8. Linear mappings and matrices

A mapping f from IR" to IR™ is called linear if it
fulfills the following two properties:

(1) f(@+b)=f(a)+f(b) forall 7.beR"
(2) f(Ad)=Af(a) forall AelR andall zelR"

Mappings of this sort appear frequently in the
applications. E.g., some important geometrical
mappings fall into the class of linear mappings:
Rotations around the origin, reflections,
projections, scalings, shear mappings...

We show at the example of a shear mapping that
such a mapping is completely determined (for all
input vectors) if its effect on the vectors of the
standard basis are known:

Example

Let f be the mapping from IR® to IR® which
performs a shear along the x axis,

l.e., the image of each point under fcan be found
at the same height as the original point, but shifted
along the x axis by a length which is proportional
(in our example: even equal) to the y coordinate.

The figure illustrates the effect of f at the
examples of the standard basis vectors and an

arbitrary vector a:
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We have:

J is indeed a linear rpapping, that means:
fla+b)=f(a)+f(b) gnd
fleda)=c-fla) are fulfilled.
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The general formula for this shear mapping is
apparently:

x|_|x+y
f[ _l » ]
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of an arbitrary vector l ]&zIR2 , it is sufficient

to know the images of the vectors of the standard

L'l and f[?]

basis, i.e., f 0
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confirming our formula above.

That means: These images, here M and H

describe f completely.
They are put together in a matrix:

I 1 :
[0 1 = matrix of f.
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In general:
Matrix of a linear mapping f:R"—R" :

dyp 9y - 4y | has mrows and ncolumns
Ay dyp ... dy, = "matrix of type (m; n)"
all entries aj; are real numbers
a ml a m2 T a mn
T T T
image of image of image of
1 O O
0) 1 O
0) O 1

The matrix describes its associated linear mapping
completely.

The result of the application of f to a vector x€RR"
can easily be calculated as the product of the
matrix of f with the vector x.

In our example:

f X — J. _I_ ) X — ]_ X+ l ‘ }; — Jf—'—};'
h% 0 1]y 0-x+1-y y
In the general case:
dy 7 by -xl- ay Xy ta,x,+..+a,,x,
aml o amn .1'” _aml.xl+ C’mz'xz+ +amn-xﬂ_
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Example: [

General definition of a matrix:

A matrix of type (m; n), also: mxn matrix ("mcross n"),
is a system of m- nnumbers g;, i=1,2, ..., mand
j=1, ..., n, ordered in mrows and n columns:

dyp dp dq,
dyy Uy ... dyy
aml aml aam:

a; Is called the element or entry of the i-th row and
the j-th column. The m - n numbers ag; are the com-
ponents of the matrix.

A matrix of type (m; n) has m rows and n columns.
Each row is an n-dimensional vector (row vector),
and each column is an m-dimensional column
vector.

The list of elements a; (i=1,2,...,r

with r = min(m, n)) is called the principal diagonal
of the matrix.

Example:
1 4-3 2
A= 2 3 0-1
—3 4 1

1
Ais of type (3; 4).
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A has 3 row vectors:
z,=(1,4,-3,2) , 2,=(2,3,0,-1) |
and four column vectors:

l\]‘L

=(_334alal)

] 4 [ 3|
S 21, ST3) ., ST 0, 5,71
_3 4 | 1]

lts pﬁncibal diagon_al_is 1;3; 1.
Special forms of matrices:

e quadratic matrix:
If m=n,i.e., if the matrix A has as many rows as it
has columns, A s called quadratic.

e m=1: A matrix of type (1; n) is a row vector.
e n=1: A matrix of type (m; 1) is a column vector.

e m=n=1: A matrix of type (1; 1) can be identified
with a single real number (i.e., its single entry).

e diagonal matrix:

If Ais quadratic and all elements outside the
principal diagonal are 0, A is called a diagonal
matrix.

a, 0 - 0
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e unit matrix:

The unit matrix E is a diagonal matrix where all
elements of the principal diagonal are 1.

It plays an important role: lts associated linear

mapping is the identical mapping f(x)=x.

1 0O 0
o 1 -
E= ;
; “ 0
0 0 1

e zero matrix:
The matrix where all entries are 0O is called the zero
matrix.

e triangular matrix:
A matrix where all elements below the principal
diagonal are 0 is called an upper triangular matrix.

