Part lll: Computer Science Essentials

1. Introduction to computer science

Fundamental notions, systematical overview

What is "Computer Science" / "Informatics" ?

"Computer Science" — science about a tool?

better names would be: "science of computing"
or "data processing science"
(focuses on activity instead of tool)

"Informatics": continental-European for "computer

science"
- French: "Informatique" (since 1960s)
- German: "Informatik"

Definition: "Science of the systematical processing of
information, especially the automatic processing by use
of digital computers".

Latin "informare":
to give structure to something; to educate; to picture

Information:

e independent fundamental entity of the world
besides matter and energy

e depends on previous knowledge of the receiver
of the information

e various approaches to quantify it

e we can consider information simply as
"interpreted data".

Data: represented information

(e.g. text in a book, magnetic patterns on a
harddisk, ...)

But:

Hermeneutics — "the art of interpretation” — is not
part of informatics, despite its name. Social and
cultural aspects of information are largely ignored.

"Computer": comes from "to compute"
= "to calculate".

"Algorithm":

The word comes from the Persian textbook writer
Abu Ja'far Mohammed ibn Madsa al-Khowarizmi

(= "father of Ja'far Mohammed, son of Moses,
coming from Khowarizm" — a town in Usbekistan,
today called Khiva.)

Al-Khowarizmi lived in Bhagdad, in the "House of
Wisdom"

wrote book about calculation:

"Kitab al jabr w'al-mugabala" (= "rules of
reconstitution and reduction")

— here the word "algebra" comes from!

Modern meaning of "algorithm™:

Finite set of rules which specify a sequence of
operations in order to solve a certain problem, with
the following properties:

1. Termination: An algorithm must come to an end
after a finite number of steps.

2. Definitness: Each step must be defined
precisely.

3. Input: An algorithm can need input values (e.g.
numbers).

4. Output: An algorithm must give one or more
output values.

5. Feasibility: An algorithm must be feasible; e.g.,
no intermediate step must depend on the solution
of some still unsolved mathematical problem.

(after Knuth 1973)

"Programme" (in American English: "program"):

Version of an algorithm which can be read,
interpreted and carried out by a computer.

Programming languages were designed to write
precise programmes (more precise than possible
in our natural language!) suitable for computers.

Some notes concerning the history of
programming:

Early phases of computer history: Hardware (= the
machines) was in focus (reason for the name
"computer science")

Later: Software (= programmes) increasingly
important, increasingly expensive in comparison to
hardware.

First “programmer”: Was a woman (Lady Ada Lovelace, daughter
of the poet Lord Byron): Developed programs for Babbage's (non-
functional) “analytical engine”

An early concept for a programming notation was the “Plankalkl”
(Zuse 1944), but it was not used in practice.

Programming these machines: Started with today so-called “ma-
chine languages” and “assembler languages” (both machine-
specific).

Later: so-called "high-level languages"

- more abstraction

- better readability for humans

- trying to integrate traditional mathematical notations

- platform-independent (not specific to certain machine)

FORTRAN (1954), COBOL (1958), LISP (1960),
Pascal (1971), C (1971), C++ (extension of C, 1992),
Java (1995), XL (2008) ...

(later more about programming)

Subject areas of computer science

1960s/1970s: Development of specialized university curricula

Basis: Mathematics, electrical engineering; no interest in soci-
al or cultural conditions and consequences, or more specifically: in
consequences for life at working place and leisure

Classical branches (from first recommendations for curricula in the
1960s): (a) theoretical informatics, (b) technical informatics, (c)
practical informatics, (d) applied informatics

Theoretical informatics: mathematical basis: not general “theory”
(which would include disciplines from the humanities and social
sciences relevant to informatics), but specialized “mathematical ba-
se”. Example questions:

Which problems can in principle be solved by a machine?

How can syntax and semantics of programming languages be de-
scribed?

Which kinds of logic can be used for automatic problem solving?

How do we measure how complicated problems are, for example
with respect to time or memory requirements?

Which kinds of problems can be solved with which abstract models
of computation?

How can be the correctness of a program be proved with mathe-
matical exactness?

Technical informatics: focused on hardware. Example questions:

How can computational objects and operations be represented with
physical means?

Which are the basic parts from which a computer should be built?
Which are the appropriate architectural decisions for a computer?

How can a processor be organized in order to execute a special kind
of program especially quickly?

How is information stored for quick access with small cost?

Which are the technical conditions for building networks from sepa-
rate computers?

How do we build computers which survive some defects?

