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The meaning of �� and �� 

Definition: Suppose � is differentiable at � 

• Define �� an independent variable  

• Define �� � �	
����, 

• Then  �� � ��
���� � ��
�� 

��� � "��� ����"�� � "��� ���"� ��� � �� ��� �!�"��� !� � 

 ��, �� - “differentials” 

 ��: rise of a function ∆�: rise of a tangent  ∆� % �� 
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Local linear Approximations of Non-Linear Functions 

 

 

 

 

 

 

Tangent line at 
�&, �
�&�� � ' �
�&� � �	
�&�
� ' �&� � � �
�&� ( �	
�&�
� ' �&� 

For value of � near �& then �
�� % �
�&� ( �	
�&�
� ' �&�)****+****,-./01/- .- �2
 

A local linear approximation of �
�� near �& 

� � �
�&� ( ��
�&�
� ' �&� 

� � �
�� 

� �& 

�
�� �
�&��
�&� ( ��
�&�
� ' �&� 
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Another way of writing this:  

Let � ' �& � ∆�, so � � �& ( ∆� �
�& ( ∆�� % �
�&� ( �	
�&�∆� 
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Finding Limits Using Differentiation: L’Hôpital Rule 

Limits of Quotients That Appear to be “Indeterminate”: 
&& , 33 , 0 · ∞, ∞ ' ∞ 

Example: 

lim�:; <�= ' 1� ' 1 ? 
has “

&"&  form. 

lim�:; <�= ' 1� ' 1 ? � lim�:; @
� ' 1�
� ( 1�� ' 1 A � lim�:;
� ( 1� � 2 

is doable. 
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1. Assumption: Suppose 

lim�:. @�
��"
��A 
 

has the    
&& form 

meaning both lim�:. �
�� � 0 

and lim�:. "
�� � 0 

2. Assumption: Suppose �, " are both differentiable at ! 

Meaning  

� lim�:. �
�� � �
!�lim�:. "
�� � "
!�C �
!� � "
!� � 0 
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Observe: 

�
��"
�� � �
�� ' �
!�DE&
"
�� ' "
!�FE&

� G�
��H�
.��H. I
G0
��H0
.��H. I 

Theorem: L’Hôpital Rule (for 
&& form) 

If �, " are both differentiable on J, ! K J and both  lim�:. �
�� � 0   !��  lim�:. "
�� � 0 

Then 

lim�:. @�
��"
��A � lim�:. <��
��"�
��? 
A limit we hope exists and we hope it is easier to calculate 

Note, L’Hôpital Rule also applies to the  
33 form 
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Examples: 

lim�:& @����� A)**+**,"22"
� lim�:& GL���1 I � cos
0� � 1 

lim�:& @�� ' 1�P A)***+***,"22"
� lim�:& @ ��3�=A � lim�:& @��6�A � lim�:& @��6 A � (∞ 

lim�:S/= @1 ' ����L��� A)****+****,"22"
� lim�:S/= G'L���'����I � 0'1 � 0 

lim�:3 <�=��?)**+**,"UU"
� lim�:3 @2��� A � lim�:3 @ 2��A � 0 
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Finding other “Indeterminate” Limits 

• L’Hôpital Rule applied directly to 
&&   and 

V3V3  

• Also apply to ∞ · 0, ∞ ' ∞, 13, 0&, ∞& 

We have to reduce any indeterminate form to either 
&&   and 

33 

Example: 

lim�:&W� · ���X)**+**,"&·
H3�"
� lim�:& Y ���;�

Z)**+**,"[UU "
� lim�:& Y ;�'�H= Z � 'lim�:& � � 0 
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Increasing and Decreasing Functions:  

Definition (Algebraic): A function � is increasing on same interval J, if for any �;, �= in J  �; \  �= imply �
�;� \  �
�=� 

 

 

 

 

A function � is decreasing on same interval J, if for any �;, �= in J  �; \  �= imply �
�;� ] �
�=� 

 

 

 

 

 

� 

� 

� 

� 
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Constant function: not increasing, not decreasing 

 

• � is increasing on an interval ^ Graph is rising from left to right 

• � is decreasing on an interval ^ Graph is falling from left to right 

 

Theorem: If � is continuous on W!, _X and differentiable on 
!, _� 

Then �	
�� ] 0, !�� � K 
!, _�               `                  � ��L��!���" �� W!, _X �	
�� \ 0, !�� � K 
!, _�               `                 � ��L��!���" �� W!, _X �	
�� � 0, !�� � K 
!, _�               `                  � L����!�� �� W!, _X 
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Local Maximums and Minimums 

• � changes from increasing to decreasing at a relative (or local) maximum point 

• � changes from decreasing to increasing at a relative (or local) minimum point 

 

Definition. A function � � �
�� has a local maximum at "L" (some point) (in some interval J) if for all � in J �
�� a �
L�. 

