
180

Foundations of programming (continued)

Functional abstraction, self-defined methods

181

Example: compute the factorial of an integer

Reminder: "factorial" n! = n * (n–1) * ... * 3 * 2 * 1.

182

Example (prog_ex03.rgg): Usage of compound

data structures (arrays)

/* Computation of the sum of elements of
an integer array. */

protected void init()
 {
 int result = 0;
 int[] p = { 4, 3, 3, 5, 15 };
 /* initialization of an array */

 int i = 0;
 while (i < p.length)
 {
 result += p[i];
 i = i+1;
 }
 println("The sum is: " + result);
 }

The same as an extra method:

183

184

Method call:
e.g. x = max(a, b);

Effects:

 control flow jumps from the place where the method
is called to the place where the method is defined

 the method is executed

 the control flow jumps back to the place where the
method was called and the return value is assigned
to x.

185

Control structures of Java

control structures:
language concepts designed to control the flow of
operations
– typical for the imperative programming paradigm

particularly: branching of the programme; loops.

Variants of branching:

(if the condition is false, nothing happens)

if (<condition>)
 {
 <Code for fulfilled condition>
 }
else
 {
 <Code for unfulfilled condition>
 }

186

Nesting of if...else possible:

Example application: Finding the solutions of a
quadratic equation ("pq-formula")

prog_ex04.rgg

/* Computation of the solutions of a quadratic
 equation, using a self-defined method */

public double[] solve_quadratic(double p,
 double q)
 {
 double x = -p/2, y = x*x - q;
 double[] result;

 if (y < 0)
 {
 // term under the square root is
 // negative. No solution.
 result = new double[0];
 }

187

 else
 if (y < 1e-20)
 {
 // term under the square root is zero.
 // One solution.
 result = new double[1];
 result[0] = x;
 }
 else
 {
 // term under the square root is
 // positive. Two solutions.
 double z = Math.sqrt(y);
 result = new double[2];
 result[0] = x + z;
 result[1] = x - z;
 }
 return result;
 }

module A(double p, double q) extends Sphere(3);

protected void init()
{
 [
 Axiom ==> A(0, 0);
]
 println("Click on object for input (p,q)!");
}

public void calculate()
{
 double[] res;
 double p, q;

 [
 a:A ==> { p = a[p]; q = a[q]; };
]

188

 res = solve_quadratic(p, q);

 if (res.length == 0)
 println("There is no solution.");
 if (res.length == 1)
 println("Single solution: " + res[0]);
 if (res.length == 2)
 {
 println("First solution: " + res[1]);
 println("Second solution: " + res[0]);
 }
}

Loops:

We have already introduced the while loop.

The for loop:

189

Application example:

