Applications of derivatives:
Extremal problems in two variables

Local maxima and minima

At alocal max ormin, f. =0and f, =0
Definition of a critical point: (x,, y) where f, = 0 and f,, = 0

A critical point may be a local minimum, local maximum, or saddle.

Second derivative test

Goal: determine type of a critical point, and find the local min/max.
Note: local min/max occur at critical points

General case: second derivative test.
We look at second derivatives:

2f o 7f
frx:ﬁ;fry:_—:fy.r:—';fvy:—z
Ox dxdy dyodx dy

The Hessian matrix (or simply the Hessian) is the square matrix of second-
order partial derivatives of a function

2f  aif
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Given is f and a critical point (xp, vp).

Define the second derivative test discriminant as

D = fi(x0,¥0) - fyy(xm}’o) - fxy(me’o) 'fyx(xoaJ’o)

Then
If D > 0and f,(x0,¥0) > 0 —> local minimum
If D > 0 and f,..(xg,v,) < O — local maximum
fD <0 —> saddle
fD=0 ——> cannot be concluded

A saddle point is a point in the range of a function that is a critical point but
not a local extremum. The name derives from the fact that the prototypical
example in two dimensions is a surface that curves up in one direction, and
curves down in a different direction, resembling a saddle or a mountain pass.

http://en.wikipedia.arg/wiki/Saddle_paint




Example:
fy) =y +x2(y+1)—12y + 11
fi=+1)2x fy =3y +x*—12
fux =2y +2 fyy = 6y fyx = foy = 2x
Critical points candidates: First derivative test applied
fi=G+D2x=0 f,=3y?+x?-12=0
We need to solve the following system of equations:

{ (y+1)2x=0
3y + x> —12=0

The critical points are:

(x1,¥1) = (3,—1); (x3,¥2) = (—3,—1); (x3,¥3) = (0,—2); (x4,¥4) = (0,2)

Maximum, minimum or saddle? Second derivative test applied:
fvcx = 2y+ 2 fyy = 6}’; fyx = f:ty = 2x

(x4, ¥4) =(3,-1)

fex (X0, ¥0) + fyy (X0, ¥0) — fry (X0, Yo) - fyx(X0,¥0) = 0 —36 = —36 < 0 saddle
(xz,¥2) = (=3,-1)

fex (X0, ¥0) * fyy (X0, ¥0) — fry (X0, ¥o) * fyx(X0,¥0) = 0 — 36 = =36 < 0 saddle
(x3,¥3) = (0,-2)

f:rx(x{lryl]) 'f;'y(xl]!yo) _fry(xﬂ!y{l) 'fyx(xt]ly()) =24-0=24>0

f:rx(xofyg) = —2 < 0maximum
(x4,y4) = (0,2)

ﬁrx(xﬁryﬂ) 'fyy(x()r}’o) _fry(xﬁryﬁ) 'fyx(xmy{)) =72-0=72>0

frx (X0, y0) = 6 > 0 minimum



Integration

The Integral of a Function. The Indefinite Integral

Undoing a derivative: Antiderivative = Indefinite Integral

Definition: A function F(x) is called an antiderivative of a function f(x) on same
interval I = [a, b], if

F'(x) = f(x)

forall xinl

differentiation

F(x) f(x)

a4

,undo”

Note: Unlike derivatives, antiderivatives are not unique:

Example:
1
F(x) = 5x3 is an antiderivative of f(x) = x? on (-, )
because
d 1l
' _ 2.3 =42 =
Pl = =52 = 2 = Fo)

But also for any constant ¢

d rl

a[gxg + C] =x? = f(x)
because



Theorem:

If F(x) is any antiderivative of f(x) on I,

then sois F(x) + ¢ « any constant

Every antiderivative of f(x) on I has the form |F(x) + ¢ | for some ¢

e Differentiation produces one derivative

¢ Antidifferentiation produces an infinite family of antiderivatives

differentiation

- N

i) f@) =F'x)

one derivative

F(x)_+ 0

An infinite family
of antiderivatives

][F(X) +c:c consmnt]: f(x)

antidifferentiation

‘\.N /_/'

[ reo
I

A name for this family




f FOOdx = F(x) +c

J

The indefinite integral of f(x)

e [ — the integral sign [elongated “S”]

f(x) - the integrand
e dx - indicates the independent variable

® ¢ - constant of integration
F(x) + ¢ - one of many antiderivatives of f

The indefinite integral of f represents the entire family of all
antiderivatives of f.

