11. Eigenvalues and eigenvectors

We have seen in the last chapter:
for the centroaffine mapping

f; ; ‘)\1 0 J X1 [= Ay X,
0 A, [x, AL X,

some directions, namely, the directions of the

coordinate axes: @ and @ are distinguished
among all directions in the plane: In them, f acts
as a pure scaling.

We want to generalize this to arbitrary linear

mappings.

=

X,

We call a vector representing such a direction an
eigenvector of the linear mapping f (or of the
corresponding matrix A), and the scaling factor
which describes the effect of fon it an eigenvalue.

Examples:

[é] is eigenvector of the matrix [5 ﬂ to the

Tl

is also eigenvector of [5 ﬂ to the eigenvalue 3:
3 o] [2]_[6]=5[2
0 7[(0] [O0] " |O
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[1 is eigenvector of [5 ﬂ to the eigenvalue 7:
3 0(fo]_[o]=4]0
0 7|[1] |7 |

in general:
An eigenvector of A must fulfill 4-X=A-X, and we

require X #0.

Definition:

Let A be a matrix of type (n, n). If there exists a
real number A such that the equation 4-xX=A-X
has a solution ¥, #0 , we call A an eigenvalue and

X an eigenvector of the matrix A.

A

v

If ¥, is an eigenvector of A and a # 0 an arbitrary
factor, then also "X, is an eigenvector of A.

We can choose « in a way that the length of a- X,
becomes 1. That means, we can always find
eigenvectors of length 1.
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If we insert X=F X, we can transform the equation
A-X=A-X in the following way:

A-x=Ax < A-X-A3%=0

This is equivalent to a system of linear equations
with matrix A — AE and with right-hand side always
Zero.

If the matrix A— ALE has maximal rank (i.e., if it is
regular), this system has exactly one solution (i.e.,
the trivial solution: the zero vector). We are not
interested in that solution!

The system has other solutions (infinitely many
ones), if and only if A— AE is singular,

that means, if and only if

det(A — AE) = 0.

From this, we can derive a method to determine all
eigenvalues and eigenvectors of a given matrix.

The equation det(A — AE) = 0 (called the
characteristic equation of A) is an equation
between numbers (not vectors) and includes the

unknown A. Solving it for A means finding all
possible eigenvalues of A.
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In the case of a 2x2 matrix A, the characteristic
equation det(A — AE) = 0 has the form

= A —laytay)Ata, ay,—a,a, =0

Loy ay—A

l.e., it is a quadratic equation and can be solved
with the well-known pq formula (see Chapter 6, p. 28).

Example:
. 1_
P I
4= |
2
1] |
I 5 1A  ——
' ~
5 L 5 1-A
. 1
1—A > | z e o
det (4 —AE) = ! = (1-A) | = 1-2a+A° 7
Bl 1—-A :
= ‘\3—29\+§:'0
4

) 3 . .
A'=2A+ 7 is called the characteristic polynomial of A.

. 1 :
Its zeros, the solutions 4.=3. A.=7, are the
eigenvalues of A.

l‘aquJ
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1 3
That means: Exactly for A=7 and =7 does the

vector equation 4-x=A-x have nontrivial solution
vectors x #0, i.e., eigenvectors.

The next step is to find these eigenvectors vor
each of the eigenvalues:

This means to solve a system of linear equations!

—

We use the equivalent form (4—AE)xX=0,
We are not interested in the trivial solution x=0.

In the example: To find an eigenvector

. [ (N
to the eigenvalue A=7 @ (d=5E)x=0

.1 1
1—= =
2 2
1 1
2 2

l\)||—=
IJ||—

Il

|
2 2

(systém of 2 linear equations with r.h.s. 0)
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with elementary row operations we get:

0

1 | — b2 | —
t2 | —

0

b | —

—
—
(=)

1 -1 ¢ 0
0O o0 0

From the second-last row we deduce:
x,+(—x,)=0

We can choose one parameter arbitrarily,
e.g., Xo = ¢, and obtain the general solution

i’=H (with c e IR and ¢ # 0 because we want to

have an eigenvector)
It is enough to give just one vector as a
representative of this direction, e.g.,

!

This is an eigenvector of A to the eigenvalue 1/2.