Practical informatics: non application specific programming. Ex-
ample questions:

Which are the standard problems occurring in many application
areas, and how can they be solved?

Which data structures allow efficient solving of problems, and
which algorithms are best used on these data structures?

What types of programming languages are best suited to different
types of problems?

How must service programs be organized which provide the user
with an easier to use view of the machine than the bare hardware
would do?

How are high-level programs translated into a form which can be
executed by the underlying hardware?

How does one design user interfaces for end users?

How does one organize the development process of large
software systems? ("Software engineering")

Applied informatics: programming for specific application fields.
Example questions:

How are graphical objects represented in the computer, and how
can the be visualized?

Which numerical methods exist to model states and processes
happening in natural environments?

How should data base systems be structured to support the work
processes in a company?

Which techniques exist to simulate the working of the human mind
with computers?

What consequences has the use of computers for the quality of
life, both in general and at the working place in particular?

Informatics in the social context:

What ethical questions arise from the use of computers, and
how can they be answered?

(data security, privacy questions, computer viruses, hackers,
violence-promoting games, software piracy, ownership of
software and ideas, the open-source idea, use of information
technology for warfare, for crime, for sexual exploitation, for
terrorism...)

How does the use of computers influence our way of thinking
(about the world, about humans, about the mind, about
personal relationships of people...)?

How can computers, the Web and the "Web 2.0" (Facebook,
Twitter, Wikipedia etc.) be used to improve education /
autonomy of people / human rights / political participation... ?

2. Bepresentation and measurement of information

In digital computers and media, all data are
represented by combinations of only 2 elementary
states: 0 and 1

(can be "charged" / "not charged", "on" / "off",
"magnetized" / "not magnetized", "open" / "closed",

"high current” / "low current", "plus" / "minus”
etc.)

The smallest amount of information is thus the bit
(binary digit). It expresses which of two alternatives
is the case. The alternatives are often written

0 and 1, or (sometimes) 0 and L.

n bits: represent one out of 2" alternatives.

Codes

To represent information in a computer, we must
encode all with the two symbols 0 and 1!

What is a code ?

Code (1): A mapping f. A— Bfrom a set A of
elements to be stored or transferred to a set B
used for storage or transfer.

Code (2): The set B from definition (1).

AlB]|C J |K|L STV °

_.--—-T-"‘""‘"-—""
E|F MIN|O _ZLJX
H I PIQIR . Y|2

D
G
A: {A'BJC"'WZ}
B=§J,0,L,. 7

MESsaceE -t 3. 0J°4° 17710

digital (discrete) and analogue (continuous) codes

Analogue computers (representation of quantities with continuously
changing quantities): have vanished

Example: Vinyl records (analogue) vs. compact disks (discrete)

Benefit of discrete data representations: avoiding noise

For digital computers, we need binary codes:
B is a set of combinations of 0 and 1.

Examples:

For the primary compass direction: two bits necessary, and some
convention which bit-pair represents which direction. Example code:

(N,E,S,W}— {0,1}°>, N — 00, E — 01,5 — 10, W — 11

For Boolean values ‘True’ and ‘False’:

[T,F} — {0,1},T — 1,F — 0

For numbers 0 to 9: Binary Coded Decimal (BCD, non-total code,
i.e. some combinations are unused)

{0,1,..., 9} — {0,1}4
0+ 0000,1— 0001,2— 0010,3 — 0011,
4+ 0100,5+ 0101,6 — 0110,7 — 0111,
8 — 1000, 9 — 1001

Multiples of bits

Bits seldom occur as singles. Certain multiples of
bits are used as units for information (storage)
capacity.

1 Byte: 8 bits (can represent 1 of 2°
= 256 alternatives).

Example: one of the integer numbers between
—128 and +127.

1 Halfbyte: 4 bits.

Typically, memory stores are built for multiples of
bytes.

Prefixes: kilo, mega, giga, tera, peta, exa

- used in physics for the factors 10°, 10°, 10°, 10'%,
10'°,10™

- in computer science often used for the factors 2'°,
220 230 290 930 280 ‘\which are slightly larger

abbre- |meaning factor

viation

KB Kilobytes |2'° = 1024

MB Megabytes |2°° = 1,048,576

GB Gigabytes |2 =1,073,741,824

TB Terabytes [2*° =1,099,511,627,776

PB Petabytes |2°° = 1,125,899,906,842,624

EB Exabytes |2%° =1,152,921,504,606,846,976

Representation of numbers in the computer

For positive integers, basically the binary number
systemis used (cf. Part |, Chapter 6).