 

 

Definition. A function � � �
�� has a local minimum at "L" (some point) (in some interval J) if for all � in J �
�� b �
L�. 

 

 

• Local extremum means either (maximum and minimum) 

Called a local maximum value for � 

Called a local minimum value for � 
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Term Local (=Relative) 

  

Minimum 

Maximum 

local 

minimum 

point 

local 

maximum 

point 
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Definition: �& in the Domain is a critical point for � 

If 

c �	
�&� � 0�	
�&� ���� ��� ������ 
Theorem. Let � be defined on J open, containing �&, � has a local max/min at �&: �& must be a critical point of � 

 

But ! 

@�& ! L����!�  ������ � A)*****+*****,def�g�ehij �kl mkn.mop//o.�
q @ � �!� ! ��L!������r�r !� �&A 

 

Extrema occur at critical points, but not every critical point is an extremum!  
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To determine the extrema we must do two things: 

1. Find the critical points (compute �	
�� and find out where it is either 0 or undefined) 

 

2. “Test” each critical point to determine if  it a  relative maximum, a relative minimum, 

or neither 

For the second , there are  two “tests” available: The first derivative test and The second 

derivative test. 
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The 1st derivative Test for local Maximums and Minimums 

Observe: [� continuous at critical point �&] 

• Local maximum �	 ] 0 ' �	 \ 0 

• Local minimum �	 \ 0 ' �	 ] 0 

 

• Using these observations we have the 1st derivative test for local extrema 

 

 

 

The 2nd Derivative Test for local Maximums and Minimums 

• An alternative to the 1st derivative test. Use only if the 2nd derivative is easy to 

calculate 

• Nice, because instead of looking to the left and right of �&, you just look directly at �& 

Observe: Assume   �	�
�&� exists. [Thus, �	
�&� must exist] 
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So, 

@ �	
�&� � 0!�� �		
�&� ] 0A ` @ � �!� ! ��L!�r���r�r !� �&A 
@ �	
�&� � 0!�� �		
�&� \ 0A ` @ � �!� ! ��L!�r!��r�r !� �&A 

@ �	
�&� � 0!�� �		
�&� � 0A ` WJ�L��L����s�X 
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Example: Find all local extrema of the function: 

�
�� � '2�P ( 3�= ( 12� ( 10 

Solution: 

�′
�� � '6�= ( 6� ( 12 '6�= ( 6� ( 12 � 0 

�;,= � '6 V 18'12  

�; � 2, �= � '1 �′′
�� � '12� ( 6 

 

�; � 2:    � ′′
�� � '12 · 2 ( 6 � '18 \ 0: ��L!� r!��r�r  
 �= � '1:    � ′′
�� � '12 · 
'1� ( 6 � 18 ] 0: ��L!� r���r�r 
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Global (Absolute) Maximums and Minimums 

Consider: the function  �
��  , J  is same Interval in the Domain of � and �& K J 

Definition: 

• � has a global maximum at �& if �
�&� b �
�� at � K J 

• � has a global minimum at �& if �
�&� a �
�� at � K J 
We say “global extremum” for either 

 

Global extrema on (finite) closed Intervals 

Extreme Value Theorem 

If � is continuous on close J W!, _X [both hypothesis necessary], Then � has both a global 

maximum and global minimum [guaranteed!] – “Existence Theorem” 

Further Theorem: Suppose � has a global extremum on an Interval 
!, _� open. Then that 

extremum must occur at a critical point. 
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Summary: 

@� L��������� �� W!, _X A v
wxy
xz� �!� _��� "��_!� �����r!{��� �LL�� !������� !, _ W��� ����X�� |��� �	
�� � 0�� �	���� ��� �����

� 
1. Find all the critical points of  � W!, _X 
2. Evaluate  � as these points, and at ! and _ 

3. Largest value=global maximum 

Smallest value=global minimum 
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http://en.wikipedia.org/wiki/File:Extrema_example_original.svg 
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Optimization Problem 

Applied Maximum and Minimum problems 

Called “optimization” (find the best”) 

A strategy 

• Draw a sketch +label relevant quantities 

• Find a formula for the one quantity to be maximized or minimized 

• Use given information to write that formula as a function of one variable 

• Find the domain of that variable 

• Use the derivative to find the desired global max/min 
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Example: What is the biggest Rectangle you can put inside a given triangle? 

