<u>3. Databases and Geographical Information</u> <u>Systems (GIS)</u>

Databases

Motivation:

Computers are often used

- for dealing with large amounts of data
- and in situations where **data integrity** is important for the survival of an organization.

Examples:

- Banking
- e-commerce (commercial transactions via WWW – e.g., amazon.com or ebay.com)
- meteorological measurements
- booking systems (trains, airlines...)
- telecommunication (phone numbers, fax numbers, mobile phone data...)

Main problems:

- How can large amounts of data be organized so that they can be accessed quickly?
- How can data be organized so that hardware and software failures do not lead to a desaster?
- How can data be changed by several agents in parallel without interference?

Today these problems are being dealt with on the conceptual basis of **relational database management systems** (RDBMS), typically using some dialect of **SQL** (structured query language) as notation for definition and manipulation of data.

In these slides: Only very basic concepts are discussed.

Introduction using an example

Simplistic example: public library. Data organized in tables.

- table "Users" with columns UserID, Name, Address, BirthDate
- table "Books" with columns BookID, Title, Author, Keywords
- table "BorrowedBooks" with columns UserID, BookID, BorrowedSince, BorrowedUntil

Principles of database tables

- Relational databases hold the data in (typically several) tables.
- Each row represents one record.
- The number and meanings of the columns of a table is (more or less) fixed.
- The number of rows of a table is variable.

"Entity relationship model":

- Each table describes one kind of entities or a relation (typically between several entities)
- a model of a certain part of reality based on the concepts of entities and their relationships is called an entity-relationship model.

In our example:

tables "Books", "Users" represent entities, table "BorrowedBooks" represents a relation between these entities.

Attributes, key candidates and keys

Columns in a table are called **attributes**. Some attributes or attribute combinations **characterize** entities. Such attributes or attribute combinations are **key candidates**. One of the key candidates is designated as **primary key**. The primary key of an entity is used in order to refer to it from other entities or from relations.

In our example, UserID is used as primary key in the "Users" table, and BookID is used as primary key in the "Books" table. These attributes are used in "BorrowedBooks" in order to refer to the related entities.

Data definition and data manipulation with SQL

Two kinds of languages for working with relational data bases are distinguished:

data definition language (DDL)

data manipulation language (DML)

DDL and DML are today typically combined in dialects of SQL (structured query language) and supported by producers of database management systems. The different dialects are based on similar principles. We will give examples. **Data definition** consists in the definition of the structure or tables and their interrelations.

During data definition, it must be defined for each table:

- which attributes it contains,
- how each attribute is to be represented (a data type must be chosen),
- which attributes form the primary key of the table, and
- which attributes refer as keys to other tables.

A notation which allows to define tables in this way is called a **data definition language** (DDL).

Data manipulation consists in adding, changing and deleting table rows and in the selection of data from the data base.

A DDL only alows to describe the structure of a data base, not to change its content in any way.

A notation which allows to manipulate tables is called a **data mani**pulation language (DML).

Data definition

The "Users" table from the public library example could be defined like this:

```
CREATE TABLE Users (
UserID INT(10) NOT NULL,
Name CHAR(100),
Address CHAR(100),
Birthdate DATE,
PRIMARY KEY (UserID)
)
```

This instruction creates a table names "Users" with the four already described columns. UserID is represented a ten-digit decimal number, Name and Address are represented as 100 characters, Birthdate as a date, and UserID is the primary key of the table.

For UserID, a value must be given for each row in the table – for the other three columns, a standard value (NULL) might be used in order to designate that the value of the attribute is not known.

The table "Books" might be defined similarly, only the attribute Keywords presents problems. Which amount of memory should we reserve for the keywords of a book if we do not want to restrict the number of keywords beforehand?

