
166

5. Foundations of programming

Paradigms of programming:

Different viewpoints and ways of thinking
about how to conceive a computer and a
programme

Imperative paradigm:
Computer = machine for the manipulation of
variables
Programme = sequence of commands which
change values of variables, together with
specifications of the control flow (telling which
command is executed next)
Languages: Fortran, Pascal, Basic, C ...

Example (works in C or Java or XL):

 x = 0;
 while (x < 100)
 x = x + 2;

The variable x is used to produce the even
numbers from 0 to 100.
Attention: The assignment command x = x + 2 is not
a mathematical equality!

167

Object-oriented paradigm:

Computer = environment for virtual objects which
are created and destroyed during runtime (and can
interact)
Programme = collection of general descriptions of
objects (so-called classes), together with their
hierarchical dependencies (class hierarchy)
Objects can contain data and functionality
(methods)
Languages: Smalltalk, C++, Java, ...

Example (in Java):

public class Car extends Vehicle
 {
 public String name;
 public int places;
 public void print_data()
 {
 System.out.println("The car is a " + name);
 System.out.println("It has " + places + "places");
 }
 }

Typical: class (Car) with data (name, places) and
methods (print_data). The class Car inherits
further data and methods from a superclass,
Vehicle .

168

Rule-based paradigm:

Computer = machine which transforms a given
structure according to given rules

Programme = set of transformation rules
(sometimes also called a grammar)

Each step of programme application consists of
two substeps: Finding an applicable rule (matching
step) and transformation of the current structure
according to that rule (rewriting step).

Languages: Prolog, AI-languages, L-system
languages, particularly XL

Example (in XL):

public void apply()
 [
 F(x) ==> F(x/3) RU(-60) F(x/3) RU(120)
 F(x/3) RU(-60) F(x/3);
]

produces the so-called Koch curve:

169

Readability of programmes by humans

programmes: have to be executed by computers, but
also to be understood by humans

Executability can be checked automatically,
understandability not!

 Recommendations:

• make frequent use of programme comments
(/* ... */ or // ... in Java, C++ or XL)

• use plenty of newlines and blanks

• put braces { ... } in lines of their own, put
matching braces in same horizontal position:

{

}

• indentation makes containment and nesting of
programme components visible

• avoid long lines, insert line breaks for readability

• avoid very long methods

• use "speaking" variable and function names
 (int iteration_counter is better than int x127 !)

• do not use variable names twice for different
purposes, even if the language allows it

• Initialise constants, default values etc. at the
beginning of a source code file, not somewhere
"deep in the code" where you don't find them
later on

• adhere to conventions used by competent
programmers!

170

Basic parts of Java and XL

Remark: The language XL is an extension of Java.
The following examples can be compiled and run
with GroIMP (see www.grogra.de), a modelling
platform which contains a development toolkit for
XL and possibilities for visualization.

A first demonstration programme:

/* A simple Java programme for execution
with the GroIMP software. */

protected void init()
 {
 println("Hello World!");
 }

(= example file prog_ex01.rgg)

Download of GroIMP:

https://gitlab.com/grogra/groimp/-/releases

171

, protected

println: predefined method – invoked with a string as its
argument, it writes the string to the GroIMP console (a special
output window) and adds a line feed.

172

3) newly declared identifiers: Their meaning is fixed by
(explicit or implicit) declarations in the programme itself.
Example: init is the name of the method which writes the
text to the console. It expects no arguments (init()).

Use of simple data types and the "while" loop

/* A simple demonstration program,
 printing out the numbers from 0 to 10
 and their squares, each pair
 on an extra line. */

protected void init()
 {
 int i;
 i = 0;
 while (i <= 10)
 {
 println(i + ": " + (i*i));
 i = i+1;
 }
 println("Finished!");
 }

(example file prog_ex02.rgg)

173

Assignments

In our example:
i = 0;
the variable named i gets the new value 0
• fundamental operation in the imperative

programming paradigm

effect: content of a place in the memory is changed

Attention:
i = 0 in a Java programme does not have
the same meaning as in a mathematical formula!
E.g., i = i+1 would mathematically be a contradiction
(it would imply 0 = 1)

174

– but makes sense in a programme (increment i by 1).
Mathematical meaning of this assignment:

inew = iold + 1.

In assignments, the order is relevant:
x1 = x2; has another effect as x2 = x1;

To underline the asymmetry, other languages (e.g.,
Pascal) use := instead of = for assignments.

XL allows both notations
(but with a slightly different meaning: := denotes a
deferred assignment, i.e., it enables a quasi-
parallel execution with other assignments.)

Comparison (checking for equality) is expressed in
Java, C and XL by = =

Java offers further assignment operators besides = :
a += b // add content of b to the content of a
–=, *=, /= etc. analogously.