Example:

5 2

q= 0 3

0 O
0 O

-1
1
—1
0

7

5
10
42 |

Analogous: A matrix where all elements above the
principal diagonal are 0 is called a lower triangular
matrix.

Addition of matrices and muiltiplication of a matrix
with a scalar.

These operations are defined in the same way as
for vectors, i.e., component-wise.
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Example:
s|1 3 |-1 0| _[4 15
0 2 7 3 7 13

Attention: Only matrices of the same type can be
added.

Multiplication of a matrix with a column vector:
Defined as above, i.e.,

a,, - ay, X, Ay Xy tay X, +...+a, X,

Clrml 1o almn .}:” e m]..:fl + C!’mz.l'z i - + ﬂm”'.l‘n_

The result corresponds to the image of the vector
under the corresponding linear mapping.

Here, the matrix must have as many columns as
the vector has components!

Transposition of a matrix:

Let A be a matrix of type (m; n). The matrix A" of
type (n; m), where its k-th row is the k-th column of
A(k=1, ..., m),is called the transposed matrix of
A. (Transposition = reflection at the principal
diagonal.)

r
L Up = g An 4y - Gy
Ay dy ... dy, _ Ay, Ay o dys
aml aml amn aln a’n anm
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Example:
1 4
3 | oftype (3;2) =

3 -1

AT= {1 _;2 _’J of type (2; 3)

Special case: Transposition of a row vector (type
(1; m)) gives a column vector (type (m; 1)), and
vice versa.

Submatrix:

A submatrix of type (m—k; n—p) of a matrix A of
type (m; n) is obtained by omitting k rows and

p columns from A.

The special submatrix derived from A by omitting
the i-th row and the jth column is sometimes
denoted A; .

We now come back to linear mappings, which were our
entrance point to motivate the introduction of matrices.

Properties of linear mappings are reflected in
numerical attributes of their corresponding
matrices.

An important example is the so-called rank of a
linear mapping.

We demonstrate it at two examples:
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f:IR° = IR® shear

mapping (= example from
above)

i
|
I
1
e

ol T
f_l_—_l_
Matrix of f:
1 1]
0 1

The irhages

(i.e., the column vectors of the
matrix of f)

are linearly independent,

they span the whole plane IR?

g : IR* = IR? projection
along the principal
diagonal onto the y axis

c'.f:'r—'-1
|

0q

g | |

Matrix of g :

0 O
-1 1

The images

SR

(i.e., the column vectors of the
matrix of g)

are linearly dependent,

they are on the same line

through 0 (i.e., on the y axis)
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—> each vector is an image = only the y axis is the range
under f (fis surjective) of g (g is not surjective)
rank f =2 rank g =1

( = dimension of the ( = dimension of the
plane) line)

Definition:

The rank of a matrix A is the maximal number of
linearly independent column vectors of A.
Notation: rank(A), r(A).

This is consistent with our former definition:
rank (A) = rank of the system of column vectors
of A (as a vector system).

At the same time, it is the dimension of the range
of the corresponding linear mapping of A.

Theorem:
rank(A) is also the maximal number of linearly
independent row vectors of A.

"column rank = row rank" !

Special cases:

The rank of the zero matrix is 0 (= smallest
possible rank of a matrix).

The rank of E, the nxn unit matrix, is n (= largest
possible rank of an nxn matrix).
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The rank of an mxn matrix A can be at most the
number of rows and at most the number of
columns:

0 < rank(A) < min(m, n).

For determining the rank of a matrix, it is useful to
know that under certain elementary operations the
rank of a matrix does not change:

Elementary row operations

(1) Reordering of rows (particularly, switching of
two rows)

(2) multiplication of a complete row by a number
cx0

(3) addition or omission of a row which is a linear
combination of other rows

(4) addition of a linear combination of rows to
another row.

Analogous for column operations.

Example:

2 6 -4
30011 1
4 —14 1

A=
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By applying elementary row operations, we
transform A into an upper triangular matrix

(parentheses are omitted for convenience):
2 6 ! 12
3

i1
4 —14 1

3 11 1<° |+
4 14 1 /
3 2

0 2 7Ty,

0 -2 -7 <

1 3 -2

0 2 7

0 0 0

The rank of A must be the same as the rank of the
matrix obtained in the end.

The rank of this triangular matrix can easily seen to
be 2 (one zero row; zero rows are always linearly
dependent! — The other two rows must be independent
because of the first components 1 and 0.)
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