One solution consists in the definition of an extra table "Keywords":

```
CREATE TABLE Keywords (
BookID INT(10),
Keyword CHAR(100)
)
```

Key words have a maximal length of 100 characters, but the number of key words which can be given for a book is not restricted, since the same book can occur any number of times in the table. The "Books" table could be declared like this:

```
CREATE TABLE Books (
BookID INT(10) NOT NULL,
Title CHAR(100),
Author CHAR(100),
PRIMARY KEY (BookID)
)
```

The table representing currently borrowed books might be declared like this:

```
CREATE TABLE BorrowedBooks (
UserID INT(10),
BookID INT(10),
BorrowedSince DATE,
BorrowedUntil DATE
)
```

Data manipulation

The following operations can be used to manipulate the data in the tables:

- The SELECT command selects information from the data base.
- The INSERT command inserts rows into a table.
- The UPDATE command changes the content of existing rows in a table.
- The DELETE command removes rows from a table.

SELECT

The list of overdue books can be determined as follows:

```
SELECT b.BookID, b.Author, b.Title, l.BorrowedSince
FROM Books AS b, BorrowedBooks AS l
WHERE b.BookID = l.BookID
AND l.BorrowedUntil < TODAY
```

This statement is also called a **query** (the data base system is queried for some data).

This query returns a **table with four columns**. Each row represents an overdue book; the first column contains the book id, the second the author, the third the book title, and the last column the date when the book was borrowed.

A query has the following form:

- After the keyword FROM, the tables are listed from which data is to be collected. We use all combinations of rows from "Books" and "BorrowedBooks", and we abbreviate "Books" as "b" and "BorrowedBooks" as "I" elsewhere in the query.
- The WHERE keyword defines a filter: only those combination of rows from the FROM clause are kept which fulfill the condition given behind the WHERE: The book ids of the two entries must match, and the date until which the book must be given back must lie in the past.
- The SELECT keyword introduces a list of expressions which are evaluated for each row combination filtered out by the WHERE. In the example, these are simply some of the attributes.

INSERT

When a book is borrowed, a row has to be added to table BorrowedBooks. The following instruction adds a row with UserID 1053465, 43565 as BookID, TODAY as BorrowedSince and TODAY+14 as BorrowedUntil. The order of the arguments is the same as the order of the columns in the table declaration.

```
INSERT INTO BorrowedBooks
VALUES (1053465, 43565, TODAY, TODAY+14)
```

The general form is the following: After the keywords INSERT INTO and the name of the table, the keyword VALUES starts a list of values representing the row to be inserted.

UPDATE

In order to lengthen the borrowing time of the book with id 43565 by a week, the following command could be executed:

```
UPDATE BorrowedBooks
SET BorrowedUntil = BorrowedUntil + 7
WHERE BookID = 43565
```

After UPDATE, the name of the table to be changed is given. The WHERE predicate defines which rows are affected by the change, and after SET it is defined which columns in the rows to be changed are updated, and to which value.

DELETE

When a book is brough back by a used, its entry has to be taken out of the "BorrowedBooks" table:

DELETE FROM BorrowedBooks WHERE BookID = 43565

Further elements of the SQL language

Above we have only seen the most elementary SQL language elements. Many SQL dialects present many more features.

Examples:

- Integrity constraints can be used in order to define conditions on the content of a database which shall never be violated during manipulations.
- Foreign key relations are used in order to make explicit that values in a column are keys of some other table. They are a special case of integrity constraints.
- Index declarations are used in order to accelerate searching in tables.
- **Stored procedures** are used in order to store instructions which are to be executed by the database.
- Further **table operations**: *set union*, *set difference*, *set intersection*, *grouping* of results, *sorting* of results.
- **Views** allow to shield the users of a database from the internal representation of the data.

- **Database administration** consists in deciding how tables etc. are represented and which users get which kind of access to the database.
- **Invariants** and **triggers** are language elements which ensure the fulfillment of integrity constraints independently of the application programme.
- **Transactions** are language elements which ensure that a sequence of changes is either executed *completely* or *not at all*, even in the case of hardware or software failures.

Conceptual database design

The **conceptual design** of a relational database often proceeds according to the following steps:

- First the **entities** relevant in the application area are collected and their types are determined. (Example: books, users)
- Then the relevant relationships between entities are determined. (Example: BorrowedBooks)
- For each entity type and each relationship type, the **attributes** and their data types are determined.
- Finally, integrity conditions for the database are specified. (Example: BorrowedUntil must not be earlier than Borrowed-Since)

On the basis of this design it is decided how entities, relationships, attributes are represented in a specific database management system.

