Foundations of programming (continued)

Functional abstraction, self-defined methods

Phenomenon to deal with: repetition of identical or almost identi-
cal code fragments — especially if these fragments are quite long.

Problems:

(1) Changes in the code have to be repeated for each occurrence
of the code fragment.

(2) Code cannot occur in itself — recursive algorithms cannot be
coded directly.

Solution: methods (in OO-languages) and procedures and functi-
ons (in non-0O0 languages).

Methods can be used like extensions of the language.

180

Example: compute maximum of two integers

int maxiint pl, int p2)

{
return (pl=p2 ? pl : p2);

}

Use of the method:

int a, b:
int x:

X = maxia,b);

Example: compute the factorial of an integer
Reminder: "factorial® nl=n*(n-1)*...*3*2*1.

Recursion: Compute factorial

int faci{int 1)

{

if (1<=1)

{

return 1;

}

elae

{

return i*fac(i-1);

!

For this problem, nobody would use recursion! A simple while-
loop would suffice. Recursion can be unnecessarily inefficient.

181

Example (prog _ex03.rgg): Usage of compound
data structures (arrays)

/* Computation of the sum of elements of
an integer array. */

protected void init()
{
int result = 0;
int[] p={ 4, 3, 3, 5, 15 };
/* initialization of an array */

int 1 = 0;
while (i < p.length)
{
result += p[i];
i = 1i+1;
}

println("The sum is: " + result);

}

The same as an extra method:

Example: compute the sum of the elements of an array:

int computeSum(int[] p)

{

// This wariable accumalates the result.
int r = 0;

// This wariables points to the different positions in (p),
// estarting at 0 and running to the end.
int i = 0;

// Bun with (i) through (p), accumulating the sum of elements in
_x'r _x'r (r).
while (il < p.length)

{

}

// Return result.
return r;

r+ plil;
i 1

]

+
+

182

Questions regarding computeSum; Details are important!
Does it work for empty (p)?

Is < the right comparison in the condition of the while clause, or
would == be right?

Should i start with another value than 07

How could a solution look like in which i runs through p in the op-
posite direction?

General structure of method declaration (incomplete version)

<tvpe:> <methodName:= (<parameterlist, empty for no parameterss)

{

<method bodyv, including '‘'return <expression=''-=

f

Method interface: type of return value, name of method, and types
and names of parameters.

Method body: code fragment performing the work.

return statement: Execution leaves the method and returns the
value of the expression as result.

183

Problems solved:

(1) Similar code does not have to be repeated — where it is nee-
ded, it is just invoked or called with the proper parameters. Chan-
ges only have to be done once.

(2) Recursion can be coded directly.
Further consequences:

(3) Functionality of code fragments can be documented by giving
a symbolic name to a code fragment.

(4) Code fragments are usable without that all the details are
known — only knowledge about the interface and the I/O-behavior
Is necessary. Consequence: Implementation can be changed.

Method call:

e.g. x = max(a, b);

Effects:

e control flow jumps from the place where the method
is called to the place where the method is defined

e the method is executed

¢ the control flow jumps back to the place where the
method was called and the return value is assigned
to x.

184

Control structures of Java

control structures:

language concepts designed to control the flow of
operations

— typical for the imperative programming paradigm

particularly: branching of the programme; loops.

Variants of branching:

if («conditions)

{

<Code for fulfilled condition=

}

(if the condition is false, nothing happens)

if (<condition>)

{
<Code for fulfilled condition>
}
else
{
<Code for unfulfilled condition>
}

185

Nestingof if...else possible:

if (<condls)
{
<Code for fulfilled <condl==
}
elee if(<cond2s)

{

<Code for non-fulfilled <condls, but fulfilled =condZs=

«Code to be ewxecuted if WO condition isgs fulfilleds

Example application: Finding the solutions of a
quadratic equation ("pg-formula")

prog_ex04.rgg

/* Computation of the solutions of a quadratic
equation, using a self-defined method */

public double[] solve quadratic(double p,
double q)

{
double x = -p/2, y = x*x - q;
double[] result;

if (y < 0)
{
// term under the square root is
// negative. No solution.
result = new double[O0];

}

186

else
if (y < 1le-20)

{

// term under the square root is zero.
// One solution.

result = new double[l];

result[0] = x;

}

else

{

// term under the square root is
// positive. Two solutions.
double z = Math.sqrt(y):

result = new double[2];
result[0] = x + z;

result[l] = x - z;

}

return result;

}
module A (double p, double gq) extends Sphere (3);

protected void init()

{

[
Axiom ==> A (0, 0);

]
println("Click on object for input (p,q)!"):;

}

public void calculate()

{

double[] res;
double p, q;

[
a:A ==> { p = alpl; g = alql; };

]

187

res = solve quadratic(p, q);

if (res.length == 0)

println ("There is no solution.");
if (res.length == 1)

println("Single solution: " + res[0]);
if (res.length == 2)

{

println("First solution: " + res[l]);
println("Second solution: " + res[0]);

}

Loops:

We have already introduced the while loop.

The for loop:

for(<Initialization=>;:<Condition=;<Increment=)

{

<Code to be repeateds

Similar to:

zInitializations;
while(<Condition=]
<Code to be repeateds:

<Increments>

188

Application example:

static public int computezumiint[] p!

{

int result = 0;

F

for(int 1=0; i=p.length; ++1i)

{

result += pli];

return result;

189