Given a right triangle of altitude 3 Lr an base 4Lr 

Find a dimension of the rectangle of maximum area that can be inscribed in this triangle 

with one side along the base. 

• A sketch  

  

 

 

 

 

• A formula to be maximized  � � ! · _ 

We seek the maximum to the product ! · _ .We need to find ! so that � is maximized 

3 Lr 

4 Lr 
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• The formula as a function of one variable 

 

 
 34 � _4 ' ! 

 _ � 3
4 ' !�4  

� � ! · _ � 3!
4 ' !�4  

• Domain of !: 0 \ ! \ 4 
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• The derivative used 
 

 � ′
!� � 3 ' 1,5! � 0 
 ! � 2 

 

maximum or minimum?  

� ′′ � '1,5 \ 0   - maximum 
 

•  _ � 3
4 ' !�4 � 1,5 
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Function Concave Up and Concave Down: 

 

• � can increase (or decrease) in two different way: concave up and concave down 

 

• a point at which � changes from concave up to concave down or from concave down 

to concave up is called an inflection point.  
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Function Concave Up and Concave Down: The 2nd derivative applied 

Definition: Let � have a derivative on open interval J 

• � concave up on J means �� is increasing on J 

• � concave down on J means �� is decreasing on J 

To tell if a function (later �� � is increasing/decreasing, we check its first derivative of 
���:  
���	 � ��� 
Theorem: 

Suppose � is twice differentiate on J 

��		
�� ] 0!�� � K J �    v � �� L��L!s� �  �� J 
��		
�� \ 0!�� � K J �    v � �� L��L!s� ��|� �� J 
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When Concavity Changes: Inflection Points 

Definition: 

If � is continuous on open J and concavity changes at 
�&, �
�&�� 

Then we say: � has an inflection point at �& and 
�&, �
�&�� is that inflection point �		
�&� � 0  gives candidates for inflection points, but no guaranties 

   

 

  

  

concave 

up 

concave 

down 

�& 

Inflection 

point 
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Examples: 

 

 

  

function 1.derivative 2. derivative Concave 
up/down? 

�
�� � �= 
 

 
2� 

 

 
2 ] 0 

 

 

 
concave up 
 

�
�� � '�= 
 

 
'2� 

 

 
'2 \ 0 

 

 

 
concave down 
 

�
�� � 
�=� ( 4�H��= 
 

 
4��� ( 8�� ' 32�H=� 

 

 
16��� ( 8�� ( 64�H=� ] 0 
  

concave up 
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Example: 

�
�� � 0,5�P ' 2�= ( � ( 2 

  

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -3 -1 1 3 5

f(
x
) 

=
 a

 x
³

+
 b

 x
²

+
 c

 x
 +

 d

x

3� ' 4 \ 0:  � \ 43 ;             A'∞; 43A : L��L!s� �  

           3� ' 4 ] 0:   � ] 43 ;             @43 ; (∞@ : L��L!s� ��|� 

� � 43 : �����L����  ���� 

 �′
�� � 1,5�= ' 4� ( 1; � ′′
�� � 3� ' 4; � ′′′
�� � 3 ] 0 
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What to look for in a graph: 

With Algebra: 

• Domain and Range 

• � intercepts 

• � intercepts 

• symmetrie 

With Limits: 

• Asymptotes 

• End Behavior � : '∞, � : ∞ 

With derivatives: 

• Increasing/decreasing 

• Local Extrema 

• Concave up/down 

• Inflection Points 
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The mean Value Theorem for Derivatives 

A special Case of the Mean Value: Rolle’s Theorem 

If � is continuous on W!, _X, � is differentiable on 
!, _�, and �
!� � �
_�  

Then there is at least one L in 
!, _� such that �	
L� � 0 �  � ��� � �� ��L!�� ���� _��|���
!, �
!��!�� 
_, �
_��� 
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Proof for �
!� � 0 � �
_�  

 

 

 

 

 

