Part II: Basics of Calculus

We return to *functions* with real numbers as values.

They are very often used for modelling dependencies or the behaviour of systems in physics and other sciences.

The main teaching objective of the course: To become acquainted with the basics of **calculus**, that includes the theories of differentiation, integration, measure, limits, infinite series, and analytic functions.

Topics for the next 4 weeks:

- Sequences, sums, series
- Limits of sequences and of functions
- Differentiation
- Curve discussion and extreme value problems
- Integration

1. Sequences

Consider the infinite "list" of terms:

$$\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$

Formula for the *n*-th term: 1/n

In general: $a_1, a_2, a_3, ..., a_n, ...$

We call this mathematical object a *sequence* and can define it as a *function* from IN to IR:

Short notation: (*a_n*)

In practice, a sequence is an ordered list of real numbers that most often follows some rule (or pattern) to determine the next term in the list.

A sequence is often given by the *n*-th term formula (also called the *general term*).

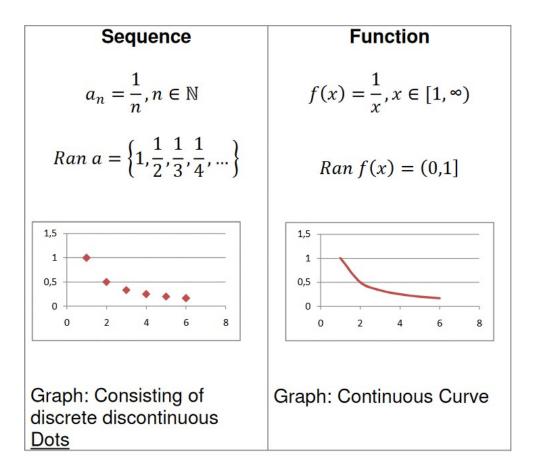
Exercise: Write the first 5 terms:

$$a_n = \frac{1}{2^n}, n = 1, 2, 3, 4, \dots$$

Solution:

 $\frac{1}{2^1}, \frac{1}{2^2}, \frac{1}{2^3}, \frac{1}{2^4}, \frac{1}{2^5}$

Distinction between a sequence and a function on IR (or on an interval of real numbers):



("Ran" means "Range" here, i.e., the set of all obtained values.)

Warning: You cannot determine a sequence from only a finite number of terms!

Example:

a_1	a_2	a_3
1	3	9
1	3	9
1	3	9

(Some) possible solutions:

a_1	a_2	<i>a</i> ₃	a_4	 a_n
1	3	9	27	 3^{n-1}
1	3	9	19	 $1 + 2(n-1)^2$
1	3	9	11	 $8n + \frac{12}{n} - 19$

Recursion

Often a sequence is given by a recursive formula

- Stating its 1st term (s), then
- Writing a formula for the *n*th term involving some preceding terms. This is called **a recursive formula**

Example:

$$a_1 = 1$$

$$\underbrace{a_n}_{subsequent} = 4 \cdot \underbrace{a_{n-1}}_{previous} : recursive formula$$

Solution:

$$a_{1} = 1$$

$$a_{2} = 4 \cdot a_{1} = 4 \cdot 1 = 4$$

$$a_{3} = 4 \cdot a_{2} = 4 \cdot 4 = 16$$

$$a_{4} = 4 \cdot a_{3} = 4 \cdot 16 = 64$$

Limits of sequences

Some sequences "approach" a number as you move out of the sequence: e.g. the sequence

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$

"approaches" 0

Definition:

A sequence (a_n) **converges** to a number *L* (called then the *limit* of the sequence) iff *any interval* around *L* (however small) contains *nearly all* the terms of the sequence,

which means: ... all terms except finitely many,

which means: ... all terms which come after some index *n*.

In this case we write:

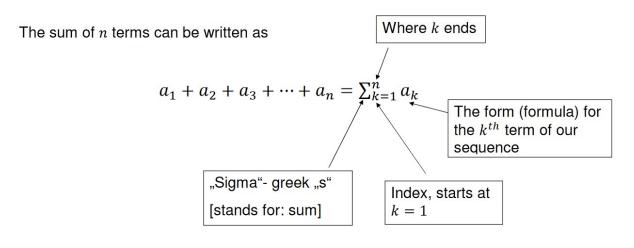
$$L = \lim_{n \to \infty} a_n$$

If no such number exists we say that the sequence (a_n) diverges.

