5. Foundations of programming

Paradigms of programming:

Different viewpoints and ways of thinking
about how to conceive a computer and a
programme

Imperative paradigm:

Computer = machine for the manipulation of
variables

Programme = sequence of commands which
change values of variables, together with
specifications of the control flow (telling which
command is executed next)

Languages: Fortran, Pascal, Basic, C ...

Example (works in C or Java or XL):

X =0:;
while (x < 100)
X=X+ 2;

The variable x is used to produce the even

numbers from 0 to 100.
Attention: The assignment command X =X + 2 IS not
a mathematical equality!

166

Object-oriented paradigm:

Computer = environment for virtual objects which
are created and destroyed during runtime (and can
Interact)

Programme = collection of general descriptions of
objects (so-called classes), together with their
hierarchical dependencies (class hierarchy)
Objects can contain data and functionality
(methods)

Languages: Smalltalk, C++, Java, ...

Example (in Java):

public class Car extends Vehicle

{

public String name;
public int places;
public void print_data()

{

System.out.printin("The car is a " + name);
System.out.printin("lt has " + places + "places");

}
}

Typical: class (Car) with data (hame, places) and
methods (print_data). The class Car inherits

further data and methods from a superclass,
Vehicle

167

Rule-based paradigm:

Computer = machine which transforms a given
structure according to given rules

Programme = set of transformation rules
(sometimes also called a grammar)

Each step of programme application consists of
two substeps: Finding an applicable rule (matching
step) and transformation of the current structure
according to that rule (rewriting step).

Languages: Prolog, Al-languages, L-system
languages, particularly XL

Example (in XL):

public void apply()

[

F(x) ==> F(x/3) RU(-60) F(x/3) RU(120)
F(x/3) RU(-60) F(x/3):

]

produces the so-called Koch curve:

168

Readability of programmes by humans

programmes: have to be executed by computers, but
also to be understood by humans

Executability can be checked automatically,
understandability not!

— Recommendations:

make frequent use of programme comments
(/*...* or /... In Java, C++ or XL)

use plenty of newlines and blanks

put braces { ... } in lines of their own, put

matching braces in same horizontal position:
{

.

iIndentation makes containment and nesting of
programme components visible

avoid long lines, insert line breaks for readability
avoid very long methods

use "speaking" variable and function names
(int iteration_counter Is better than int x127 1)

do not use variable names twice for different
purposes, even if the language allows it

Initialise constants, default values etc. at the
beginning of a source code file, not somewhere
"deep in the code" where you don't find them
later on

adhere to conventions used by competent

programmers!
169

Basic parts of Java and XL

Remark: The language XL is an extension of Java.
The following examples can be compiled and run
with GrolMP (see www.grogra.de), a modelling

platform which contains a development toolkit for
XL and possibilities for visualization.

A first demonstration programme:

[* A simple Java programme for execution
with the GrolMP software. */

protected void init()

{
printin("Hello World!");

}

(= example file prog_ex01.rgg)

Download of GrolMP:

https://gitlab.com/grogra/groimp/-/releases

170

Basic components

Comments, spaces, newline: For human readability, and for separa-
ting words (just like in normal written language).

Special symbols: To denote different kinds of groupings, to termi-
nate commands, to construct paths etc.

Examples: Braces {, }; parentheses (,) ; brackets [, 1; dot; double-
quotes "; semicolon

Literal values: character sequences representing a value directly,
like a digit sequence for a number, or a character sequence in dou-
ble quotes for a string.

Example: "Hello World!™

Sequences of letters or digits, starting with a letter: different cate-
gories: 1) Keywords, 2) predefined identifiers, 3) newly declared
identifiers.

1) Keywords: Are fixed in the language proper, can not be given a
new meaning

Examples: public, class, static, void . prot ect ed

2) Predeclared identifiers: Meaning fixed by a declaration in the
context, often can be “overwritten”, i.e. given a new meaning. Ex-
amples:

String: data type for character sequences
println: predefined method — invoked with a string as its

argument, it writes the string to the GrolMP console (a special
output window) and adds a line feed.

171

3) newly declared identifiers: Their meaning is fixed by
(explicit or implicit) declarations in the programme itself.
Example: init is the name of the method which writes the
text to the console. It expects no arguments (init()).

Use of simple data types and the "while" loop

[* A simple demonstration program,
printing out the numbers from 0 to 10
and their squares, each pair
on an extra line. */

protected void init()

L
int i;
| =0;
while (i <= 10)
{
println(i + ": " + (i*));
| = i+1;
}
printin("Finished!");
}

(example file prog ex02.rgg)

172

While loop

while starts a loop: A sequence of commands which, under some
condition, are executed repeatedly.

First, the condition given in parentheses is checked. Result must
be boolean. Our example: Comparison of the current value of 1 (0)
with 10.

0<=10 is true: Thus, the body of the loop is executed: Pair of values
0 and 0*0 are printed, and i is incremented by one.

Then, execution continues with the check of the condition, and the
loop is repeated until 1 has value 11, suchthati <= 10 becomes
false.

Then, the loop body is not repeated again, and the main method
finishes.

Assignments

In our example:

| = 0;

the variable named i gets the new value O

« fundamental operation in the imperative
programming paradigm

effect. content of a place in the memory is changed

Attention:

1 =0 In a Java programme does not have
the same meaning as in a mathematical formula!
E.g.,i=i+l would mathematically be a contradiction

(it would imply O = 1)

173

— but makes sense in a programme (incrementi by 1).

Mathematical meaning of this assignment:
Inew = loid + 1.

In assignments, the order is relevant:
X1 = x2; has another effect as x2 = x1;

To underline the asymmetry, other languages (e.g.,
Pascal) use := Instead of = for assignments.

XL allows both notations

(but with a slightly different meaning: := denotes a
deferred assignment, i.e., it enables a quasi-
parallel execution with other assignments.)

Comparison (checking for equality) is expressed in
Java, Cand XL by ==

Java offers further assignment operators besides = :
a+=Db // add content of b to the content of a

—=, *= |= etc. analogously.

174

