The Derivative of a Function

Measuring Rates of Change of a function f(x)

Average rate of change of y with respect to x over $[x_0, x]$

$$= r_{average} = \frac{"change in y"}{"change in x"} = \frac{f(x) - f(x_0)}{x - x_0}$$

- Slope of secant line through x_0 , $f(x_0)$ and x, f(x)

Instantaneous rate of change of y with respect to x at point x_0

- Slope of tangent line at x_0 , $f(x_0)$ [provided the limit exists]

Slope of Tangent Lines

Definition:

[Tangent Slope at x_0] = $\lim_{x \to x_0}$ [Secant slope between x_0 and x]

So,

$$m_{Tangent} = \lim_{x \to x_0} \left[\frac{f(x) - f(x_0)}{x - x_0} \right]$$

[provided the limit exists]

Since the tangent line passes through $(x_0, f(x_0))$, its equation is

$$y - f(x_0) = m_{tangent}(x - x_0)$$

Alternate notation:

$$x = x_0 + h; \quad m_{Tangent} = \lim_{h \to 0} \left[\frac{f(x_0 + h) - f(x_0)}{h} \right]$$

What is a Derivative

Definition: The function f' [f prime of x] derived from f and defined by

$$f'(x) = \lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{h} \right]$$

is called the derivative of f with respect to (wrt) x

Exercise:

Find
$$f'(x)$$
, if $f(x) = x^2 + 1$

Solution:

$$f'(x) = \lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{h} \right] = \lim_{h \to 0} \left[\frac{(x+h)^2 + 1 - (x^2 + 1)}{h} \right] = \lim_{h \to 0} \left[\frac{1}{h} (x^2 + 2hx + h^2 + 1 - x^2 - 1) \right] = \lim_{h \to 0} \left[\frac{2hx + h^2}{h} \right] = 2x$$

Exercise:

Let check that the tangent slope of f(x) = mx + b is "m" everywhere

Solution:

$$f'(x) = \lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{h} \right] = \lim_{h \to 0} \left[\frac{1}{h} (m(x+h) + b - (mx+b)) \right] =$$
$$= \lim_{h \to 0} \left[\frac{1}{h} mh \right] = \lim_{h \to 0} m = m$$

Functions: Differentiable (or not!) at a single point?

We say: f is differentiable at x_0 [has a derivative at x_0] if $f'(x_0)$ exists.

The process of finding derivatives of function is called <u>differentiation</u>

If a function has a derivative at a point it is said to be <u>differentiable</u> at that point e.g. $f(x) = \sqrt{x}$ is differentiable at every point in its domain except x = 0Geometric reason:

A function differentiable at a point is continuous at that point

Theorem: If f is differentiable at x_0 then f is continuous at x_0

Proof: Since f is differentiable at x_0 we know

$$f'(x_0) = \lim_{h \to 0} \left[\frac{f(x_0 + h) - f(x_0)}{h} \right]$$

exists

To show f is continuous at x_0 we must show [definition of a continuous function]

$$\lim_{x \to x_0} f(x) = f(x_0)$$

We can rewrite:

$$\lim_{x \to x_0} [f(x) - f(x_0)] = 0$$

Rewriting once more, we need to show with $x = x_0 + h$

$$\lim_{h \to 0} [f(x_0 + h) - f(x_0)] = 0$$

$$\lim_{h \to 0} [f(x_0 + h) - f(x_0)] = \lim_{h \to 0} \left[(f(x_0 + h) - f(x_0)) \cdot \frac{h}{\underbrace{h}} \right] = \lim_{h \to 0} \left[\underbrace{\frac{f(x_0 + h) - f(x_0)}{\underbrace{h}}}_{f'(x_0)} \cdot h \right]$$

$$= f'(x_0) \cdot 0 = 0$$

So, if f(x) is not continuous at x_0 , then f(x) is not differentiable at x_0

f can fail to be differentiable!