But: Numbers are usually stored in sections of
memory of fixed size (for reasons of organization
of memory access in the computer).

Integer representation in finite cells ("words" with fixed
length):

Computer memory: organized in finite cells. Typically: Multiples of
a byte.

How to store numbers in a 4-byte cell? Some encoding necessary.
232 different values can be represented.

Example: 0...232 — 1 can be represented as binary numbers.

Example including negative numbers: —231 .. 231 _ 1 can be re-
presented as two's complements numbers.

Two’s complement: Most used representation for integers from
range —2"—1 ... 27—1 _ 1 (with n-bit cell).

Non-negative numbers: Are represented simply as binary numbers.
Using n bits, the highest bit is always 0.

Negative numbers: (a) Represent their absolute value as binary
number, (b) then invert all bits (including the infinite number of lea-
ding zeros, resulting in an infinite number of leading ones), and (c)
add a 1. The last n bits are the two’'s complement of the value to be
represented.

Example for the "Two's complement":

8-bit two's complement representation of —77

1. Represent +77 as a binary number: 1001101
2. Invert all bits, including the leading 0s: ...1110110010
3. Add 1: ...1110110011

4. Use only the lowest (= rightmost) 8 bits: 10110011

Notice:
For 16-bit cells, the result would be 1111111110110011.

decimal system | 8-bit two’s complement
-128 1000 0000
-127 1000 0001
-126 1000 0010
-2 1111 1110
-1 1111 1111
0 0000 0000
1 0000 0001
126 0111 1110
127 0111 1111

Properties of the two's complement:

Code represents numbers —27—1 . 2on—1 _ 1
High bit represents sign.
Minimal value represented by 1000..., maximal by 0111....

—1 represented by 111....

Floating-point representations

Built analogously to the "scientific representation”
of numbers in the form m * 10°

- but using the binary system:
Represent numbers in the form
s *m * 2°
with sign s (41 or —1), non-negative mantissa m, and integer ex-
ponent e.

Representation is normalized if 1 < m < 2.

Finite number of bits for sign, mantissa and exponent; often used: 32
bits (single precision), 64 bits (double precision), 80 bits (extended
precision)

Typical layout of 32-bit floating point number:
Bit 31: represents s (1: negative; 0: positive)

Bits 30..23 (8 bits): represent e: Binary representation of ¢ + 127,
which allows the values —126...127. Value 0 is used in represen-
tation of number 0 and of unnormalized numbers. Value 255, used
to represent infinity and other exceptional values.

Bits 22..0 (23 bits): represent m, by binary representation of the
integer part of m = 223, without the leading 1.

Example: representing +26.625 as a 32-bit normalized floating
point number: 26.625;90 = 11010.1015. Normalizing yields
1.1010710105 = 2%. 32-bit floating point number (s=0, e=1311¢):

0'1000001110101010000000000000000

Digital representation of text

based on representation of letters

- depending on the alphabet: certain number of bits
necessary

- for 26 letters: at least 5 bits necessary
(2* =16 < 26, 2° = 32 > 26)

- but also encoding of digits, special signs, upper- and
lower-case letters... desirable

traditional 7-bit code:

ASCII (= American Standard Code for Information
Interchange)

ISO-646 norm

later extended to 8-bit code

examples: 00110000 = hex 30 = 48,4 = digit O
00110001 = hex 31 = 49, = digit 1

00111010 = hex 3A = 58, = ™

01000001 = hex 41 = 65 = ‘A
01000010 = hex 42 = 664, = 'B

01100001 = hex 61 = 9740 = 'a

ASCII Table:

Dez

O 0| QA | | B W] N =

—_ =
=] o

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
127

Okt
000
001
002
003
004
005
006
007
010
011
012
013

014

015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
027
0177

Non-printable characters
Hex | Char |Code |[Remark
0x00 [Ctrl-@ [NUL |Null prompt
0x01 |Ctrl-A |SOH Start of heading
0x02 |Ctrl-B |STX |Start of text
0x03 |Ctrl-C |[ETX |End of Text
0x04 |Ctrl-D [EOT |End of transmission
0x05 |Ctrl-E |[ENQ |Enquiry
0x06 [Ctrl-F |ACK |Acknowledge
0x07 |Ctrl-G |BEL |Bell
0x08 |Ctrl-H |BS |Backspace
0x09 |Ctrl-I HT |Horizontal tab
0x0A |Ctrl-J |[LF |Line feed
0x0B |Ctrl-K |VT |Vertical tab
0x0¢ | [ctrL FF |Form feed