Differentiation

asy
j earE: £

Antidifferentiation

[indefinite Integration]

2 [ reodx] = reo

fldx as fdx

1 dx
f?dx as )

Note: Sometimes we write:



Finding Antiderivatives
(1)  Use derivatives we know to build a table

Derivative Corresponding antiderivative
d
a[x]:l fldx:x+c
d [x*1 i o x™H
delr+1| fx x_r+l+('
where r # —1 “Add 1 to the power and divide by
this new power”
d ,
Tx [sinx] = cosx cosxdx =sinx + ¢
X
d . .
I [cosx] = —sinx sinxdx = — cosx + ¢
d 1 1
I [tanx] = cos7x o dx =tanx + ¢
d [cotx] = . f - dx = — cotx +
dx 0 T T sinex sin?x o oMTe
d ( na 1 J 1 d e +
— [arcsinx] = —— —————dx = — arcsinx + ¢
dx V1 —x? V1 —x?
d o f Lo
dx arctanx] = 11 2 1+ 2 x =arctanx +c
d [arccotx] = ! f ! dx = ct +c
~ larceotx] = —- s L4 2 X = —arctanx +c
d _
[e*] = e* je’cdx =e* +¢
dx
d : a*
—[a*] = a*lna fa.xdx =——+c
dx Ina
d 1
—|[Inx] = — f—dxzfnx+c
dx X X
d 0 1 1 1 B Inx _;
dx "8 T Yina na) x“ " Ina te=logaxtc
J. Inxdx =x(Inx) —x +c¢
1
f]oga xdx =—{(x-(lnx) —x) +c¢
Ina




(2) Some Properties on Indefinite Integrals: ¢ a real number

jcf{x)dx :cjf(x:)dx
[ 17+ g@oldx = [ Fedx + [ gGorax

[ 11 — g0t = [ Fedx - [ geoax

All applied earlier for limits + derivatives

Do not write:
X2
IZde(ZZIJ(dx: 2(?4-6):%2 +/'Zz/:x2+c
x? x2
f(1+x)dx=f1dx+fxdx= (x + '-1.)4‘(?4'/%))/:%4-?—%6

Notes on constants of integration:
» Do not forget the constant of integration!
« Do not introduce it too soon
« Combine multiple constants of integration into one ¢

Integration techniques considered so far:

(1) Use (create) a table
(2) Rewrite the integrand (in order to use the table)

Examples:

2
J‘Z-xza’x=2-fx2dx=§x3+c

x3

f(xz + 3sinx)dx = f x2dx + J. 3sinxdx = 3 3cosx + ¢



The Indefinite Integration by Parts
[ £+ gy dx =2
Recall the product rule for derivatives u = u(x), v = v(x)
() - v = /() - v(x) + u(x) - v'(x)
w'(x) - v(x) = [ulx) - v(x)]" —ulx) - v'(x)

Integrate both sides

J"u.’(x) cv(x)dx = f[u(x) cv(x)])'dx — fu(x) V' (x) dx

ju’(x) v(x) = ulx) - v(x) — J‘u(x) -v'(x) dx

Shorthand notation: The integration by part formula

f vdu = uv — J‘ udv

Generally try to choose v to be something that simplifies when you differentiate
it.

Integration by parts formula: [ u'(x) - v(x) = u(x) - v(x) — [ u(x) - v'(x) dx

Example 1: f 2xe*dx

How to choose u and v?
u'(x) =2x v(x) =e*

u(x) and v'(x) are easy to find: u(x) = x? und v'(x) = e*

But we cannot find the indefinite Integral of the product u(x)v'(x) = x? : e*
Then:

u'(x) =e* v(x) = 2x

u(x) = e* and v'(x) = 2, 0 [u(x)v'(x)dx = 2e*

fex'Zxdx = 2xe* — 2 f efdx =e*(2x —2) + ¢



Integration by parts formula: [u'(x) - v(x) = u(x) - v(x) — [ u(x) - v'(x) dx

Example 2: _
fe"xzdx

i (X)) = ¢ ¥x) = x?

i(x) = e* v(x)=2x

f e*x2dx = e%x? - ff_e-" »2x)dx =

= e¥x? - (29-?:{» ~2 f(p-‘f : 1]dx)