(1) Suppose �
�� � 0 for all � in 
!, _� [a constant function]. Then �	
L� � 0 for all L 

in 
!, _� 

(2) Suppose �
�� ] 0 for some point in 
!, _�. Since � is continuous on W!, _X 
[Extreme Value Theorem] v � has a global max on W!, _X in fact on 
!, _�[because �
!� � 0 and �
_� � 0] 

Since � is differentiable on 
!, _�, there must be a critical point L in 
!, _�, where �	
L� � 0 

(3) (The �
�� \ 0, is similar) 

 

! _ 

horiz. tangent line =zero 

derivative
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The Full Mean Value Theorem of Derivatives 

If � is continuous on W!, _X � is differentiable on 
!, _� 

Then there is least one point L in 
!, _� at which the tangent line is parallel to the secant 

line joining the points 
!, �
!�� and 
_, �
_��, i.e. at which 

�	
L�)+,-./01/- �mk�1.- n
� �
_� ' �
!�_ ' !)***+***,�1n./- �mk�1�1-�11/ 
.,�
.��./ 
�,�
���

 

 

 

 

 

 

 ! _ 

�
�� 

�
!� 

�
_� 
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Proof of MVT for Derivatives   

 

 

 

 

 

 

Secant lines 

� ' �
!� � <�
_� ' �
!�_ ' ! ? 
� ' !�;   � � <�
_� ' �
!�_ ' ! ? 
� ' !� ( �
!� 

Let  s  be a function: s=[height of �]-[hight of secant line] 

s
�� � �
�� ' <�
_� ' �
!�_ ' ! 
� ' !� ( �
!�?)***********+***********,�p��1l1/n1 k� -�k �10�-�
 

! 

�
�� 

_ 

�
!� 

�
_� s
�� 
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Since � is continuous on W!, _X so is s
�� [because a secant is just a line – continuous] 

Observe s
!� � 0 and s
_� � 0 

So s satisfied Rolle’s Theorem, meaning there is L in 
!, _� with s�
L� � 0 

 

But  

s	
�� � �	
�� ' <�
_� ' �
!�_ ' ! ? 
0 � s	
L� � �	
L� ' <�
_� ' �
!�_ ' ! ? 

So 

��
L� � �
_� ' �
!�_ ' !  
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Direct Consequences of the Mean value Theorem 

(1) Consequence: Theorem: 

(recall – previously not proven) 

Suppose � is continuous at W!, _X, � differentiable on 
!, _� 

a) @ �	
�� ] 0!�� � �� 
!, _�A ` � ��L��!�� �� W!, _X 
b) @ �	
�� \ 0!�� � �� 
!, _�A ` � ��L��!�� �� W!, _X 
c) @ �	
�� � 0!�� � �� 
!, _�A ` � L����!�� �� W!, _X 
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Proof of Part (a) only 

Let �;, �= be in W!, _X with �; \ �= so [�= ' �; ] 0X 
We must show �
�;� \ �
�=� 

Since the MVT hypothesis holds onW!, _X. The Theorem also holds on W�;, �=X 
So there is a L in 
�;, �=� such that 

��
L� � <�
�=� ' �
�;��= ' �; ? 
�
�=� ' �
�;� � ��
L�F�k�p-p�1 
�= ' �;�)**+**,�k�p-p�1)****+****,�k�p-p�1

] 0 

�
�=� ] �
�;� 
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(2) Consequence: Constant Difference Theorem 

If �, " are differentiable on Interval J and �	
�� � "�
�� for all � in J,  

Then for all � in J �
�� ' "
�� � � 
L����!��� 

meaning �
�� � "
�� ( � 

Two function with the same derivative differ at most by a constant in J say, �; \ �= 

Proof: 

Let �;, �= be different in J, say �; \ �= 

Since �, " are differentiable in J, then �, " continuous in J 

So, �, " are differentiable on 
�;, �=� and continuous on W�;, �=X 
The same hold true for �
�� � �
�� ' "
�� 
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Now, �	
�� � ��
�� ' "	
�� � 0 

By the previous Consequence: Theorem (1c) we know  �
�� � � constant 

So, �
�� ' "
�� � � at both �; and �= 

Since �;, �= arbitrary in J �
�� � "
�� � � for all �  in J. 

 

  

Our hypothesis 
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A function of two variables 

A function of two variables � and � is a rule which assigns to each ordered pair 
�, �� of 

real numbers in some subset of the ��-plane (called the domain of the function) exactly 

one real number � � �
�, �� 

called the value of � at 
�, ��. 