Here are the ways in which f(x) can fail to be differentiable at x_0

Example: f(x) = |x| is not differentiable at x = 0

$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{|h|}{h}$$

which does not exist because

$$\frac{|h|}{h} = \begin{cases} 1, h > 0 \\ -1, h < 0 \end{cases}$$

Functions Differentiable on an Interval

- On open intervals: a function must be differentiable at each point (2-sided limit)
- On interval with endpoints: a function must be differentiable at each point on the open interval (2-sided limit) and have a left/right hand limits at the end points

Definition:

Left Hand Derivative

$$f_{-}'(x) = \lim_{h \to 0^{-}} \left[\frac{f(x+h) - f(x)}{h} \right]$$

Right Hand Derivative

$$f_{+}'(x) = \lim_{h \to 0^{+}} \left[\frac{f(x+h) - f(x)}{h} \right]$$

Other Derivative Notations

$$f'(x) = \frac{d}{dx}[f(x)] = D_x[f(x)]$$

If y = f(x),

$$f'(x) = y' = \frac{dy}{dx} = \frac{d}{dx}[y]$$

At $x = x_0$

$$f'(x_0) = \frac{d}{dx}[f(x)]\Big|_{x = x_0} = \frac{dy}{dx}\Big|_{x = x_0}$$

 $x - x_0 = \Delta x$

$$f(x) - f(x_0) = f(x_0 + h) - f(x_0) = y - y_0 = \Delta y$$

So,

$$f'(x) = \frac{dy}{dx} = \lim_{\Delta x \to 0} \left[\frac{\Delta y}{\Delta x} \right] = \lim_{\Delta x \to 0} \left[\frac{f(x_0 + \Delta x) - f(x)}{\Delta x} \right]$$

Finding Derivatives

1. Differentiation technique:

$$f'(x) = \lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{h} \right]$$

2. The derivative of any constant function is zero

$$(c)' = 0$$

Obvious: Horizontal line has a horizontal tangent at each point

3. The Power Rule:

For any real number n

$$(x^n)' = nx^{n-1}$$

Proof for positive integers, n = 0, 1, 2, ...

Recall:

$$a^{2} - b^{2} = (a - b)(a + b)$$

$$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$

$$a^{4} - b^{4} = (a - b)(a^{3} + a^{2}b + ab^{2} + b^{3})$$

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})$$

$$(x^{n})' = \lim_{h \to 0} \left[\frac{(x+h)^{n} - x^{n}}{h} \right] =$$

$$= \lim_{h \to 0} \left[\frac{1}{h} (x+h-x)[(x+h)^{n-1} + (x+h)^{n-2}x + \dots + (x+h)x^{n-2} + x^{n-1}] \right] =$$

$$= \lim_{h \to 0} [(x+h)^{n-1} + (x+h)^{n-2}x + \dots + (x+h)x^{n-2} + x^{n-1}] =$$

$$= x^{n-1} + \underbrace{x^{n-2}x}_{x^{n-1}} + \dots + \underbrace{x \cdot x^{n-2}}_{x^{n-1}} + \underbrace{x^{n-1}}_{x^{n-1}} = nx^{n-1}$$

$$\frac{d}{dx} [x^{n}] = nx^{n-1}$$

Examples:

function	1. derivative
$f(x) = cx = cx^1$	$f'(x) = cx^{1-1} = c$
$f(x) = x^2$	$f'(x) = 2x^{2-1} = 2x$
$f(x) = x^3$	$f'(x) = 3x^{3-1} = 3x^2$

Constance Multiple, Sum and Difference Rules

Theorem: If f, g are differentiable at x and c is any real number. Then

$$(cf(x))' = cf'(x)$$
$$(f(x) + g(x))' = f'(x) + g'(x)$$
$$(f(x) - g(x))' = f'(x) - g'(x)$$

Exercise: Find f'(x)

$$f(x) = 2 + x^{0.5}$$
$$f(x) = 5x^2 - 3x$$
$$f(x) = \frac{6}{\sqrt{x^3}}$$

Solution:

function	1. derivative
$f(x) = 2 + x^{0,5}$	$f'(x) = 0.5x^{0.5-1} = 0.5x^{-0.5}$
$f(x) = 5x^2 - 3x$	f'(x) = 10x - 3
$f(x) = \frac{6}{\sqrt{x^3}} = 6x^{-\frac{3}{2}}$	$f'(x) = 6\left(-\frac{3}{2}\right)x^{-\frac{3}{2}-1} = -\frac{18}{2}x^{-\frac{5}{2}} = -\frac{9}{\sqrt{x^5}}$