= e"x? =2xe¥ —=2e" =e*(x?=2x+2)+c

Integration by parts formula: [u'(x) - v(x) = u(x) - v(x) — [ u(x) - v'(x) dx

Example 3:
f cosx + sinxdx

f cosx - sinx dx = sinx - sinx — f sinx - cosxdx

u'(x)  v(x)

2 f cosx » sinxdx = sin® x

1
f cosx -+ Sinxdx = Esinzx



The Indefinite Integration by Substitution
ldea: Suppose F' = f and g’ exists

Chain rule:
F'(g(x)) =F'(g(x))-g'(x)
outer inner
[ Floe)-g'@rax= | Flo)
So,

f flg(x)) - 9" (x)dx = F(g(x)) +c
Let u = g(x), then:
flg()) = f(w)
du

o =g'(x) = g'(x)dx =du

ff(fu) du=F(u)+c

Substitution of u for g(x) makes (when it works!) integration easier.

Application of the substitution technique:
Always consider “substitution” first.
If one substitution fails, try another one!

Always make a total change from one variable (x) to another
(u). Never mix variables!

Key requirement for applying substitution:

Find something in the integrand to call u to simplify the

appearance of the integral and whose du = %dx Is also
present as a factor.



Example:

J'v1+xdx
u=1+x
du_l Iy = d
= x = du

2 3 2 3
f\/ﬂdu =3W =3 (1+x)2

Exercises:
function substitution Integral
= p2X = 1

f(x)=e u = 2x F(x) = Eezx +e

X) = 2 = 1
f)=(x+1) u=x+1 F(x) = g(:x +1) 4o
f(x) = xin(x?) u=x? F(x) = %(ﬁlen(:xz) —-x?)+c

Summary

A hard and fast set of rules for determining the method that should be used for
integration does not exist.

Some integrals can be done in more than one way.

It is possible that you will need to use more than one method to compute an
integral.

There are integrals that cannot be computed in terms of functions that we know.




Application of integration: Calculation of areas

Definition of Area “under a Curve”

Continuous
-_'--..‘.ﬁ ) /
A s = rw=o
fxio)
a = x;‘: h =
Xo Xn

¢ Partition into n equal subintervals
1

e Each width = —(b — a) = Ax
n

a
/] NG —=F]
fxp)
Xo Xn

e Choose any point in each interval to calculate rectangle heights

Area under 2 :” .
A x. ) A
[ Curve } k=1 f('x;") o

Area of one
rectangle

Definition: If f is continuous on [a, b] f(x) = 0 on [a, b]

Then

n

= lim f(xp)Ax

n—00 k=1

y=f()

Area imde'r}
over [a, b]




f(xp)Ax >0
Net Area '

|
Definition: Net ,Signed Area* _ |
G G
e fwe<o B NZ b

If fis continuous on [a, b] f(\x\)\g 0 Then |

n Net signed fxp)Ax <0
lim [Z f(xfé)/_\x] = Area between
e ek=1 y = f(x) and [a, b]

Approximating Area Numerically

For large n

mn
mn
lim Z Fai)Ax ~ Z ) Ax
n—oo k=1 =

The Definite Integral
The Definite Integral Defined

Extend our “Net Area” limit:
n

lim f(xp)Ax
n—=00 Lap_q
: Equal length
COﬂtl_ﬂUOUS subinterval
function
y
y=fx)
| 1 >
a b x

To compute the area under the graph of f(x) and above the interval [a, b] we
proceed as follows:



1. Subdivide the interval [a, b] into n unequal subintervals with endpoints:
A=Xg <X <Xy < < Xpog<Xp_q<Xp=0D,
Foreachk =1,2,..n—1,n let Axy = x;, — x_y = lenght of [xi_1, x)]

X; X3 | |x:1_1 Xp
1 I
a b
Note: The largest of the Ax;, will be denoted Ax,;, 45

2. Inside each [xy_,, x;]select a point x;., evaluate f(x1), f (x2), ..., f (xp-1), f (xn)
and compute f(x1)Axy, f(x2)Axz, ., f(Xn-1) %01, f (xn) Axy

3. Form the Riemann Sum. A Riemann sum is a summation of a large number
of small partitions of a region.

n

fOeAxy + f(x)Bxp + o+ flap_)Axn—y + )X, = k_lf () Axy

4. Repeat Step 1-3 over and over with finer and finer subdivision of [a, b] (i.e.
smaller and smaller Ax,,,, and take a limit

n
lim Z f(xp)Axg,
AxXmax—0 ]

Partition in equal subintervals: n - « means Ax - 0, which
guarantees that each width shrinks

Partition in unequal subintervals: max Axk — O guarantees that
each width shrinks.