Example 1: $(3^n) = (3; 3^2; 3^3; ...)$ diverges. Example 2: $((1/2)^n) = (1/2; 1/4; 1/8; 1/16; ...)$ converges to 0. Example 3: $(1^n) = (1; 1; 1; 1; ...)$ converges to 1.

For power sequences in general, (x^n) converges to 0 if -1 < x < 1, converges to 1 if x = 1, and diverges for every other value of x.

Shorthand: Summation notation.



Examples

$$\sum_{k=1}^{n} \left(\frac{1}{k}\right) = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \sum_{k=1}^{n} (k)^{2}$$

$$\sum_{k=5}^{8} [(-1)^{k+1} \cdot 2^k] = 2^5 - 2^6 + 2^7 - 2^8$$

Remark: The summation index must not necessarily be named *k*. Other variable names can be used. It must not necessarily begin at 1 and end at *n*.

Properties of sums

Let (a_n) , (b_n) be sequences and *c* some real number. Then:

1.
$$\sum_{k=1}^{n} (c \cdot a_k) = c \cdot \sum_{k=1}^{n} (a_k)$$

2+3. $\sum_{k=1}^{n} (a_k \pm b_k) = \sum_{k=1}^{n} a_k \pm \sum_{k=1}^{n} b_k$
4. $\sum_{k=1}^{n} a_k = \sum_{k=1}^{j} a_k + \sum_{k=j+1}^{n} a_k$, where $1 < j < n$ breaks into 2 pieces
5. $\sum_{k=1}^{n} c = n \cdot c$

Examples:

1.

$$\sum_{k=3}^{8} 9 = 9 + 9 + 9 + 9 + 9 + 9 = 6 \cdot 9$$

2.

$$\sum_{k=1}^{3} 5 \cdot \frac{1}{k} = 5\frac{1}{1} + 5\frac{1}{2} + 5\frac{1}{3} = 5\left(\frac{1}{1} + \frac{1}{2} + \frac{1}{3}\right)$$

Example:

Given are the following measurements for y_{ij} :

j	1	2	3	4	5	
1	1	2 5	1	3	6	
2	3	5	3	1	5	
23	4	3	2	5	1	
4	6	8	2	3	2	

Compute the following sums:

$$\sum_{i=3}^5 \sum_{j=2}^4 y_{ij}$$

Solution:

j	1	2	3	4	5
1	1	2	1	3	6
23	3	5 3	3	1	5
3	4	3	2	5	1
4	6	8	3 2 2	3	2

$$\sum_{i=3}^{5} \sum_{j=2}^{4} y_{ij} = \sum_{i=3}^{5} (y_{i2} + y_{i3} + y_{i4}) = y_{32} + y_{33} + y_{34} + y_{42} + y_{43} + y_{44} + y_{52} + y_{53} + y_{54}$$

= 3 + 2 + 2 + 1 + 5 + 3 + 5 + 1 + 2 = 24

Partial sums

Given an infinite sequence (a_k) , the sum of its first *n* terms is

$$a_1 + a_2 + a_3 + \ldots + a_n$$

which we call its *n*-th partial sum.

(This is at the same time the *n*-th partial sum of the "infinite sum" $a_1 + a_2 + a_3 + ...$; we will come back to this concept.)

Notation:

$$S_n = \sum_{k=1}^n a_k, \quad n = 0, 1, 2, \dots$$

A partial sum is a sum of part of the sequence

Example: "Arithmetic sequence"

Definition: Let $a, d \in \mathbb{R}$. An arithmetic sequence has the standard form (a, a+d, a+2d, a+3d, ..., a+nd).

Equivalent recursive definition:

 $a_1 = a$ (first term), $a_{n+1} = a_n + d$ (for n = 1; 2; 3; ...)

(i.e., *d* is the difference between any consecutive members of the sequence.)