Normalization:

Redundant data in a data base might lead to **inefficiencies** and **inconsistencies**: Updates of redundantly held information have to be performed at several locations instead of at only one, and if this is forgotten, an inconsistency results.

Normalisation of a database consists in the reduction of redundancies, typically via splitting tables.

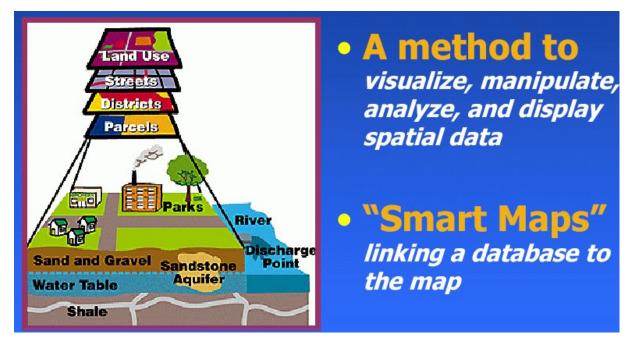
Architecture of database applications

Database applications often use a *three-layer* architecture:

- A DBMS operates as the kernel of the system. It ensures data persistency, data integrity etc.
- An application layer provides application-specific functionality. In our example, it would provide the functions "borrow a book", "lengthen borrowing time", "register new user" etc.
- A presentation layer defines the user interface, which today is often graphical, and not seldom with an alternative using the WWW.

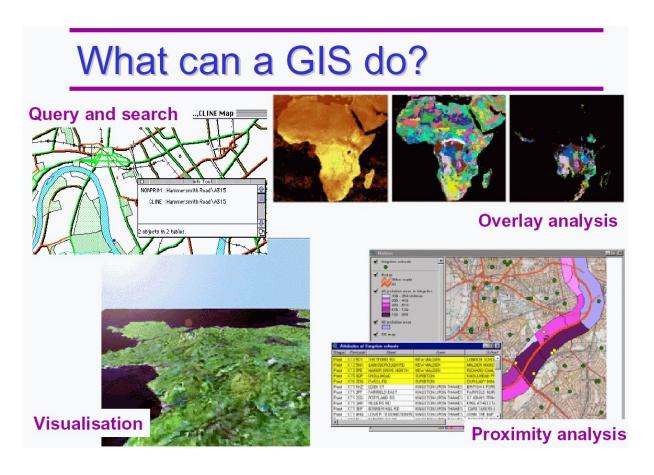
These three components might run as **three different programs** on different computers: A **web-browser** runs the presentation layer, the web-server dispatches the user input to an **application program**, and the application program accesses a **relational database** on a dedicated database server.

Geographical Information Systems

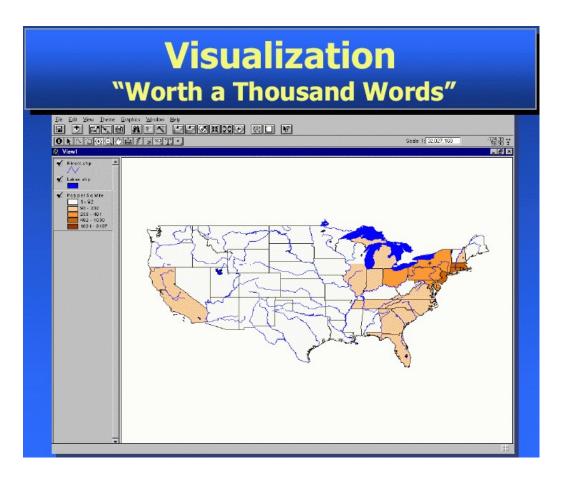

What is a Geographical Information System (GIS)?

• Software, hardware and data to help manipulate, analyse and present information that is tied to *spatial locations* (usually geographical locations).

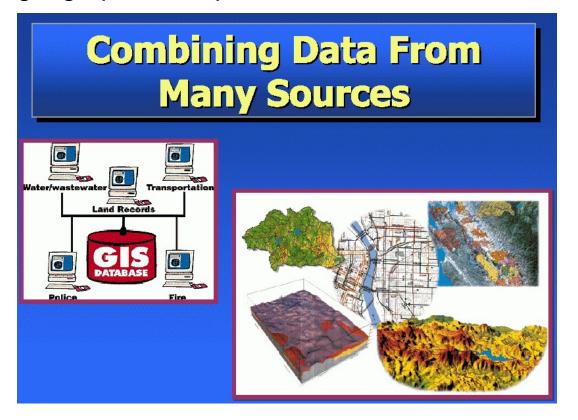
Estimates are that 80 % of all data stored worldwide has a *spatial* component (Source: www.gis.com).