Notice that if f(x) < 0 on [a, b], then the result of this procedure will be minus
the area between the graph of f(x) and [a, b].

f(x) >0 y=fx)
y
—~—— X
a Ib x'
If f(x) takes both positive and negative value on [a, b], then the procedure
yields the net signed area between the graph of f(x) and the interval [a, b]
y A
TN
+
a \—_/ b x
Definite Integral: Definition
n
1.f is integrable on [a, b] if ma.\l"lﬂ.ll}kao J(:lf(;»q‘b;)./_’*.xk
. /,
T [Riemann
exists and does not depend on Sum
¢ the choice of partition
¢ or the choice of x;,” point
2.1f f is integrable, then the limit
n
lim f(xp)Axy,

maxAxy—0 k=1

is called the Definite Integral of f(x) over [a, b] [or from a to b] and is denoted

b
f f(x)dx
a
a: lower limit of integration
b: upper limit of integration

Be careful not to confuse f(?f(x)dx and [ f(x)dx. They are entirely different
types of things. The first is a number, the second is a collection of functions.

Notation:

A—d
Ax — dx

r -




The definite Integral of a continuous Function = Net “Area” under a curve

Theorem: If f is continuous on [a, b]

then f is integrable on [a, b]

And
Net + Area )
between the
graph of f - J; f(x)dx
and [a, b]
Notation:

x=b
J. [integrand]dx

X=a

We will need methods for evaluating the number

| o

other than computing the limit that defines them.

Some methods generally involve antidifferentiation, but some definite integrals

can be evaluated by thinking of them as area.

Definite Integrals Using Geometry

|
P_l
[ - —— —




Finding Definite Integrals: A new Definition and Properties

1.1f a is in Domain of f, define

faf(x)dx =0

2.1f f is integrable on [a, b], define

a b
| reodx = | reax
b a
Properties of definite integrals:
b b
f [ef ()]dx = ¢ f £ dx

b b b
J’ [f(x)—I—g(x)]dx:f f(x)dx—l—f g(x)dx

b b b
f [FGo) — g(0)]dx = f FGO)dx f g()dx

Theorem: If f is integrable on any closed Interval containing a, b, ¢
Then

fbf(x)dx = fcf(x)dx + fbf(x)dx

No matter, how a, b, ¢ are ordered!
Theorem: Suppose, f, g integrable on [a, b]
a.lf f(x) = 0 forall xin [a,b], Then
b
j f(x)dx =0
a
b.If f(x) = g(x) for all x in [a, b], Then

Lbf (x)dx = J:g (x)dx



The Fundamental Theorem of Calculus

There are two parts to this.

Fundamental Theorem of Calculus, part I:
If £ is continuous on [a, b] and F(x) is any antiderivative for f(x) on [a, b].

then

b
[ 7 i =rel = F@) - F@)

upper lower

Notice. If F is any antiderivative of f,
b
[ ot = 1@ + 1 = F0) + ] = [F@) + ] = F) — F@)
a
So, we can always omit writing ¢ here. Thus

b b
[ 7 eodx=rel?

Part Il:

If f is continuous on the Interval I, then f has an antiderivative on I

If aisin I then

F(x) = j £ ()dt

a
is one such antiderivative for f(x)

meaning

d X d B
a“ﬂf&) 4 - F0)



Differentiation and Integration are Inverse Processes:

FTC, Partl
f F(0dt = () - f(@)

“Integral of derivative recovers original function”

FTC, Partll

= f(x)

d X
EU@ f(t)dt

“Derivative of integral recovers original function”.

Definite and Indefinite Integrals Related:

b
jf(x)dx f f (x)dx
a
is a function in x is a number —
no x involved!

So, the variable of integration in a definite integral doesn’t matter: The name of
the variable is irrelevant. For this reason the variable in a definite integral is often
referred to as dummy variable, place holder.

L f (dx - f "F ()t = f:f ()dy

Some Examples:
1.