NP |New page
0xOD |Ctrl-M |CR |Carriage return
0xOE |Ctrl-N |SO |Shift out
0xOF |Ctrl-O |[SI Shiftin
0x10 |Ctrl-P | DLE |Data link escape
0x11 |Ctrl-Q |DC1 |X-ON
0x12 |Ctrl-R [DC2
0x13 |Ctrl-S | DC3 | X-Off
0x14 |Ctrl-T |DC4
0x15 |Ctrl-U |NAK |No achnowledge
0x16 |Ctrl-V |SYN |Synchronous idle
0x17 |Ctr]l-W |[ETB |End transmission blocks
0x18 |Ctrl-X |CAN |Cancel
0x19 |Ctrl-Y |[EM |End of medium
0x1A |Ctrl-Z |SUB |[Substitute
0x1B |Ctrl-[|ESC |Escape
0x1C |Ctrl-\ |[FS |File separator
0x1D |Ctl-] |GS |Group separator
Ox1E |Ctrl-» |RS |Record separator
O0x1F |Ctrl-_ |US |Unit separator
0x7F DEL |Delete or rubout

Dez
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

Printable characters

Okt
040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077

0100

0101

0102

0103

0104

0105

0106

0107

0110

0111

0112

0113

0114

0115

0116

Hex Char Remark

0x20 blank

0x21 | ! |exclamation mark
0x22 | " |quotation mark
0x23 | #

0x24 | $ |Dollar character
0x25 | %

0x26 | &
0x27 | ' |apostroph
0x28 | (
0x29 |)

0x2A | * |asterisk
0x2B | + |plussign
0x2C s comma
0x2D | - |minus sign
0x2E | . |dot

0x2F
0x30
0x31
0x32
0x33

slash

0x34
0x35
0x36
0x37
0x38
0x39
0x3A | : |colon
0x3B
0x3C
0x3D
0x3E
0x3F
0x40

O X QA AN N AW N~ O~

semicolon

less than

A

euqality character

\

greater than

-~

interrogation mark
at

0x41
0x42
0x43
0x44
0x45
0x46
0x47
0x48
0x49
0x4A
0x4B
0x4C
0x4D
0x4E

Z 2| R = =z @l o "ol alw > 6

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

0117
0120
0121
0122
0123
0124
0125
0126
0127
0130
0131
0132
0133
0134
0135
0136
0137
0140
0141
0142
0143
0144
0145
0146
0147
0150
0151
0152
0153
0154
0155
0156
0157
0160
0161
0162
0163
0164
0165
0166
0167
0170
0171
0172
0173
0174
0175
0176

0x4F
0x50
0x51
0x52
0x53
0x54
0x55
0x56
0x57
0x58
0x59
0x5A
0x5B
0x5C
0x5D
0x5E
0x5F
0x60
0x61
0x62
0x63
0x64
0x65
0x66
0x67
0x68
0x69
0x6A
0x6B
0x6C
0x6D
0x6E
0x6F
0x70
0x71
0x72
0x73
0x74
0x75
0x76
0x77
0x78
0x79
0x7A
0x7B
0x7C
0x7D
0x7E

N < % 2| <clalal ol vo

[> | —| —

=l i~} =]

-

backslash

caret
low line

back quote

ASCII not sufficient for alphabets of the non-Anglo-
american world (not even for European alphabets with a,
6,0, B,é, 0,0, 4a..)

Unicode:
2 byte (= 16 bit) code for multilingual text processing
- can represent 65536 characters

amongst them: 27786 Chinese-Japanese-Korean
characters
11172 Hangul characters (Korean)
ancient Nordic runes
Tibetan characters
Cherokee characters ...

complete list see http://www.unicode.org/charts/

Unicode "Escape sequence" (to utilise it in the pro-
gramming language Java):
e.g., \u0041 ='A" (0041 = hexadecimal representation)

Some characters occur more frequently in texts than
others:
better use variable-length code

UTF-8: Universal Transformation Format

Characters encoded with variable number of bytes

— for texts with many ASCII characters (like on many
web pages) shorter as Unicode

Strings (or words): sequences of characters
encoded by sequences of the corresponding code words

Digital representation of pictures

Gray levels: encode each gray level by a number from a
fixed interval (e.g. 0, 1, ..., 255: 8-bit representation —
0 = black, 255 = white)

Colours:

several colour models possible

the most frequently used one:

RGB model

(red / green / blue: primary colours for additive colour
composition)

Each colour from a certain range ("gamut") can be mixed
from these primary colours

examples with 8-bit intensities:
black (0,0, 0)

white (255, 255, 255)
medium gray (127,127, 127)
red (255, 0, 0)
green (0, 255, 0)
blue (0, 0, 255)

light blue (127, 127, 255)
yellow (255, 255, 0)

Pictures:

typically represented as raster images —
rectangular array (matrix) of pixels, each pixel
represented by its 3 colour values.

