 137.5)
M(i—1)
RU(leafAngle)
RH(90)
{ double r = 50 — i *x 5; }
Leaf(r, r/2)
1)

Derivation of the stem:

// create the stem, 70 mm long,
// diameter 2 mm
Stem (70, 2)

Derivation of the bracts:

// create 13 bracts,
// each 9 mm long, 2 mm in width
for (int i:1:13)
([
M(—1)
RH(360 = i / 13)
RU(bractAngle)
RH(90)
Bract(9, 2)

Derivation of the base of the inflorescence:

// create flower base,
// 6 nmm long, 5 mm diameter
FlowerBase (6, 5)

Derivation of the white flowers:

// create white flowers around flower base
for (int i:1:50)
([

M(—6 + i = 0.02)

RH(i = 13.7)

RU(whiteFlowerAngle)

RH(90)

Flower(11, 2, WHITE)

Derivation of the yellow flowers:

// create yellow flowers around flower base
for (int i:1:250)
([
{ float h =1 x 0.02; }
M(—h)
RH(i = 137.5)
Translate(h « k, 0, 0)
RU(whiteFlowerAngle « i / 250)
Flower(1.0 + 3.0 « (h / 5.0), 0.5, YELLOW)

1)

Result so far:

To obtain more visual realism, textures are needed.

Sources for surface textures of plants:

digital camera, scanner, existing images (from the
web or from botanical books)

Preparation of the textures:
e adjust lighting
e cut out, make background transparent
e resize (avoid too memory-consuming textures)

examples of prepared daisy textures:

Import of textures into GrolMP:
interactively

+| Images =10 x B Attribute Editor EEES
L2 g k| Attribute Editor
IS images
Object Lambert
; | 5 :
daisy_leaf_small ; Channel input Default
Diffuse colour Image
: k2
Image
Channel input Default |
Image ¥ daisy_leaf_small |
Specular colour Default
Shininess Default
r— Transparency
E Shaders |_‘.—I.Ell| Default
. Transparency Shininess Default
Shaders (s 7
i . nterpolate ransparency
Object : :
; Diffuse Trinsparency Dofault
Ambient colour
' leafShader Default
| Emissive colour Default

Application to an object (here: a leaf):

// obtain reference to named shader
ShaderRef leafShader = shader("leafShader");

// set shader during interpretation
module Leaf(float length, float diameter)
==> |eaf(length, diameter).(
setShader (leafShader));

Result of texturing the virtual plant:

Next steps:
Adjustment of parameters, introduction of

variability

e Make plant look more natural by generating values (angle, length,
diameter, ...) randomly

» Perform statistical analysis of the model followed by parameter
adjustment until the model fits the observed data

e Perform statistical analysis of real plants to obtain mean and
variance for stochastic generation of parameter values

Result with stochastic variations:

Deficiencies:

The daisy model is purely structural (has no
processes like photosynthesis, respiration, uptake
of water and nutrients...); there is no dynamics
(growth, unfolding of organs, senescence...).

Next step would be:
Creation of a functional-structural plant model
(FSPM) with rules describing ontogenesis.

A simple functional-structural plant model in XL:
see example file sfspm09.gsz

includes:

- light emitted from a lamp

- interception of light by the leaves of the plant
- a submodel for photosynthesis

- transport of assimilates along the plant axes
- formation of new internodes and leaves

- growth of the organs

- flowering

executable by GrolIMP

The software GrolMP

GrolMP = "growth-grammar related interactive
modelling platform"

see http://www.grogra.de,

there you find also the link to the download site
http://sourceforge.net/projects/groimp/

and a gallery of examples.

See also the learning units about GrolMP
(author: K. Petersen, M.Sc. Forest Science),
available in StudIP.

GrolMP is an open source project. It combines:

- XL compiler and interpreter

- a development environment for XL

- an interactive 3-d modeller

- several 3-d renderers

- a 2-d graph visualization tool

- an editor for 3-d objects and attributes

- tools for texture generation

- an interface for measured tree architecture data

- a simulation tool for radiation in scenes

- support for solving differential equations in a
numerically stable way (for submodels)

- interfaces for data formats like dxf, obj, mtg, pdb

screenshot:

Edit ©bjects Panels Nst Help

il

s

derive Runderive Stop Reset
* -

View

Wiew Camera Render View + -

[sedt - Pipe.roa | [attribute Editor |

File Edit Search Markers Folding View Utiities Macros Plugins Help

-

LJEod &8 dar«al0 AKX O

IO Pipe.rag (project: [Pipe[2]f)
Afdir,del,vig) =-.
if (del >0y (.
Afdir,del-1,wig).
| else if (probability (p)) (.
0{0.001,0,1) M{vig) RH(90].
[Mark Circle(l) RU{RlAnglekdir) A(dir,DEL,vighVDECR)].J
RU[ROANgleXdir) A({-dir,DEL,wig*VDECR] .
] else (.
Q({0.001,0,1) Mi{wvig) RH(S50).

P Ly

% [RU(Rlanglekdir).

Leaf (53) Q(0.001,0,2.5) leaf(0.9, 0.5).(setMaterial(le™
| | >
JL141% (I, XL,UTF-8}- - - - UM

(4] Messaqesl L Consolel GV’BD""

layout graph

(=) Mets Ohbjects | {5 File Explarer I Shaders I
Ohbject

L

— %
o

——— ——gGae
-~

virtual barley
(Buck-Sorlin 2006)

virtual Black Alder tree, generated with GrolMP,
in a VRML scene (for Branitz Park Foundation,
Cottbus; Rogge & Moschner 2007)

= s G e X i ==

This and next images: students' results from
architecture seminar, BTU Cottbus 2007

‘\

i l‘l*' !‘37{::‘. 3 ‘

s 5 Y %

u 'iil-’|;=k1.uﬁgb N
\E"’I e ‘] 7 ' J

"lf". !_"|'_
| ":‘vﬁﬂ"!&-}m“hm 4 w.

virtual landscape with beech-spruce mixed stand
Hemmerling et al. 2008