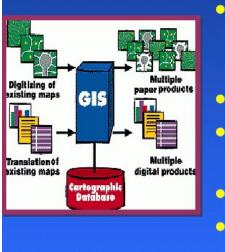

A GIS contains a classical database, but extends its functionality by methods adapted to spatial information.

Particularly, a GIS provides...



 special forms of *query*, designed to extract information with spatial properties from a database (e.g., taking neighbourhoods into account)


- special forms of *data analysis* (e.g., geostatistics)
- special forms of *integrity checking* adapted to spatial data.


	Database "Not Easy to Interpret"														
		N	JO	Ea	sy	t		176	er	ore	et				
				F 00	ΣT	EP	R								
	0.01	51 selected		R R			<u> </u>								
Au.2.	tes of States			K Last K						0.0000000000					I ×
Steve	Anus	State rised	State 6	tel Sub anais	Sinte alla	Play/997	Flag 25W F	na 97	Hocolatti	Malex	Franks	White	Blad	Amai da	
kaon !		Washington	: 53	Pacific	11/2	4669692	56042801	72	1872431	2413247	2452345	4309937	149901	91483	2.4
ikgon i	147236.028		30	Min	MT	799065	888723	5	306163	385769	403296	741111	2381	47679	1
kgon	32161.664		23	N Eng	ME	1227928	1244828	38	465312	587850	630078	1208360	5138	5898	-1
ligon		North D alkota	39	WNCen	ND	639600	644782	9	240679	318201	320599	604142	3524	25917	11
l-gon i		South Dakota	46	WNCen	150	695004	736549		259634	342498	353506	637515	3258	50575	
ugan	97799.492		56	Min	WY	453588	484529		1698.39	227007	226591	427061	3906	9479	- 1
ligan	56088.066 83340.595	Wisconsin	155	E N Cen Mits	WI ID	4891769	5183193	87	1822118	2392305	2498834	4512523 550451	244539	39387	
ligan i	9683,219		50	N Eng	VT	6627591	691659	59	210650	275492	297266	250451 555080	1951	1696	
NIGUL		Minimode	27	WNDen	MN	4375089	4697647		1647853	2145183	2223316	413035	54514	49909	-1
Laon 1	97070.740		41	Pacific	ion	2042221	3245420	- 52	1100010	1207073	1445240	2030707	40170	304301	
lugan i		New Harpshie	33	N Eng	NH	1109252	1171443	120	411186	543544	565708	1037433	7198	2134	-18
lugan [56257.220		19	WNCan	IA.	2776725	2859263	49	1054325	1344802	1431953	2683090	48090	7349	
ligen (Hassachusette	25	N Eng	MA	6016425	6106984	736	2247110	2688745	3127690	5405374	300130	12241	.1
ngon	77328.337		131	WNCen	NE	1578385	1660613	20	602363	753439	808346	1480558	57404	12410	- 1
lugan	49580.579	New York Pennsylvania	36	Mid All	NY Pá	17990495	19177296	370	6639022 4495966	9625673	9364792 6167378	13395255 10520201	2959055	62951	10
l-gan		Fennistvaria Egynepicul	192	N Eng	CT	3287116	3277113	252	1230479	1582873	1694243	2859353	274269	14/33	-1
vgan i		Finade Island	44	N Eng	BI	10034641	999320	960	377977	481496	521968	917375	38961	4071	
agon i		New-Jerrey	34	Mid All	NU	7730183	8018325	1030	2794711	3735685	3994503	6130455	1036825	14970	3
Lgon !	36399.515		18	E N Cen	IN	5544159	5874844	152	2065355	2688281	2955878	5820780	432052	12720	-11
ligon i	110657.293		32	Min	NV	1201833	1652983	11	466297	611660	509953	1012695	78771	19637	18
lygan (84870.185		49	Min	UT	1722850	2034167	20	537273	855759	867091	1615845	11576	24283	1
hgon	157774,197		06	Poolio	CA	29760021	32197302	199	10391206	14997627	14962394	20524327	2208901		29
lagon	41152,852	Ohio	39	E N Cen	OH	10847115	11202691	253	4087546	5225340	5520775	5521756	1154326	20359	
ugan	56297.954	Distant of Columbia	12	E N Cen	L DC	11430602	11890919	203	4202240 2416 M	5552233 302570	5979369	£952979 179667	1694273 2000	21836	3
ligan		District of Columbia Delaware	11	SAL	DC	606900	535027	9187	249634	282970	323930	179667	399604	2019	
lygon i		West Virginia	54	SAL	WW	17934771	1829832	74	699557	961536	901941	1725523	66296	2459	
lugon		Memiend	124	SAL	MD	4781468	51006391	491	1740991	2318571	2462797	3393964	1109999	12972	10
lugon !	104039.109		108	Min	CO	204344	3005615	2	1202409	1631295	1953099	2905474	132146	27776	-18
gon	40318.777	Keniucky	21	ESCen	KY	3685296	3906565	91	1379782	1785235	1900061	3391832	262907	5769	-18
gan	82195.436		20	WNCen	KS	2477574	25829331	30	944726	1214645	1262929	2231986	143076	21965	12
l-gon	39819.194		51	S A1	VA	6187359	6726895	155	2291630	3083974	3153394	4291239		15282	15
-gon	59831.624		29	WNCen	MD	5117073	5387753		1951205	2464315	2652758	4436228	548208	19835	- 3
lugan	110711.522		04	Mh	A2	3605220	4520000	Ŧ	1000040	1010001	1054507	2900100	110524	200527	- 10
	70002.392	Oklehome North Carolina	40	V/S Den S A1	OK NC	31 45585 6628637	3316622	45	1206135	1530619	1614756 3414347	2593512	233901	252420	