Representation of text documents (book pages,
web pages...)

Level of representation is important.
(1) Is there text on the page? — One bit.

(2) What is the text on the page? —
Representation of letter sequence (e.g., string of
ASCII characters).

(3) What is the exact layout of the text on the page? —
"formatted text"
- use special characters for formatting, or
- represent the page by a rasterized black-and-white
image.

Text documents with graphical elements:
- represent all as a single raster image, or

- use combined representation: several data files,
one for the text, the other for the pictorial parts
— HTML web pages are built like this

file <name>.html or <name>.htm contains text,
layout information and links to other pages

files <name>.gif or <name>.jpg or <name>.png
contain images

Messages and redundancy

Message: A finite sequence of letters, used to transfer some infor-
mation via encoding/transfer/decoding

Signal: The physical representation of the message (examples: as
voltage pattern or light pattern)

Redundancy: Part of a message which is not necessary for the
transferred information (later explained more exactly)

Error correction by redundant codes: Natural languages allow to
detect many errors.

Example in informatics: Parity bits. Even parity: 9 bits per byte. 9th
bit makes number of one-bits even. Allows detection of single-bit
errors. Computer memory sometimes uses 9 bits per byte for this

purpose.
Other example: ISBN code (International Standard Book Number) —
last character is a parity character

Entropy and quantification of information

Shannon's information theory:
Information as a measurable, statistical property of
signals

How can we measure information and redundancy of
characters in a message?
Assumption: N-character alphabet { x4, Xo, ..., Xy }

Number of bits per character:
Ho =log> N

(Remember: log. N = (log N)/(log 2))

o !
> p(x)

Information content of a single character x; :
Here, p(x)) is the probability of x;.

Entropy = average value of information content
of all characters

- H = Zp(xk)*logz)

Binary encoding needs at least, on average, H bits per
character.

Redundancy: R= H,— H.

Example: Four-letter alphabet {a, b, ¢, d}

Probabilities: p, = 0.5, p, = 0.25,p, = 0.125,p; = 0.125
Thus:

Hqo = 2 bits per character encodable

Entropy: 0.5%1+4+0.25%x2 4+ 0.125%3 4+ 0.125%3 = 1.75 bits
per character encoded

Redundancy: 0.25 bits per character
Examples:

—a+— 00,b— 01,c+ 10,d +— 11: on average 2 bits per charac-
ter

—a+— 0,b+— 10,c — 110,d — 111: on average 1.75 bits per
character (optimal, no redundancy)

3. Databases and Geographical Information
Systems (GIS)

Databases

Motivation:

Computers are often used

e for dealing with large amounts of data

e and in situations where data integrity is
important for the survival of an organization.

Examples:

e Banking

e e-commerce (commercial transactions via
WWW —e.g., amazon.com Or ebay.com)

¢ meteorological measurements

e booking systems (trains, airlines...)

e telecommunication (phone numbers, fax
numbers, mobile phone data...)

Main problems:

e How can large amounts of data be organized so that they can
be accessed quickly?

+ How can data be organized so that hardware and software fai-
lures do not lead to a desaster?

« How can data be changed by several agents in parallel without
interference?

Today these problems are being dealt with on the conceptual basis
of relational database management systems (RDBMS), typically
using some dialect of SQL (structured query language) as notation
for definition and manipulation of data.

In these slides: Only very basic concepts are discussed.

Introduction using an example

Simplistic example: public library. Data organized in tables.

e table “Users” with columns UserID, Name, Address,
BEirthDate

o fable “Books”™ with columns BookID, Title, Author,
Keywords

o table “BorrowedBooks”™ with columns UserID, BoockID,

BorrowedSince, BorrowedUntil

Principles of database tables

+ Relational databases hold the data in (typically several) tables.

e Each row represents one record.

e The number and meanings of the columns of a table is (more
or less) fixed.

The number of rows of a table is variable.

"Entity relationship model”:

e Each table describes one kind of entities or a
relation (typically between several entities)

e a model of a certain part of reality based on the
concepts of entities and their relationships is
called an entity-relationship model.