 

The value of � depends on two different parameters 

 

Example:  The temperature at the certain point on the surface of the earth �
�, ��, where � and � are longitude and latitude.  
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The graph of � 

The graph of � is a surface in space. So for each value of � and � we have �, � in the 
�, �� 'plane, then we'll plot the point in space at position �, �: � � �
�, ��  

It is possible to obtain something like a “picture” of a function � � �
�, �� without drawing 

its graph in space. It is the contour plot. The graph is sliced by horizontal planes. It is a 

representing the function of two variables by the map.  
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There are a bunch of curves. A level curve for � � �
�, �� is a curve in the �, � -plane on 

which the function takes only one value, i.e. with an equation of the form  �
�, �� � L 

for constant L 

Draw enough of these, label each with the L it came from (so that you know how height it 

should be lifted to get to the graph) and you have some idea what the surface looks like. 
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Limits and continuity for function of two variables. 

Recall:  lim�:�2 �
�� � � 

If �
�� can be made as close as we like to � by choosing � sufficiently close (but not 

equal ) to �& lim�:�2 �
�� � � exists if and only if both 

lim�:�2[ �
�� � � 

and  lim�:�2� �
�� � � 

are equal 
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For �
�, �� the definition looks essentially the same: 

Given �
�, �� an a point 
�&, �&� in the plane with � defined at least “near” 
�&, �&� 

 

We say that  lim
�,��:��2,�2� �
�, �� � � 

if �
�, �� can be made as close as we like to � choosing 
�, �� sufficiently close (but not 

equal) to (�&, �&�. 

This time, however, instead of just two there are infinitely many “approaches” to ��&,, �&,� 

and, in order for the limit to exist, they must all give the same result.  
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Continuity 

Recall: �
�� is continuous at �& if lim�:�2 �
�� � �
�&� 

Implicit in this is 

• �& is in the domain of �
�� so �
�&� exists 

• lim�:�2 �
�� exists 

• these two are the same 

For function of two variables the definition is the same �
�, �� is continuous at 
�&, �&� if  lim
�,��:��2,�2� �
�, �� � �
�&,�&� 

If this is true for every ��&,�&� in the domain of �
�, �� we say simply that �
�, �� is 

continuous 
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• Polynomials are continuous everywhere 

• Rational functions are continuous wherever the denominator is nonzero 

• Sums, differences and products of continuous functions are continuous 

• Quotients of continuous functions are continuous wherever the denominator is 

nonzero 

• If �
�, ��  is continuous and "
�� is a continuous function of one variable, then 

"
�
�, ��� is continuous 

 

 

 

 



168 

 

Partial Derivatives 

Recall: given � � �
�� and � in its  domain 

 

Now suppose � � �
�, �� and 
�, �� is a point in its domain. 

“Rate at which � is changed at 
�, ��” makes no sense since � can change at different 

rate in different directions at  
�, �� 
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Partial Derivatives: Rates of changes in the �-direction and in the �-direction 

Slope of a tangent line in �-direction = partial derivative of � with respect to � 

� ���� � lim�:& �
� ( �, �� ' �
�, ���  

- hold � fixed and differentiate with respect to � as usual. 

 

 

Slope of a tangent line in �-direction = partial derivative  of � with respect to � 

� ���� � lim�:& �
�, � ( �� ' �
�, ���  

- hold � fixed  and differentiate  with respect to � with usual. 
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Examples: 

�
�, �� � � · ����, ���� � ����, ���� � � · L��� 

 

�
�, �� � �= ( �= , ���� � 2�, ���� � 2� 
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Gradient 
 

The gradient of a function � points in the direction of the greatest rate of increase of the 
function, and whose magnitude is that rate of increase.  
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The gradient of �: 

�� � "�!� � �
�
����������

� 

 
The gradient of � at the point 
�&, �&�: 
 

��
�&, �&� �
�
����� 
�&, �&����� 
�&, �&��

� 
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Tangent plane 
 

Let 
�&, �&�be any point of a surface function � � �
�, �� Then the surface has a 
nonvertical tangent plane at 
�&, �&� with equation  
 

{
�2,�2� � �
�&, �&� (
�
����� 
�&, �&����� 
�&, �&��

� · �� ' �&� ' �&� � �
�&, �&� ( ��
�&, �&�)**+**,�l.p1/- .- �kp/-
�2,�2�
�� ' �&� ' �&� 

 

A tangent plane to a function �
�&, �&� at the point 
�&, �&� is a plane that just touches the 

graph of the function at the point �
�&, �&�, �
�&, �&��. 