The n-th partial sum of an arithmetic sequence:

Let (a_n) be an arithmetic sequence with first term a and common difference d. Then its *n*-th partial sum is:

$$S_{n} = \sum_{i=1}^{n} (a + (i - 1)d) = \sum_{i=1}^{n} a + \sum_{i=1}^{n} d(i - 1) =$$

$$na + d \sum_{i=1}^{n} (i - 1) = na + d \cdot \frac{n(n - 1)}{2} =$$

$$\frac{n}{2} [2a + (n - 1)d] = \frac{n}{2} [a + a + (n - 1)d]$$

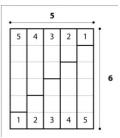
$$\frac{n}{2} [a + a_{n}]$$
See below
$$32$$

The sum of the first n natural numbers

Question: What is the sum of the first *n* natural numbers? **Answer**:

$$S_n = \frac{n(n+1)}{2}$$

Geometric proof for n = 5



We see that we have a big rectangle with the its sides 5 and 5 + 1. The rectangle has 2(1+2+3+4+5) squares inside. So 2(1+2+3+4+5) = 5(5+1) and $1+2+3+4+5 = \frac{5(5+1)}{2}$

Example: "Geometric sequence"

Definition: Let $a, r \in \mathbb{R}$ where $r \neq 0$. A geometric sequence has the standard form

 $(a, ar, ar^2, ar^3, ...).$

r is called the *common ratio* of the sequence. (It is the ratio of any two consecutive members of the sequence.) Equivalent recursive definition:

 $a_1 = a$ (first term), $a_{n+1} = a_n \cdot r$ (for n = 1; 2; 3; ...).

The direct *n*-th term formula for a geometric sequence: $a_n = ar^{n-1}$

The *n*-th partial sum of a geometric sequence:

The n-th partial sum of the above geometric sequence is

$$S_n = a + ar + \dots + ar^{n-1} = a\left(\frac{1-r^n}{1-r}\right)$$

 $(n = 1; 2; 3; \dots \text{ and } r \neq 1).$

Proof: Assume $r \neq 1$. $S_n = a + ar + ar^2 + \dots + ar^{n-2} + ar^{n-1}$ - $rS_n = ar + ar^2 + \dots + ar^{n-2} + ar^{n-1} + ar^n$

$$S_n - rS_n = a - ar^n$$
$$S_n(1 - r) = a(1 - r^n)$$
$$S_n = a\left(\frac{1 - r^n}{1 - r}\right)$$

Observe: The *n*-th partial sums S_n of a sequence $(a_k) = (a_1, a_2, a_3, ...)$ form their own sequence (S_n) :

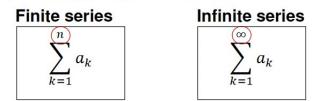
 $(S_n) = (a_1, a_1+a_2, a_1+a_2+a_3, \ldots).$

Series

The sum of the terms of a sequence is called a series.

Given an infinite sequence of numbers { a_n }, a **series** is informally the result of adding all those terms together: $a_1 + a_2 + a_3 + \cdots$

These can be written more compactly using the summation symbol \sum . The **index** of summation, *k* takes consecutive integer values from the lower limit, 1 to the upper limit, *n*. The term a_k is a general term.



A **finite series** is a summation of a finite number of terms. An **infinite series** has an infinite number of terms and an upper limit of infinity.

Convergence of infinite series

If the sequence $\{S_n\}$ of partial sums **converges** to some real number *L* i.e. a limit

$$\lim_{n\to\infty}S_n=L$$

exists,

then the series is said to converge to L.

In this case we can write:

$$\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} S_n = L$$

L is also called the **sum of the series**. In general, we say that an **infinite series** has a **sum** if the **partial sums** form a sequence that has a real **limit**.

If the limit of the sequence of partial sums *exists* and is finite, then the *series* is called *convergent*.

If the limit of the sequence of partial sums does *not exist* or is plus or minus infinity,

then the *series* is called *divergent*.

Convergent and divergent infinite series

Example: Geometric series

Definition: The expression

$$a + ar + ar^2 + \dots + ar^{k+1} + \dots = \sum_{k=1}^{\infty} ar^{k-1}$$

with 1^{th} term a + common ratio $r \neq 0$ is called an **infinite geometric series**.

Theorem:

If |r| < 1, then the infinite geometric series $a + ar + ar^2 + \dots + ar^{k+1} + \dots$ has a finite sum for any constant *a*

$$\sum_{k=1}^{\infty} ar^{k-1} = \frac{a}{1-r}$$

Warning: If $|r| \ge 1$, then the $\frac{a}{1-r}$ sum formula is false.

Proof idea: Recall the n^{th} partial sum

$$S_n = a \cdot \left(\frac{1-r^n}{1-r}\right) = \frac{a}{1-r} - \frac{a \cdot r^n}{1-r}$$

Of course, as $n \to \infty$ $S_n \to$ Series "sum"

Since here |r| < 1, experience suggests that as $n \to \infty$, $|r|^n \to 0$ hence that as $n \to \infty$, $n \to \infty$,

$$S_n = \frac{a}{1-r} - \underbrace{\frac{a \cdot r^n}{1-r}}_{\rightarrow 0} \rightarrow \frac{a}{1-r}$$

223

The geometric series **diverges** whenever $r \leq -1$ or $r \geq 1$:

Example: r = 1; a = 1

$$\sum_{k=0}^{\infty} (-1)^k = 1 - 1 + 1 - 1 + 1 \dots$$

diverges because its sequence of partial sums is

$$S_0 = 1$$

 $S_1 = 1 - 1 = 0$
 $S_2 = 1 - 1 + 1 = 1$
 $S_3 = 1 - 1 + 1 - 1 = 0$

And the sequence $\{1,0,1,0,...\}$ diverges.

Infinite convergent series: Examples

Many so-called **elementary functions** can be defined by series.

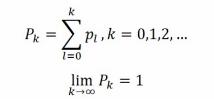
The exponential function e^x may be defined by the following power series:

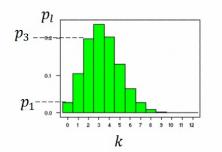
$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \frac{x^{4}}{24} + \dots, \ x \in \mathbb{R}$$

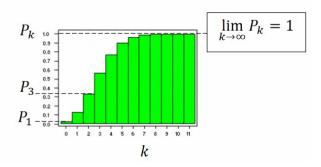
Cosine function

$$cosx = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} = 1 - \frac{x^2}{2} + \frac{x^4}{24} \pm \cdots, \ x \in \mathbb{R}$$

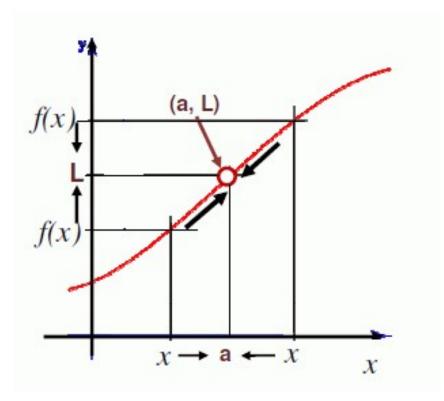
Statistics: Cumulative Distributions of Probability, Discrete Variable







2. Limits of functions



Informal Definition:

If the values of f(x) can be made as close to *L* as we like by taking values of *x* sufficiently close to *a* [but not equal to *a*] **then** we write

$$\lim_{x \to a} f(x) = L$$
$$f(x) \to L \text{ as } x \to a$$

or

Observe:

- " $x \rightarrow a$ " means x can approach a from either side
- On a sketch, the graph of *f*(*x*) approaches the 2-D plane location [destination] called (*a*, *L*), but the graph itself may have no point (*a*, *f*(*a*)) occupying that location!

L may not be f(a)

Notation to describe this behaviour of f when the input x approaches the x-value a:

$$\lim_{x \to a} f(x) = L$$

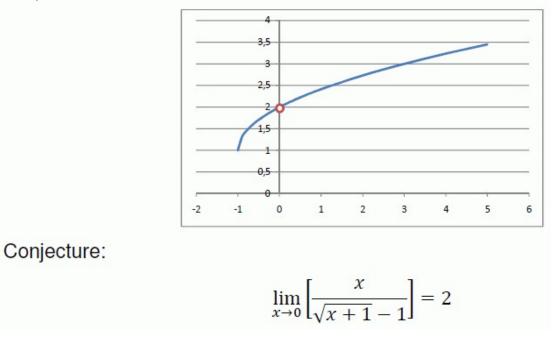
Example:

$$\lim_{x \to 0} \left[\frac{x}{\sqrt{x+1} - 1} \right]$$

Domain of f(x)

$$\sqrt{x+1} - 1 \neq 0, x \neq 0$$
$$x+1 \ge 0, x \ge -1$$
$$\{x \in \mathbb{R} | x \ge -1, x \neq 0\}$$

Graph of *f*:



(The methods how to prove this will be introduced later.)