In our example:

tables "Books", "Users" represent entities,

table "BorrowedBooks" represents a relation between
these entities.

Attributes, key candidates and keys

Columns in a table are called attributes. Some attributes or attri-
bute combinations characterize entities. Such attributes or attribute
combinations are key candidates. One of the key candidates is de-
signated as primary key. The primary key of an entity is used in
order to refer to it from other entities or from relations.

In our example, UserID is used as primary key in the “Users” table,
and BookID is used as primary key in the “Books™ table. These at-
tributes are used in “BorrowedBooks” in order to refer to the related
entities.

Data definition and data manipulation with SQL

Two kinds of languages for working with relational data bases are
distinguished:

data definition language (DDL)
data manipulation language (DML)

DDL and DML are today typically combined in dialects of SQL (struc-
tured query language) and supported by producers of database ma-
nagement systems. The different dialects are based on similar prin-
ciples. We will give examples.

Data definition consists in the definition of the structure or tables
and their interrelations.

During data definition, it must be defined for each table:

which attributes it contains,

how each attribute is to be represented (a data type must be
chosen),

which attributes form the primary key of the table, and

which attributes refer as keys to other tables.

A notation which allows to define tables in this way is called a data
definition language (DDL).

Data manipulation consists in adding, changing and deleting table
rows and in the selection of data from the data base.

A DDL only alows to describe the structure of a data base, not to
change its content in any way.

A notation which allows to manipulate tables is called a data mani-
pulation language (DML).

Data definition

The “Users” table from the public library example could be defined
like this:

CREATE TAELE Users |

UgerID INT(10) NOT NULL,
Name CHAR(100),
Lddress CHAR(100),

Birthdate DATE,
PREIMARY EKEY (UserID)

This instruction creates a table names “Users” with the four alrea-
dy described columns. UserID is represented a ten-digit decimal
number, Name and Address are represented as 100 characters,
Birthdate as a date, and UszerID is the primary key of the table.

For UserID, a value must be given for each row in the table — for
the other three columns, a standard value (NULL) might be used in
order to designate that the value of the attribute is not known.

The table “Books”™ might be defined similarly, only the attribute
Keywords presents problems. Which amount of memory should we
reserve for the keywords of a book if we do not want to restrict the
number of keywords beforehand?

One solution consists in the definition of an extra table “Keywords”:

CREATE TABLE Keywords (
BookID INT(10),
Keyword CHAR(100)

Key words have a maximal length of 100 characters, but the number
of key words which can be given for a book is not restricted, since
the same book can occur any number of times in the table.

The "Books" table could be declared like this:

CREATE TABLE Boocks |
BookID INT (10} NOT NULL,
Title CHRR(100),

Author CHAR (100),
PRIMARY KEY (BookID)

The table representing currently borrowed books might be declared
like this:
CREATE TAELE BorrowedBooks |

UserID INT(10),

BookID INT(10),

BorrowedSince DATE,
Borrowedlntil DATE

Data manipulation

The following operations can be used to manipulate the data in
the tables:

¢ The SELECT command selects information from the data base.
¢ The INSERT command inserts rows into a table.

« The UPDATE command changes the content of existing rows in
a table.

e The DELETE command removes rows from a table.

SELECT

The list of overdue books can be determined as follows:

SELECT b.BookID, b.RAuthor, b.Title, 1.BorrowedSince
FROM Books AS b, BorrowedBooks AS 1
WHERE b.BookID = 1.BockID

AND 1.Borrowedlntil < TODAY

This statement is also called a query (the data base system is que-
ried for some data).

This query returns a table with four columns. Each row represents
an overdue book; the first column contains the book id, the second
the author, the third the book title, and the last column the date when
the book was borrowed.

A query has the following form:

o After the keyword FROM, the tables are listed from which data is
to be collected. We use all combinations of rows from “Books™
and “BorrowedBooks”, and we abbreviate "Books” as “b" and
“BorrowedBooks™ as *|” elsewhere in the query.

e The WHERE keyword defines a filter: only those combination of
rows from the FROM clause are kept which fulfill the condition
given behind the WHERE: The book ids of the two entries must
match, and the date until which the book must be given back
must lie in the past.

e The SELECT keyword introduces a list of expressions which are
evaluated for each row combination filtered out by the WHERE.
In the example, these are simply some of the attributes.

INSERT

When a book is borrowed, a row has to be added to table
BorrowedBooks. The following instruction adds a row with UzerID
1053465, 43565 as BookID, TODAY as BorrowedSince and
TODAY+14 as BorrowedUntil. The order of the arguments is the
same as the order of the columns in the table declaration.