4
f 2xdx =x%|3 =42 —-42=0
4
2
f 2xdx =x?|2 =22 -12=3
1

1
—J' 2xdx = —x?|3=-12+2%2=3
2



4
f 2xdx = x?%|] = 4> — 12 = 15
1

2 4
f 2xdx+f 2xdx = x?|3 + x?|3 =22 - 12 + 42 - 22 =15
1 2

Definite Integration by Substitution.

Extending the Substitution Method of Integration to definite Integrals
to evaluate the number

g’ continuous on [a, b]
f continuous where g exists on [a, b]

b
f £ (9(0)g’ (W)dx

Substitution:
u=g(x)
du = g'(x)dx
Change x - limits to u -limits with the substitution:
u(a) = g(a)
u(b) = g(b)
To get
g(d)
j f (u)du
g(a)
Examples:
1. Find
1
j e?*dx
-1
. . du 1
1. x substitution of x: u(x) = 2x = u e 2  dx= Edu

2. limits substitution:
lower limit: u(—1) = -2

upper limit: u(1) = 2



2. Find:

2
J‘ 2xlnx? dx
1

1. x substitution: u(x) =x%2=u M _ox  dx=du
dx 2x

2. limits substitution:
lower limit: u(1) = 1

upper limit: u(2) = 4

4
f Inudu = ulnu — u|f = (4ln4 —4) — (In1 — 1) = 4ln4 — In1 — 3
1

The Definite Integral Applied
Total Area
Although

b
f f (x)dx — "net area"
a

We can find that

toraI] f|f(x)|dx

Area

Example. Compute the area between (x) = 0,5x> — 0,5x2 — 2x + 2, the x —axis
and the lines x; = —2,5 and x, = 2,5:

Nullpoints: f(x)=05x2-0,5x2-2x+2=050+2)(x — 1)(x —2)

= =
= =
] =
| |
=

(]

o b odothLog

axi+hxi+ex+d
il
t'.] -
.

fixh

x Xp1 X0z Xg3




Function:
f(x) =0,5x%—-0,5x2 —2x +2

Antiderivative:

1 1 1 1 1
= L 3 _92_,2 4 _ .3 _ .2
F(x) =105 21X 0,539( 22x + 2x gX T T« + 2x
Area
-2 1 2 2,5
F = f(x)dx +f f(x)dx + ff(x)dx + f(x)dx
—-2,5 -2 1 2

F=IF(=2)-F(=25|+F1) - F(=2)+|F(2) —F(D|+ F(2,5) - F(2) =
=|-4,67 +3,76] + 0,96 — (—4,66) + 0,67 — 0,96 + 1,03 — 0,67 =
=090 + 5,625+ 0,29 + 0,36 = 7,175

Area between Two Curves [one floor, one ceiling]

flx) —gx)
Area between] _ —_——
= upper lower dx
currves a

one ceiling — one floor

Examples:
1. Compute the area of the region between the graphs of y = x and y = 6 — x2.

To identify the top y = f(x) and the bottom y = g(x) and the interval [a, b] we

need a sketch.

Intersections:

Z/f—\ 6—x%?=x
f(x)zﬁ—x/ ’ Ngx) =x x2+x—-6=0

i\“ g (x+3)(x—2)=0
/ I M i \ x=-3,2
1 2 [a,b] = [-3,2]

- -4 5 a4

2 2 1 1
Area: f_3((6 —x?) —x) dx = f_g(ﬁ —x? —x)dx = 6x _23 —§x3 _23 — Exz _23

125

=6(2- (—3))—%(8— (—27))—%(4—9) =



2.Compute the area of the region between two graphs:

g(x) =x? —4x + 6 and h(x) = 3vx

2 3 Intersections:
gx) =x"—4x + 6/

[a

10

x?2 —4x + 6 = 3x

: /
. h(x%L/ xij=1, a5 =4
Ny

4 3 1
Area: j (3ﬁ—x2+4x—6)dx:2x5—§x3+2x2—6x|£1}=
1

TR ST, T PO W FY
_( Ty e )_( 3 _)_3+3_

Sources:

Irina Kuzyakova: Computer Science and Mathematics (study course MES),
summer semester 2014, part “Basics of Calculus”

Richard Delaware (Univ. of Missouri): Lectures (youtube.com)

Gregory L. Naber (Drexel University): Lectures (youtube.com)

Wikipedia