General definition:

Let f(x) be a function and a a real number (that may be or may be not in the **domain of** f). We say that the limit as x approaches a of f(x) is L, written

$$\lim_{x \to a} f(x) = L$$

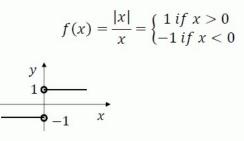
if f(x) can be made arbitrarily close to *L* by choosing *x* sufficiently close to (but not equal to) *a*.

If no such number exists, then we say that

 $\lim_{x\to a} f(x)$ does not exist.

Warning: Not all limits exist!

Example:



- $x \to 0$ from the left, $f(x) \to -1$
- $x \to 0$ from the right, $f(x) \to 1$

So $\lim_{x\to 0} f(x)$ has no meaning!

Two-Sided and One-Sided Limits

Notation

"x approaches a from the left"

 $x \to a^-$ [minus in a superscript position] or $x \uparrow a$ [comes up to a] or $x \nearrow a$

$$\lim_{x \to a^-} f(x) = L$$

 $x \rightarrow a$

"x approaches a from the right"

 $x \to a^+$ [plus in a superscript position] or $x \downarrow a$ [comes down to a] or $x \searrow a$

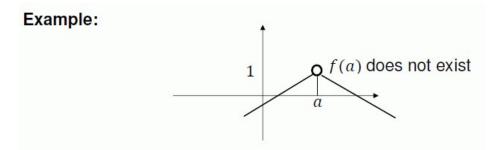
$$\lim_{x \to a^+} f(x) = L$$

Relationship between Two-Sided and One-Side Limits: Theorem

$$\lim_{\substack{x \to a \\ \text{two-sided}}} f(x) = L$$

 \Leftrightarrow [if and only if]:

- $\lim_{x \to a^-} f(x)$ exists
- $\lim_{x \to a^+} f(x)$ exists
- and both equal L



 $\lim_{x \to a^{-}} f(x) = 1 = \lim_{x \to a^{+}} f(x)$

Limits of some basic functions for $x \rightarrow a$:

The constant function

 $\lim_{x \to a} (k) = k$

The identity function: f(x)

 $\lim_{x \to a} (x) = a$ <u>The reciprocal ("flip over") function:</u> $f(x) = \frac{1}{x}$ $\lim_{x \to 0^{-}} \left(\frac{1}{x}\right) = -\infty$ $\lim_{x \to 0^{+}} \left(\frac{1}{x}\right) = \infty$

Limits of Sums, Differences, Products, Quotients and Roots

The "Rules" of Algebra for Limits

Let a be any real number and

$$\lim_{x \to a} f(x) = L_1$$
$$\lim_{x \to a} g(x) = L_2$$

then

$$\begin{split} \lim_{x \to a} [f(x) + g(x)] &= \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = L_1 + L_2\\ \lim_{x \to a} [f(x) - g(x)] &= \lim_{x \to a} f(x) - \lim_{x \to a} g(x) = L_1 - L_2\\ \lim_{x \to a} [f(x) \cdot g(x)] &= \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = L_1 \cdot L_2\\ \lim_{x \to a} [f(x)] &= \left| \lim_{x \to a} f(x) \right| = |L_1|\\ \lim_{x \to a} [kf(x)] &= k \cdot \lim_{x \to a} f(x) = k \cdot L_1 \end{split}$$

$$\lim_{x \to a} [f(x)^n] = \left[\lim_{x \to a} f(x)\right]^n = L_1^n$$
$$\lim_{x \to a} \left[\frac{f(x)}{g(x)}\right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L_1}{L_2}$$

Provided $L_2 \neq 0$

$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)} = \sqrt[n]{L_1}$$

Provided when n= even then $L_1 \ge 0$

Limits of polynomial functions

Polynomial ExpressionsA monomial (one-term polynomial) has the formn=0,1,2,3,...
not negative
called the **degree** of the
monomialA real number constant called a
"coefficient"
Subscript n is a labelx- a variable

Two monomials with the same degree and the same variable are called "*like terms*". $a_n x^n$ and $b_n x^n$ are "like terms".