INSEET INTO BorrowedBococks
VALUES (1053465, 43565, TODAY, TODAY+14)

The general form is the following: After the keywords INSERT INTOC
and the name of the table, the keyword VALUES starts a list of values
representing the row to be inserted.

UPDATE

In order to lengthen the borrowing time of the book with id 43565 by
a week, the following command could be executed:

UPDATE BorrowedBooks
SET BorrowedUntil = BorrowedUntil + 7
WHEEE BookID = 42565

After UPDATE, the name of the table to be changed is given. The
WHERE predicate defines which rows are affected by the change,
and after SET it is defined which columns in the rows to be changed
are updated, and to which value.

DELETE

When a book is brough back by a used, its entry has to be taken out
of the “BorrowedBooks” table:

DELETE FRCOM BorrowedBooks
WHEEE BookID = 435685

Further elements of the SQL language

Above we have only seen the most elementary
SQL language elements. Many SQL dialects
present many more features.

Examples:

Integrity constraints can be used in order to define
conditions on the content of a database which shall
never be violated during manipulations.

Foreign key relations are used in order to make
explicit that values in a column are keys of some
other table. They are a special case of integrity
constraints.

Index declarations are used in order to accelerate
searching in tables.

Stored procedures are used in order to store
instructions which are to be executed by the
database.

Further table operations: set union, set difference,
set intersection, grouping of results, sorting of results.
Views allow to shield the users of a database from
the internal representation of the data.

e Database administration consists in deciding how
tables etc. are represented and which users get
which kind of access to the database.

e Invariants and triggers are language elements
which ensure the fulfillment of integrity constraints
independently of the application programme.

e Transactions are language elements which ensure
that a sequence of changes is either executed
completely or not at all, even in the case of hardware
or software failures.

Conceptual database design

The conceptual design of a relational database often proceeds ac-
cording to the following steps:

« First the entities relevant in the application area are collected
and their types are determined. (Example: books, users)

o Then the relevant relationships between entities are determi-
ned. (Example: BorrowedBooks)

e For each entity type and each relationship type, the attributes
and their data types are determined.

e Finally, integrity conditions for the database are specified.
(Example: BorrowedUntil must not be earlier than Borrowed-
Since)

On the basis of this design it is decided how entities,
relationships, attributes are represented in a specific
database management system.

Normalization:

Redundant data in a data base might lead to inefficiencies and
inconsistencies: Updates of redundantly held information have to
be performed at several locations instead of at only one, and if this
is forgotten, an inconsistency results.

Normalisation of a database consists in the reduction of redundan-
cies, typically via splitting tables.

Architecture of database applications

Database applications often use a three-layer architecture:

o A DBMS operates as the kernel of the system. It ensures data
persistency, data integrity etc.

« An application layer provides application-specific functionality.
In our example, it would provide the functions “borrow a book”,
“lengthen borrowing time”, “register new user” etc.

* A presentation layer defines the user interface, which today
is often graphical, and not seldom with an alternative using the
WWW,

These three components might run as three different programs on
different computers: A web-browser runs the presentation layer, the
web-server dispatches the user input to an application program,
and the application program accesses a relational database on a
dedicated database server.

Geographical Information Systems

What is a Geographical Information System (GIS)?

e Software, hardware and data to help
manipulate, analyse and present information
that is tied to spatial locations (usually
geographical locations).

Estimates are that 80 % of all data stored worldwide has
a spatial component (Source: www.gis.com).

A GIS contains a classical database, but extends
its functionality by methods adapted to spatial
information.

Particularly, a GIS provides...

e A method to

visualize, manipulate,
analyze, and display
spatial data

e "Smart Maps”
: linking a database to
the map

e special forms of query, designed to extract
information with spatial properties from a data-
base (e.g., taking neighbourhoods into account)

e special forms of data analysis (e.qg.,
geostatistics

e special forms of integrity checking adapted to
spatial data.

What can a GIS do?