One of the main advantages of GIS over classical geographical maps:

Data For GIS Applications

Digitized and Scanned Maps

 purchased, donated, free (Internet)
 created by user

- Data Bases Tables of data
- GPS Global Positioning System
 accurate locations
- Field Sampling of Attributes
 Remote Sensing & Aerial Photography

Further advantage: Easy interaction, visualization, manipulation of maps

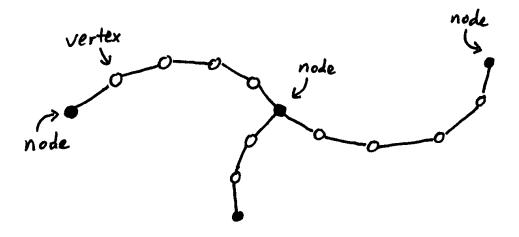
Askin	<mark>ig A Qu</mark>	estion – Interaction
	Andyse Suffer Bendric Hetrork : NOV CONTRACTOR CONTRACTOR	
 ✓ Chestp ✓ Ready state ✓ Ready stat	[State_name] [State_cty]	Volues Volues T T T T T Add To Set Select From Set
	3	T

Two Ways to Input and Visualize Data The World in GIS Image: State of the World in GIS

The vector representation is more appropriate for senseful queries (and is more exact) – basis for relational database representation of

geographical data

Typical *entities* of a GIS:


- Points
- *Tics* (= special points for which the exact real-world coordinates are known, used to fit a digital map into a global coordinate system)
- *Lines*, also called *arcs* (more precisely: Multilines, i.e. consisting of several linear segments)