A polynomial in one variable has the standard form: [higher powers \rightarrow lower powers]

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

 $a_n \neq 0$ leading coefficient

Limits of polynomials

Example $\lim_{x\to 5} (x^2 - 4x + 3)$:

By the "Rules of Algebra" for Limits we can break down **polynomials** into simpler parts

Example:

$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

$$\lim_{x \to a} [f(x)^n] = [\lim_{x \to a} f(x)]^n$$

$$\lim_{x \to a} (k) = k$$

$$\lim_{x \to a} [x^2 - 4x + 3] = \lim_{x \to 5} [x^2] - \lim_{x \to 5} [4x] + \lim_{x \to 5} [3] = (\lim_{x \to a} [x])^2 - 4 \lim_{x \to a} [x] + 3 =$$

$$\lim_{x \to a} [kf(x)] = k \cdot \lim_{x \to a} f(x)$$

$$= 5^2 - 4 \cdot 5 + 3 = 8$$

For any polynomial function

$$\lim_{x \to a} p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = p(a)$$

This result is the same as the result of "substituting a for x" in the polynomial.

Thus, the calculation of limits of polynomial functions is "easy": Just insert a for x.

Limits of Rational Functions
$$\frac{p(x)}{q(x)}$$
 and the appearance of $\frac{0}{0}$
There are 3 cases to consider
Case 1: $q(a) \neq 0$ Limit $= \frac{p(a)}{q(a)}$
Example:

$$\lim_{x \to 2} \left[\frac{5x^3 + 4}{x - 3} \right] \stackrel{\leftarrow}{\leftarrow} p(x) \quad a = 2$$

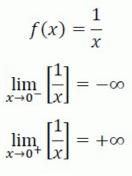
$$= \lim_{x \to 2} [5x^3 + 4] = \frac{\frac{p(a)}{(x - 3)}}{\lim_{x \to 2} [x - 3]} = \frac{\frac{p(a)}{5 \cdot 2^3 + 4}}{\frac{2 - 3}{q(a) \neq 0}} = -44$$

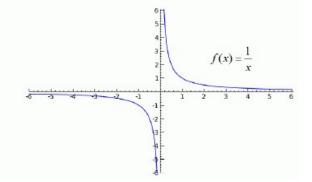
$$\rightarrow$$
 this case is also "easy", same as for polynomial functions.

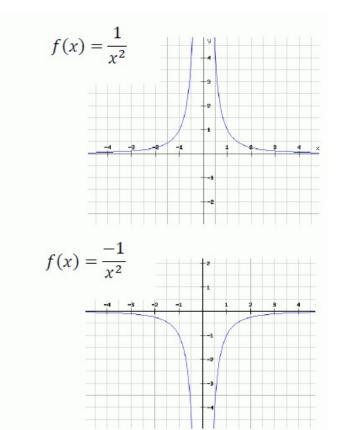
Case 2: $p(a) \neq 0$ and q(a) = 0 Limit does not exist (division by 0!)

$$f(x) = \frac{\widehat{1}}{\underbrace{\frac{x-a}{q(x)}}}$$
$$\lim_{x \to a^{-}} \left[\frac{1}{x-a}\right] = -\infty; \ \lim_{x \to a^{+}} \left[\frac{1}{x-a}\right] = +\infty$$

Classic Examples:







$$\lim_{x \to a} \left[\frac{1}{(x-a)^2} \right] = \infty$$

$$\lim_{x \to a} \left[\frac{-1}{(x-a)^2} \right] = -\infty$$

Case 3: p(a) = 0 and q(a) = 0 Limit $\frac{p(a)}{q(a)} = \frac{0}{0}$ an indeterminate form: We cannot determine whether the limit exists or not, without more work!

Example:

$$\lim_{x \to 2} \left[\frac{x^2 - 4}{x - 2} \right] \stackrel{\leftarrow}{\leftarrow} p(x) \\ \leftarrow q(x) \right] both \ p(2) = 0 = q(2)$$
Factor + cancel
$$\lim_{x \to 2} \left[\frac{(x - 2)(x + 2)}{x - 2} \right] = \lim_{x \to 2} [(x + 2)] = 4$$

This is only one particularly technique! Does not work always!