Approximation formula = the graph is close to its tangent plane. 
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Tangent plane 

 

http://tutorial.math.lamar.edu/Classes/CalcIII/TangentPlanes.aspx 
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Example: Find the equation of a tangent plane to: 
 �
�, �� � �= ( �= 
At the point 
�&, �&� � 
1,2� 
 
Solution: ��
�&, �&� � 
2� 2��
1,2� � �24� 

  {
�, �� � �
1,2� ( ��
1,2� �� ' 1� ' 2� � 5 ( 
2 4� �� ' 1� ' 2� � 5 ( 2
� ' 1� ( 4
� ' 2� �� '5 ( 2� ( 4�   
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The total differential 

 

The total differential of the function of two variables �� 

�� � ���� �� ( ���� �� 

 

The total differential gives the full information about rates of change of the function in the  �-direction and in the �-direction. 
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Some alternate notation: ���� � ���� � ��� �
�, �� � �� �  �� �  ;� � ¡ 

���� � ���� � ��� �
�, �� � �� �  �� �  =� � ¡ 

Second order derivatives: �
�, �� 
 ��� ������ � �=���= � ��� 

��� ������ � �=���= � ��� 

� ��� ������ � �=����� � ������ ������ � �=����� � ���¢x£
x¤ r���� ��L��� ����� !���!�����s!��s��  
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Examples: 

 �
�, �� � �P� ' �=�=   �� � 3�=� ' 2��=,   �� � �P ' 2�=� 

��� � 6�� ' 2�=,   ��� � '2�= 

��� � 3�= ' 4��,   ��� � 3�= ' 4��  
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Local maxima and minima  

 

At a local max or min, �� � 0 and �� � 0  

 

Definition of a critical point: (�&, �&) where �� � 0 and �� � 0  

 

A critical point may be a local minimum, local maximum, or saddle.  
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Second derivative test 

 

Goal: determine type of a critical point, and find the local min/max.  
Note: local min/max occur at a critical points 

 

General case: second derivative test. 
We look at second derivatives: ��� � �=���= ;  ��� � �=����� �  ��� � �=����� ; ��� � �=���= 

 
The Hessian matrix (or simply the Hessian) is the square matrix of second-order partial 

derivatives of a function 
¥
�� �

�
¦�

�=���= �=������=����� �=���= �
§� � ¨��� ������ ���© 
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Given is � and a critical point 
�&, �&�,  

then:  

if 
 ���
�&, �&� · ���
�&, �&� ' ���
�&, �&� · ���
�&, �&� ] 0 

  
then 

• if  ���
�&, �&� ] 0 
  
  local min 

• if  ���
�&, �&� \ 0 
local max.  
if 

 ���
�&, �&� · ���
�&, �&� ' ���
�&, �&� · ���
�&, �&� \ 0 

then saddle 
if 

 ���
�&, �&� · ���
�&, �&� ' ���
�&, �&� · ���
�&, �&� � 0 

then can’t conclude 
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Example: 

�
�, �� � �P ( �=
� ( 1� ' 12� ( 11 �� � 
� ( 1�2�       �� � 3�= ( �= ' 12 

��� � 2� ( 2   ��� � 6� 

��� � ��� � 2� 

Critical points candidates: �� � 
� ( 1�2� � 0    �� � 3�= ( �= ' 12 � 0 


�;, �;� � 
3, '1� ; 
�=, �=� � 
'3, '1�; 
�P, �P� � 
0, '2� ; 
��, ��� � 
0,2� 
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�;, �;� � 
3, '1�: �=���= �=���= ' ¨ �=�����©= � 0 ' 36 � '36 \ 0 �!���� 

 


�=, �=� � 
'3, '1�: �=���= �=���= ' ¨ �=�����©= � 0 ' 36 � '36 \ 0  �!���� 


�P, �P� � 
0, '2�: �=���= �=���= ' ¨ �=�����©= � 24 ' 0 � 24 ] 0; �=���= � '2 \ 0 r!��r�r 


��, ��� � 
0,2�: �=���= �=���= ' ¨ �=�����©= � 72 ' 0 � 72 ] 0; �=���= � 6 ] 0 r���r�r 

 

 