The Product Rule

Observe:

$$(f(x) \cdot g(x))' \neq f'(x) \cdot g'(x)$$

Example:

$$f(x) = 1, g(x) = x$$

$$f'(x) = 0, g'(x) = 1,$$

$$f'(x) \cdot g'(x) = 0 \cdot 1 = 0$$

$$(f(x) \cdot g(x)) = x$$

$$(f(x) \cdot g(x))' = 1 \neq f'(x) \cdot g'(x) = 0$$

Theorem: If

f, g are differentiable at x

then

$$(f(x) \cdot g(x))' = f'(x)g(x) + f(x)g'(x)$$

Proof:

$$(f(x) \cdot g(x))' = \lim_{h \to 0} \left[\frac{f(x+h) \cdot g(x+h) - f(x) \cdot g(x)}{h} \right] =$$

$$= \lim_{h \to 0} \left[\frac{f(x+h) \cdot g(x+h) - f(x+h) \cdot g(x) + f(x+h) \cdot g(x) - f(x) \cdot g(x)}{h} \right] =$$

$$= \lim_{h \to 0} \left[\frac{f(x+h)[g(x+h) - g(x)]}{h} \right] + \lim_{h \to 0} \left[\frac{g(x)[f(x+h) - f(x)]}{h} \right] =$$

$$= \lim_{h \to 0} f(x+h) \cdot \lim_{h \to 0} \left[\frac{g(x+h) - g(x)}{h} \right] + \lim_{h \to 0} g(x) \cdot \lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{h} \right] =$$

$$= f(x) \cdot g'(x) + g(x) \cdot f'(x)$$

Sometimes we write

$$\frac{d}{dx}[uv] = u\frac{dv}{dx} + v\frac{du}{dx}$$

Generalized Product Rule:

$$\left(\prod_{i=1}^{n} f_{i}\right)' = (f_{1} \cdot f_{2} \cdot f_{3} \cdot \dots \cdot f_{n})'$$

$$= f'_{1} \cdot f_{2} \dots f_{n} + f_{1} \cdot f'_{2} \cdot \dots \cdot f_{n} + \dots + f_{1} \cdot f_{2} \dots f'_{n-1} f_{n} + f_{1} \cdot f_{n-1} \cdot f'_{n}$$

Example:

$$f(x) = 2x^3(x-1)$$

Solution:

$$f'(x) = 3 \cdot 2x^2(x-1) + 2x^3 \cdot 1 = 6x^3 - 6x^2 + 2x^3 = 8x^3 - 6x^2$$

or:

$$f'(x) = 2 \cdot 4x^3 - 2 \cdot 3x^2 = 8x^3 - 6x^2$$

The Quotient Rule

Observe:

$$\left(\frac{f(x)}{g(x)}\right)' \neq \frac{f'(x)}{g'(x)}$$

Example:

$$f(x) = 1, g(x) = x$$

$$f'(x) = 0, g'(x) = 1, \frac{f'(x)}{g'(x)} = \frac{0}{1} = 0$$

$$\frac{f(x)}{g(x)} = \frac{1}{x}$$

$$\left(\frac{f(x)}{g(x)}\right)' = -\frac{1}{x^2} \neq \frac{f'(x)}{g'(x)} = 0$$

Theorem: If f, g are differentiable at x, Then

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$$

We also write:

$$\frac{d}{dx} \left[\frac{u}{v} \right] = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

Handy fact:

$$\left(\frac{1}{f(x)}\right)' = \frac{f(x) \cdot 0 - 1 \cdot f'(x)}{f(x)^2} = -\frac{f'(x)}{f(x)^2}$$

Example:

$$f(x) = \frac{3x^2}{5 - x}$$

Solution

$$f'(x) = \frac{3 \cdot 2x(5-x) - 3x^2(-1)}{(5-x)^2} = \frac{30x - 6x^2 + 3x^2}{(5-x)^2} = \frac{-3x^2 + 30x}{(5-x)^2}$$

The Chain Rule: Derivatives of Composition of functions

Motivating example: $f(x) = (x^2 + 1)^{100}$. Find f'(x)

Our only technique is to multiply this out – weary tedious.

Instead, think of $(x^2 + 1)^{100}$ as the composition of two functions.