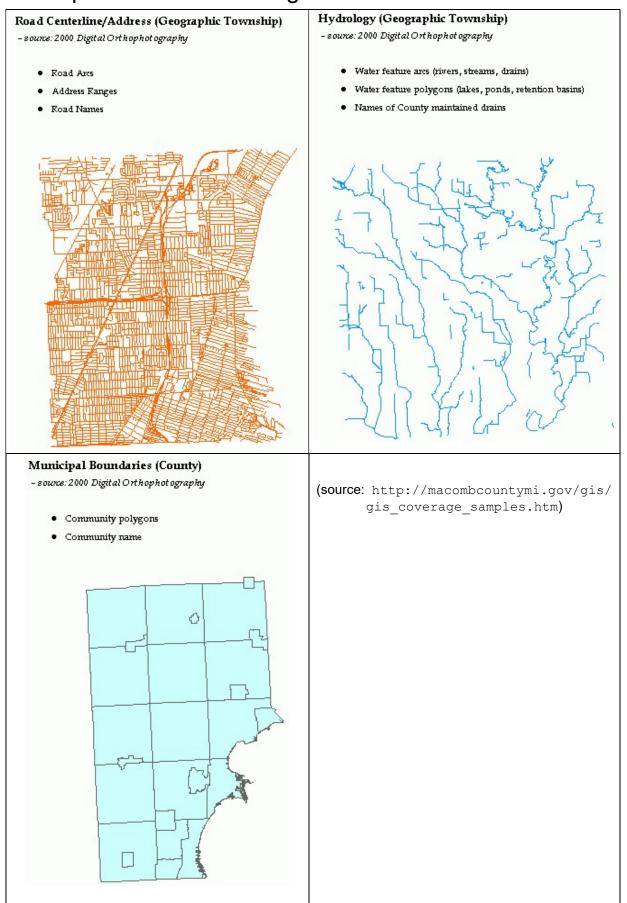
- Polygons (closed multilines, possibly with additional attributes)
- Annotations (text objects associated with points).

The endpoints of a line (and possible branching points) are called *nodes*.

Intermediate points (without branching) are called *vertices*.

Tables in the underlying relational database:

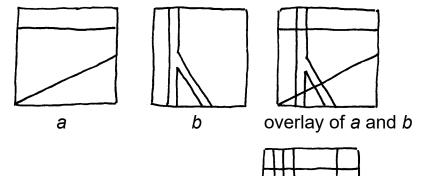
- Tic table
- boundary table (represents the spatial extent of the map a surrounding rectangle)
- arc attribute table (AAT)
- polygon attribute table (PAT).

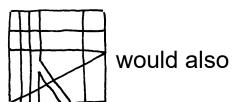

E.g., a *polygon* is represented as a line in the PAT, with attributes:

polygon ID, nodes, arcs, a label point (in the interior), further attributes (e.g., area, slope, population density...). Details differ between different GIS.

Usually, a GIS does not only contain information for a single map of a region, but *several sorts of information for the same region*:

each sort of information is represented in an extra *coverage* (also called *layer*, *cover* or *theme*).


Example: Different coverages of a town area


How to combine several coverages?

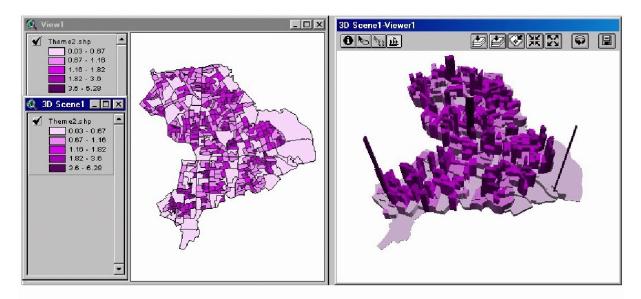
• Overlay operation

From two geometries, the GIS calculates the coarsest common geometry:

Attention: The following geometry

be a common geometry of *a* and *b*, but not the coarsest one!

Using overlay, a GIS can give answer to questions like this:


"What forest areas of district *x* are within 100 m distance to a road, are stocked with conifers and have a slope < 5 degrees?" (e.g., for a chalking action)

Layers used for this task:

- landuse map (\rightarrow forests)
- political district map (\rightarrow district *x*)
- road map (\rightarrow 100 m neighbourhood to a road)
- forest type map (\rightarrow stocked with conifers)
- digital elevation model (\rightarrow slope < 5 degrees)

Selection of polygons of the overlay using an "and" operation

Further functionality of GIS: 3D visualization

Representing Attribute Data in 3-D: Population Density in Small Census Areas in the London Borough of Hackney