Test: 4 H =

P = | —

The eigenvectors to the second eigenvalue, 3/2,
are determined analogously

(a solution is (ﬂ.)
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In the general case of an nxn matrix, det(A — AE) is
a polynomial in the variable A of degree n, i.e.,
when we develop the determinant, we get
something of the form

c N+e, AT de At

Such a polynomial has at most n zeros, so A can
have at most n different eigenvalues.

Attention:

There are matrices which have no (real) eigen-
values at all!

Example: Rotation matrices with angle ¢ # 0°, 180°.

It is also possible that for the same eigenvalue,
there are different eigenvectors with different
directions.

50

o 5| every

Example: For the scaling matrix Azl

vector ¥ #0 is eigenvector to the eigenvalue 5.

Fixed points and attractors

Let £: IR" — IR" be an arbitrary mapping.
X e IR" is called a fixed point of f, if f(X¥)=X,
i.e., if X remains "fixed" under the mapping f.
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X is called attracting fixed point, point attractor or
vortex point of f, if there exists additionally a

neighbourhood of X such that for each ¥ from this
neighbourhood the sequence

v, f(3), fLfD), .

converges against x .

The fixed points of linear mappings are exactly (by
definition) the eigenvectors to the eigenvalue 1 and
the zero vector.

Examples:

‘4=[é ﬂ (shear mapping): each point on the x axis

is a fixed point.

_4=[3 g] (scaling by 2): only the origin (0; 0) is

fixed point. (There are no eigenvectors to the
eigenvalue 1; the only eigenvalue is 2.)
The origin is not attracting.

(scaling by 1/2, i.e., shrinking):

the o-rigin (0; 0) is attracting fixed point.
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Definition:
A stochastic matrix is an nxn matrix where all
columns sum up to 1.

Theorem:

Each stochastic matrix has the eigenvalue 1.

The corresponding linear mapping has thus a fixed
point = 0.

Example from epidemiology:

The outbreak of a disease is conceived as a
stochastic (random) process. For a tree there are
two possible states:

"healthy" (state 0) and

"sick" (state 1).

For a healthy tree, let us assume a probability of

1/4 to be sick after one year, i.e.:
| 3

pm=$, and correspondingly: Pow=7 (= probability
to stay healthy).

For sick trees, we assume a probability of
spontaneous recovery of 1/3:

_1 _2
P1o= 3 pn_%

We define the transition matrix (similar to the age-
classes example) as

Pow Po
P Pu

P=
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For the purpose of calculation, we need the
transposed of P, which is a stochastic matrix
(and is in the literature also often called the
transition matrix):

P'=

| |
-l-||—- -h-|’\,u

W9 W |
L

A process of this sort, where the probability to
come into a new state depends only on the current
state, is called a Markov chain.

Graphical representation of the transitions:

A

\_/Q

A
3

If we assume that gy, resp., k; are the proportions

of healthy, resp., sick trees in the first year, the
average proportions in the 2" year are given by:

gz — PT - gl
k k,

oq

e
]

S

—

LI |1 W | —

g

o
)

3

Bl s|w
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Question: what is the percentage of sick trees, if
the tree stand is undisturbed for many years and
the transition probabilities remain the same?

We have to look for a fixed point of the mapping
corresponding to P'.

Because P’ is a stochastic matrix, it has
automatically the eigenvalue 1.

We have only to determine a corresponding

eigenvector (fixed point) (ij
i

By applying the standard method for solving linear
systems, we obtain:

[‘? ]=[jj .c#0

From this we derive the proportion of the sick

trees:
;1' 3

2
g+k 443 7

=09

1 2_1{

Remarks:
This proportion does not depend on the number of
sick trees in the first year.

(ij is in fact an attracting fixed point, if we restrict
ourselves to a fixed total number of trees, g+k.
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In the same way, a stable age-class distribution
can be calculated in the case of the age-class
transition maitrix (see Chapter 10, p. 82-83).

In that case, the stable age-class vector @ has to
be determined as the fixed point T(e|genvector to
the eigenvalue 1) of the matrix P, i.e., as the
solution to

T —* — %
P-a =a

Because the fixed point is attracting, it can be
obtained as the limit of the sequence

a[) L PTJ{)) (PT) a{]) (PI) a[}: Tty
starting from an initial vector 4.

106