Query and search

CLINE Map

NORFRIM
CLINE :Hammersmith Road A3 15

[2 abjeetz in 2 tables

N e

ty ‘analysis

Database
“Not Easy to Interpret”

it
e

E

el i
T A8
(e L el e 7
:

a3l
el 5
Lo
EE I E62 | SIETE 1505 3 2] 20
assr| 741123 H 1 ¢ 31a37] rodeel | sz

Visualization
“"Worth a Thousand Words”

Ee Edi lew Ireme Graphis

apies nde Hep
= 70 e = e e [x]
[OIn 15 Tl S F T el T -)

One of the main advantages of GIS over classical
geographical maps:

Combining Data From
Many Sources

stewatar?-

Land Records

s

:

Data For GIS Applications

o Digitized and Scanned Maps
— purchased, donated, free (Internet)
— created by user
e Data Bases - Tables of data
e GPS - Global Positioning System
— accurate locations
it e Field Sampling of Attributes

o Remote Sensing &
Aerial Photography

Further advantage: Easy interaction, visualization,
manipulation of maps

A 1 A U = 8 e §

7] 7 - F - i (W]

#l(=2].7"y 5 s L LR TR T

e Raster — Grid
— “pixels”
— a location and value
— Satellite images and aerial
photos are already in this
format

e Vector — Linear
— Points, lines & polygons
— “Features” (house, lake, etc.)
— Attributes
~gize, type, length, etc.

The vector representation is more appropriate for
senseful queries (and is more exact)

— basis for relational database representation of
geographical data

Typical entities of a GIS:

e Points

e Tics (= special points for which the exact real-world
coordinates are known, used to fit a digital map into a
global coordinate system)

e [ines, also called arcs (more precisely: Multilines, i.e.
consisting of several linear segments)

W

e Polygons (closed multilines, possibly with additional
attributes)
e Annotations (text objects associated with points).

The endpoints of a line (and possible branching points)
are called nodes.

Intermediate points (without branching) are called
vertices.

node
vertex G

v 0/0“'0 node 7
il y /

n ode O\D_’_’-O

Tables in the underlying relational database:
e Tictable

e boundary table (represents the spatial extent of the map — a
surrounding rectangle)

e arc attribute table (AAT)
e polygon attribute table (PAT).

E.g., a polygon is represented as a line in the PAT, with
attributes:

polygon ID, nodes, arcs, a label point (in the interior), further
attributes (e.g., area, slope, population density...).

Details differ between different GIS.

Usually, a GIS does not only contain information
for a single map of a region, but several sorts of
information for the same region:

each sort of information is represented in an exira
coverage (also called layer, cover or theme).

Example: Different coverages of a town area

Road Centerline/Address (Geographic Towmnship) Hydrology (Geographic Tovmnship)
- zoeense: 2000 Digital Orthophot ography - zowrse: 2000 Digital Orthophol ograpiay
* Foad Ares * WWater feature arcs irivers, strearms, drains)

* Address Fanges #® Tater feature polygons (lakes, ponds, retention basins)

® Foad Mames & DMames of County maintained drains

===l
;;é:;'.;'.dq,
I

b
7/
=il

[
——
=

=

]

S
AT]
Al S, i

P TR
e fd{%ﬂi&lﬂ#} t_‘!i_l"-!.!lll
2ol i)

I
:

il

__f.-uulm

fili
L

i

i

]

?

|

il
— Lt IHI
T THTR]IFEH‘IL_ L=

)
i

|
i

3

U
/

/

TR
{ for
il
fff.g
'F:JF '-I [T+
o
i

i
i
]

i
i
)
iy
4
%

i
i
)

i
20
il
iy
il

g

Xr o
T e S

Municipal Boundaries {County)

= - 2000 Digital Orthaphab
soune ' opRotogaphy (source: http://macombcountymi.gov/gis/

gis_coverage_samples.htm)
& Conununity polygons

® Conuhunity name

How to combine several coverages?
e Qverlay operation

From two geometries, the GIS calculates the
coarsest common geometry:

N U

a b overlay of aand b

Attention: The following geometry ,P\(would also

be a common geometry of a and b, but not the coarsest
one!

Using overlay, a GIS can give answer to questions
like this:

"What forest areas of district x are within 100 m
distance to a road, are stocked with conifers and
have a slope < 5 degrees?" (e.g., for a chalking
action)

Layers used for this task:

e |anduse map (— forests)

e political district map (— district x)

road map (— 100 m neighbourhood to a road)
forest type map (— stocked with conifers)
digital elevation model (— slope < 5 degrees)

Selection of polygons of the overlay using an "and"
operation

Further functionality of GIS: 3D visualization

3 Soonet viewerl

Representing Attribute Data in 3-D: Population Density in Small Census
Areas in the London Borough of Hackney

Widely used GIS products:

e ESRI ArcGIS (licenced commercial software)

e QuantumGIS (free and open source,
http://www.qgis.orqg)