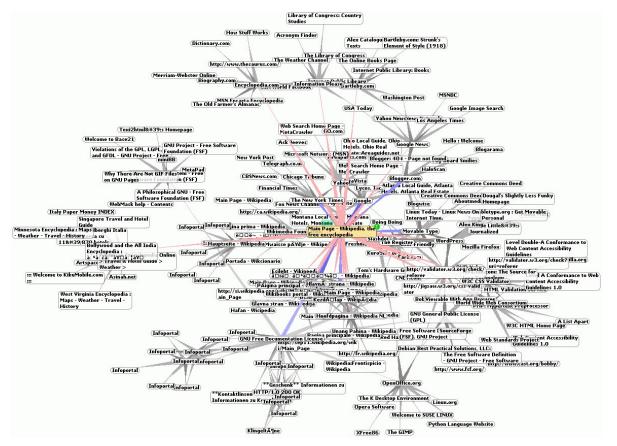
Widely used GIS products:

- ESRI ArcGIS Pro (licenced commercial software)
- QuantumGIS (free and open source, http://www.qgis.org)

4. The World Wide Web

The World Wide Web (WWW) is a *hypertext system* which is accessible via *internet*

(WWW is only one system using the internet – others are e-mail, ftp, telnet, internet telephone ...)


Hypertext: Pages of text containing *hyperlinks* (short: *links*) referring to other pages

Hypertext is viewed using a program called a <u>web browser</u> which retrieves pieces of information, called "documents" or "<u>web pages</u>", from <u>web servers</u> and displays them, typically on a <u>computer monitor</u>. One can then follow <u>hyperlinks</u> on each page to other documents or even send information back to the server to interact with it. The act of following hyperlinks is often called "*surfing*" or "*browsing*" the web. Web pages are often arranged in collections of related material called "<u>web sites</u>."

(from www.wikipedia.org, the open www encyclopedia)

The link structure of the web forms a very large graph -

the following is a very small subgraph of it:

The Web can be seen as a sort of database – but very different from relational databases:

- highly distributed, decentralized;
- based on the hypertext model instead of the entity-relationship model;
- with only very weak standards to restrict form and content of the pages;
- very large
- without a universal query language.

(Search engines try to compensate the last item; see below.)

History of the WWW:

- Idea of hypertext: Vannevar Bush 1945
- Origin of WWW: a project at CERN (Geneva) in 1989
- *Tim Berners-Lee* and *Robert Cailliau*
- their system: ENQUIRE, realized core ideas of the Web in order to enable access to library information that was scattered on several different computers at CERN
- proposal for the WWW: published by Berners-Lee on November 12, 1990
- *first web page* on November 13 on a NeXT workstation
- Christmas 1990: Berners-Lee built the first web browser and the first web server
- August 6, 1991: summary of the WWW project posted in a newsgroup in the internet
- April 30, 1993: CERN annouced that the WWW would be free to anyone
- 1993: Browser Mosaic (forerunner of Internet Explorer or Firefox) starts to popularize the WWW

The three core standards of the Web:

• Uniform Resource Locator (URL): specifies how each page of information is given a unique address at which it can be found (e.g., http://en.wikipedia.org/wiki/World_Wide_Web)

• Hypertext Transfer Protocol (HTTP): specifies how the browser and server send the information to each other

• Hypertext Markup Language (HTML): a webpage description language used to encode the information so that it can be displayed on a variety of devices and under different operating systems.

Later extensions:

- Cascading Style Sheets (CSS): define the appearance of elements of a web page, separating appearance and content
- XML: more general language than HTML, designed to enable a better separation of appearance and content; also applicable to other sorts of information
- ECMAScript (also called JavaScript or JScript): a programming language with commands for the browser, enables embedding of programmes (scripts) into web pages. Thus web pages can be changed dynamically.
- Hypertext Transfer Protocol Secure (HTTPS): Extension of HTTP where the protocol SSL is evoked to encrypt the complete data transfer
- Java applets (small programmes) can be embedded in web pages and run on the computer of the Web user

The World Wide Web Consortium (W3C) develops and maintains some of these standards (HTML, CSS) in order to enable computers to effectively store and communicate different kinds of information.

Problems with the Web:

• highly decentralized, no control of the content

 \rightarrow there is a lot of false and misleading information, hate campaigns, promotion of sexual exploitation, of terrorism and of other crimes...