A more general method to solve this case will be introduced later.

Until now, we have considered only the case that x approaches some real number a. But often one is interested what happens with f(x) when x gets smaller and smaller, or larger and larger.

We write $x \to \pm \infty$ for this case, and speak of "end behavior" of *f*.

The Algebra of Limits as $x \to \pm \infty$: End Behavior

Basic Limits:

The constant function

$$\lim_{x \to -\infty} (k) = k$$

and

$$\lim_{x\to\infty}(k)=k$$

The identity function: f(x)

$$\lim_{x \to -\infty} (x) = -\infty$$
$$\lim_{x \to \infty} (x) = \infty$$

<u>The reciprocal ("flip over") function</u>: $f(x) = \frac{1}{x}$

$$\lim_{x \to -\infty} \left(\frac{1}{x}\right) = 0$$
$$\lim_{x \to \infty} \left(\frac{1}{x}\right) = 0$$

Limits of Sums, Differences, Products, Quotients and Roots

The "Rules" of Algebra for Limits applied to $x \to -\infty$ or $x \to \infty$

We only state for $x \to \infty$ case

As before, suppose:

$$\lim_{x \to \infty} f(x) = L_1$$
$$\lim_{x \to \infty} g(x) = L_2$$

then

$$\lim_{x \to \infty} [f(x) + g(x)] = \lim_{x \to \infty} f(x) + \lim_{x \to \infty} g(x) = L_1 + L_2$$
$$\lim_{x \to \infty} [f(x) - g(x)] = \lim_{x \to \infty} f(x) - \lim_{x \to \infty} g(x) = L_1 - L_2$$
$$\lim_{x \to \infty} [f(x) \cdot g(x)] = \lim_{x \to \infty} f(x) \cdot \lim_{x \to \infty} g(x) = L_1 \cdot L_2$$
$$\lim_{x \to \infty} |f(x)| = \left|\lim_{x \to \infty} f(x)\right| = |L_1|$$
$$\lim_{x \to \infty} [kf(x)] = k \cdot \lim_{x \to \infty} f(x) = k \cdot L_1$$
$$\lim_{x \to \infty} [f(x)^n] = \left[\lim_{x \to \infty} f(x)\right]^n = L_1^n$$
$$\lim_{x \to \infty} \left[\left(\frac{1}{x}\right)^n\right] = \left[\lim_{x \to \infty} f(x)\right]^n = 0$$
$$\lim_{x \to \infty} \left[\frac{f(x)}{g(x)}\right] = \frac{\lim_{x \to \infty} f(x)}{\lim_{x \to \infty} g(x)} = \frac{L_1}{L_2}$$

Provided $L_2 \neq 0$

$$\lim_{x \to \infty} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to \infty} f(x)} = \sqrt[n]{L_1}$$

Provided when n= even then $L_1 \ge 0$

Limits of Polynomial Functions: Two End Behaviors

A polynomial function

$$f(x) = c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0$$

Where $c_n \neq 0$

The "two end behaviors" are that as $x \to \infty$ (the rightward end) or $x \to -\infty$ (the leftward end)

Then

$$\begin{cases} f(x) \to \infty \\ f(x) \to -\infty \end{cases}$$
 The two possibilities

Observe:

$$f(x) = c_n x^n + c_{n-1} x^{n-1} + c_1 x + c_0 = x^n \left[c_n + \frac{c_{n-1}}{x} + \dots + \frac{c_1}{x^{n-1}} + \frac{c_0}{x^n} \right]$$

So, the "end behavior" of f(x) matches the "end behavior" of $c_n x^n$ **Theorem:**

$$\lim_{x \to \pm \infty} [c_n x^n + c_{n-1} x^{n-1} + c_1 x + c_0] = \lim_{x \to \pm \infty} [c_n x^n]$$

Example:

$$\lim_{x \to -\infty} \left[-4x^8 + 17x^5 + 3x^4 + 2x - 50 \right] = \lim_{x \to -\infty} \left[-4x^8 \right] = -\infty$$