Suppose

$$f(x) = x^{100}$$

$$g(x) = x^2 + 1$$

Then

$$f(g(x)) = f(x^2 + 1) = (x^2 + 1)^{100}$$

We can use the derivatives of x^{100} and $x^2 + 1$ to calculate the derivative $[wrt \ x]$ of

$$y = (x^2 + 1)^{100}$$

Rewrite

$$y = (x^2 + 1)^{100}$$

as

$$y = u^{100}$$
, where $u = x^2 + 1$

Then

$$y'(u) = \frac{dy}{du} = 100u^{99}$$
, and $u'(x)\frac{du}{dx} = 2x$

To get $y'(x) = \frac{dy}{dx}$ we multiply

$$\frac{dy}{dx} = \underbrace{\frac{dy}{du}}_{outer} \cdot \underbrace{\frac{du}{dx}}_{inner}$$

$$y'(x) = y'(u) \cdot u'(x) = 100(x^2 + 1)^{99} \cdot 2x = 200x \cdot (x^2 + 1)^{99}$$

Theorem [The "Chain" Rule]

If g is differentiable at x and f is differentiable at g(x) = u

Then $y = (f \circ g)(x)$ is differentiable at x

Exercise: Find f(x)

$$f(x) = 4(x^2 - 1)^2$$

Solution:

$$f(x) = 4\underbrace{(x^2 - 1)}_{u}^{2}$$

$$y(u) = 4u^2$$
; $u(x) = x^2 - 1$

$$f'(x) = y(u) \cdot u(x) = 4 \cdot 2(x^2 - 1)2x = 16x^3 - 16x = 16x(x^2 - 1)$$

Derivatives of Trigonometric Functions

Recall:

$$\lim_{h \to 0} \left[\frac{\sinh}{h} \right] = 1; \lim_{h \to 0} \left[\frac{1 - \cosh}{h} \right] = 0$$

Then

$$sin'x = \lim_{h \to 0} \left[\frac{\sin(x+h) - \sin x}{h} \right] =$$

$$= \lim_{h \to 0} \left[\frac{\sin x \cosh + \cos x \sinh - \sin x}{h} \right] =$$

$$= \lim_{h \to 0} \left[\sin x \left(\frac{\cosh - 1}{h} \right) + \cos x \left(\frac{\sinh h}{h} \right) \right] =$$

$$= \lim_{h \to 0} \left[sinx \left(\frac{cosh - 1}{h} \right) \right] + \lim_{h \to 0} \left[cosx \left(\frac{sinh}{h} \right) \right] = cosx$$

$$[sinx]' = cosx$$

$$[cosx]' = -sinx$$

$$[tanx]' = \frac{1}{cos^2x}$$

$$[cotx]' = -\frac{1}{sin^2x}$$

Exercises: Find f'(x)

function	1. derivative
$f(x) = \cos 2x$	$f'(x) = -2\sin 2x$
$f(x) = \sin(x^2)$	$f'(x) = 2x\cos(x^2)$
$f(x) = \cos^2 x$	f'(x) = 2cosx(-sinx)

Derivatives of Inverse Trigonometric Functions

$$[arcsinx]' = \frac{1}{\sqrt{1 - x^2}}$$
$$[arccosx]' = -\frac{1}{\sqrt{1 - x^2}}$$
$$[arctanx]' = \frac{1}{1 + x^2}$$
$$[arccotx]' = -\frac{1}{1 + x^2}$$

Derivatives Involving Logarithms

We find

$$(\ln x)' = \frac{d}{dx}[\ln x]$$

For x > 0 [Domain of lnx]

We need two facts to recall:

1. *lnx* is continuous

So, at any a we have:

$$lna = \lim_{x \to a} [lnx] = ln \left[\lim_{x \to a} x \right]$$

The limit "moves through the *ln*

2. Definition: "e" is that number which $\left(1+\frac{1}{n}\right)^n$ approaches, as $n\to\infty$ $e\approx 2,71828...$

$$\lim_{\substack{x \to -\infty \\ x \to +\infty}} \left[\left(1 + \frac{1}{x} \right)^x \right] = e$$

Let
$$u = \frac{1}{x}$$
, so $x \to +\infty$ means $u \to 0^+$
 $x \to +\infty$ means $u \to 0^-$

Thus

$$\lim_{u\to 0} \left[(1+u)^{\frac{1}{u}} \right] = e$$

[Limit is two-sided]

So,

$$(\ln x)' = \lim_{h \to 0} \left[\frac{\ln(x+h) - \ln x}{h} \right] = \lim_{h \to 0} \left[\frac{1}{h} \ln \left(\frac{x+h}{x} \right) \right] =$$

$$= \lim_{h \to 0} \left[\frac{1}{h} \ln \left(1 + \frac{h}{x} \right) \right]$$

Let
$$v = \frac{h}{x}$$
 so $v \to 0, h \to 0$

$$= \lim_{v \to 0} \left[\frac{1}{vx} \ln(1+v) \right] = \frac{1}{x} \cdot \lim_{v \to 0} \left[\ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \cdot \ln\left[\lim_{v \to 0} (1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v)^{\frac{1}{v}} \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v) \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v) \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v) \right] = \frac{1}{x} \lim_{v \to 0} \left[\frac{1}{v} \ln(1+v) \right] = \frac{1}{x} \lim_{v \to 0} \left[$$