• *highly dynamic*: *Web pages change all the time!* Links point to nowhere when the target page was removed...

 \rightarrow when you give a Web address in the References section of a scientific paper or in your thesis, you should add the *date* when you visited that page!

Archive of (a part of) the Web:

http://archive.org/web/

- \rightarrow lost Web references can (in some cases) be reconstructed if the date is known
 - highly chaotic: no global index or table of content is available; search for a certain content is complicated and time consuming

 \rightarrow development of specialized search engines, the most well-known one: *Google* (<u>http://www.google.de</u>) How does a search engine work?

• First component: a web crawler, visiting all accessible web pages worldwide, one after the other, following the hyperlinks

but: when you look for a certain keyword, this process would take much too long! \rightarrow

 second component: a large database, containing keywords and web addresses where these keywords were already found

the web crawler is working in the background and does only actualize the database

when you invoke Google, you search in Google's database, not in the Web!

 \rightarrow not all Web pages can be found, because not all are in the database

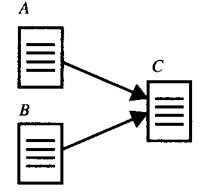
Usually, you get many, many, many Web pages containing a given keyword (often millions...) → first remedy: make more intelligent queries e.g., combining several keywords by "and", or looking for phrases instead of keywords (use quotation marks) – Google provides such facilities under "extended search" still there are often too many results

 \rightarrow priorisation of the found web pages necessary

• third component of the search engine (and best capital of the Google company): a *ranking algorithm* for search results

Basic principles of Google ranking of web pages

(Attention: the exact algorithm is changing continuously and is not published)


"Importance" of a web page:

recursively defined, using the hyperlink structure of the Web

The importance of a page is the larger, the more important pages refer to it!

More precisely:

Let FLinks(A) be the set of all outgoing links (forward links) of a page A and BLinks(A) the set of all incoming links (backward links) of A

 $FLinks(A) = \{C\}$ $FLinks(B) = \{C\}$ $BLinks(C) = \{A, B\}$

- A has high page rank if the sum of the page ranks of its incoming links is high,
- a page *B* distributes its importance in equal parts to all pages which are referred by it:

$$PageRank(A) = \frac{1}{c} \sum_{B \in BLinks(A)} \frac{PageRank(B)}{|FLinks(B)|}.$$

(*c* = normalisation factor)

Iterative determination of the page rank:

- initially, an arbitrary mapping of values to all web pages is done (typically, the *constant value* 1 is used),
- *iterate the calculation* using the above formula for all pages, until the values remain stable,
- they converge against the Eigenvectors of the adjacency matrix of the graph consisting of the web pages (nodes) and their links (edges).
 (Adjacency matrix: a_{ij} = 1 iff nodes *i* and *j* are connected by an edge.)

Additionally, the Google page rank utilizes:

- *proximity* of the given key words to each other (in the text),
- the *anchor texts* of the links: these are the texts which can be clicked upon. A page *A* gets higher importance when the anchor texts of links referring to *A* contain the keywords, too.

The underlying technology of the WWW: the *Internet* (short for "Interconnected Networks")

predecessor (end of the 1960s): ARPANET (U.S. military project)

was later used to connect universities and research labs

Internet today: A worldwide network of computer networks

- Computers in this network communicate using the standardized *TCP/IP protocol* (Transmission Control Protocol / Internet Protocol: Rules governing the communication)
- Transmission of the information in small portions
- For identification, each computer in the net has a unique number, the *IP address*
- to get identifiers which can better be memorized: *Domain Name System* (DNS)
 – system of (textual) names, association between names and IP addresses
- hierarchy: Domains, subdomains, subsubdomains..., e.g.,
 www.uni-forst.gwdg.de (from right to left!)

• *Top-level domains*: Country abbreviations and some others ("generics"): .de, .fr, .eu, .com, .edu, .gov ...

- Lowest level: host name of a single computer (here: www, Web server of the forestry faculty)
- domain name corresponds to IP address
- transformation of domain names into IP addresses and vice versa: Task of special computers, so-called *nameservers*
- this transformation takes place any time when you click on a hyperlink on a web page!
- each nameserver is responsible for a certain part of the hierarchical name space