Limits of Rational Functions: Three Types of End Behavior

$$f(x) = \frac{p(x)}{q(x)} \leftarrow top$$

$$\leftarrow botton$$

Remember: The Degree of a polynomial is the exponent of the highest power of x in the polynomial

Type 1. Deg(top)=Deg(bottom)

$$\lim_{x \to \infty} f(x) = \frac{\text{leading coefficient of top}}{\text{leading coefficient of bottom}}$$

Example:

$$f(x) = \frac{-x}{7x+4}$$
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \left[\frac{-x}{7x+4} \right] = \lim_{x \to \infty} \left[\frac{-1}{7+\frac{4}{x}} \right] = -\frac{1}{7} = \frac{l.c.of\ top}{l.c.of\ bottom}$$

Type 2. Deg(top)<Deg(bottom)

 $\lim_{x\to\infty}f(x)=0$

Example:

$$f(x) = \frac{5x+2}{2x^3-1}$$
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \left[\frac{5x+2}{2x^3-1} \right] = \lim_{x \to \infty} \left[\frac{\frac{5}{x^2} + \frac{2}{x^3}}{2 - \frac{1}{x^3}} \right] = 0$$

Always zero

y = 0 the (x-axis) is a horizontal asymptote

Type 3. Deg(top)>Deg(bottom)

If leading coefficient of top > 0

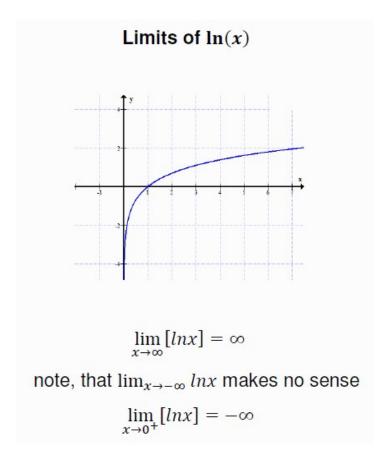
 $\begin{array}{ccc} \infty & if & x \to \infty \\ -\infty & if & x \to -\infty \end{array}$ Always one of these

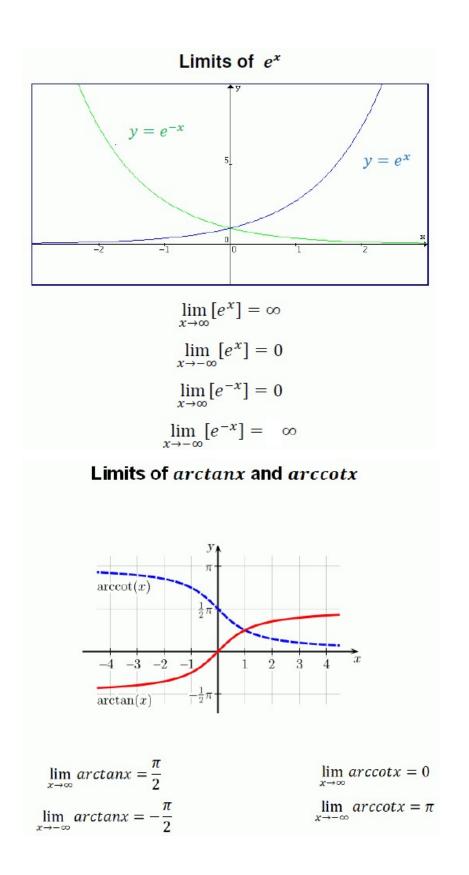
If leading coefficient of top < 0

$$\begin{array}{ccc} \infty & if & x \to -\infty \\ -\infty & if & x \to \infty \end{array}$$
 Always one of these

Example:

$$f(x) = \frac{x^2 + 4x + 5}{x - 1}$$
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \left[\frac{x^2 + 4x + 5}{x - 1} \right] = \lim_{x \to \infty} \left[\frac{1 + \frac{4}{x} + \frac{5}{x^2}}{\frac{1}{x} - \frac{1}{x^2}} \right] = \infty$$





Sources:

Irina Kuzyakova: Computer Science and Mathematics (study course MES), summer semester 2014, part "Basics of Calculus" Richard Delaware (Univ. of Missouri): Lectures (youtube.com) Gregory L. Naber (Drexel University): Lectures (youtube.com) Wikipedia