So,

$$(\ln x)' = \frac{d}{dx}[\ln x] = \frac{1}{x}, \qquad x > 0$$

Generalized version:

$$\frac{d}{dx}[lnu] = \frac{1}{u}\frac{du}{dx}, \qquad u(x) > 0$$

So,

$$(\ln x)' = \frac{1}{x}, \quad for \, x > 0$$

$$(\log_b x)' = \frac{1}{\ln b} \frac{1}{x}, \ for \ x > 0 \ [\log_b x = \frac{\ln x}{\ln b}]$$

Exercises:

function	1. derivative
$f(x) = \ln(2x - 1)$	$f'(x) = \frac{1}{2x - 1} \cdot 2 = \frac{1}{x - 0.5}$
$f(x) = \frac{1}{\ln x} = (\ln x)^{-1}$	$f'(x) = -(\ln x)^{-2} \cdot \frac{1}{x} = -\frac{1}{x(\ln x)^2}$
$f(x) = x ln(3 - x^2)$	$f'(x) = \ln(3 - x^2) - \frac{2x^2}{(3 - x^2)}$

Derivatives of Exponential Functions

What is

$$(b^{x})' = \frac{d}{dx}[b^{x}],$$

$$b \ge 0,$$

$$b \ne 0,$$

$$b \ne 1$$
?

Development:

$$u = b^{x}$$

$$lnu = xlnb$$

$$\frac{d}{dx} \left[\underbrace{lnu}_{=y} \right] = \frac{d}{dx} [xlnb]$$

$$\frac{1}{u} \frac{du}{dx} = lnb \cdot 1$$

$$\frac{du}{dx} = ulnb$$

Since

$$u = b^{x}$$

$$\frac{d}{dx}[b^{x}] = (b^{x})' = b^{x}lnb$$

Important case:

If
$$b = e$$

$$(e^x)' = e^x lne = e^x$$

Exercises:

function	1. derivative
$f(x) = e^{5x}$	$f'(x) = 5e^{5x}$
$f(x) = \frac{e^{5x}}{x^2} = e^{5x} \cdot x^{-2}$	$f'(x) = 5e^{5x} \cdot x^{-2} + e^{5x}(-2)x^{-3} = \frac{e^{5x}(5x - 2)}{x^3}$
$f(x) = \sqrt{e^{2x} + x}$	$f'(x) = \frac{1}{2}(e^{2x} + x)^{-\frac{1}{2}} \cdot (2e^{2x} + 1)$
$f(x)=2^x$	$f'(x) = (ln2)2^x$
$f(x) = 2^{3x}$	$f'(x) = 3(\ln 2)2^{3x}$
$f(x) = x \cdot 2^{3x}$	$f'(x) = 2^{3x} + 3x(\ln 2)2^{3x}$

Notation for Derivatives of Derivatives [Higher order Derivatives]

1st Derivative:

$$f'(x)$$
, $\frac{d}{dx}[f(x)]$, y' , $\frac{d}{dx}[y] = \frac{dy}{dx}$

2nd Derivative:

$$f''(x), \ \frac{d}{dx} \left[\frac{d}{dx} f(x) \right] = \frac{d^2}{dx^2} [f(x)], \ y'', \ \frac{d}{dx} \left[\frac{d}{dx} (y) \right] = \frac{d^2y}{dx^2}$$

The second derivative of y wrt x

For higher derivatives

$$f^{(n)}(x)$$
, $\frac{d^n y}{dx^n} = \frac{d^n}{dx^n} [f(x)]$

The differentiations rules are the same

Exercise:

$$f(x) = 3x^4 - 2x^3 + x^2 - 4x + 2$$

$$f'(x) = 12x^3 - 6x^2 + 2x - 4$$

$$f''(x) = 36x^2 - 12x + 2$$

$$f^{(3)}(x) = 72x - 12$$

$$f^{(4)}(x) = 72$$

$$f^{(n)}(x) = 0 \text{ for all } n = 5,6,7 \dots$$