
180

Foundations of programming (continued)

Functional abstraction, self-defined methods

181

Example: compute the factorial of an integer

Reminder: "factorial" n! = n * (n–1) * ... * 3 * 2 * 1.

182

Example (prog_ex03.rgg): Usage of compound

data structures (arrays)

/* Computation of the sum of elements of
an integer array. */

protected void init()
 {
 int result = 0;
 int[] p = { 4, 3, 3, 5, 15 };
 /* initialization of an array */

 int i = 0;
 while (i < p.length)
 {
 result += p[i];
 i = i+1;
 }
 println("The sum is: " + result);
 }

The same as an extra method:

183

184

Method call:
e.g. x = max(a, b);

Effects:

 control flow jumps from the place where the method
is called to the place where the method is defined

 the method is executed

 the control flow jumps back to the place where the
method was called and the return value is assigned
to x.

185

Control structures of Java

control structures:
language concepts designed to control the flow of
operations
– typical for the imperative programming paradigm

particularly: branching of the programme; loops.

Variants of branching:

(if the condition is false, nothing happens)

if (<condition>)
 {
 <Code for fulfilled condition>
 }
else
 {
 <Code for unfulfilled condition>
 }

186

Nesting of if...else possible:

Example application: Finding the solutions of a
quadratic equation ("pq-formula")

prog_ex04.rgg

/* Computation of the solutions of a quadratic
 equation, using a self-defined method */

public double[] solve_quadratic(double p,
 double q)
 {
 double x = -p/2, y = x*x - q;
 double[] result;

 if (y < 0)
 {
 // term under the square root is
 // negative. No solution.
 result = new double[0];
 }

187

 else
 if (y < 1e-20)
 {
 // term under the square root is zero.
 // One solution.
 result = new double[1];
 result[0] = x;
 }
 else
 {
 // term under the square root is
 // positive. Two solutions.
 double z = Math.sqrt(y);
 result = new double[2];
 result[0] = x + z;
 result[1] = x - z;
 }
 return result;
 }

module A(double p, double q) extends Sphere(3);

protected void init()
{
 [
 Axiom ==> A(0, 0);
]
 println("Click on object for input (p,q)!");
}

public void calculate()
{
 double[] res;
 double p, q;

 [
 a:A ==> { p = a[p]; q = a[q]; };
]

188

 res = solve_quadratic(p, q);

 if (res.length == 0)
 println("There is no solution.");
 if (res.length == 1)
 println("Single solution: " + res[0]);
 if (res.length == 2)
 {
 println("First solution: " + res[1]);
 println("Second solution: " + res[0]);
 }
}

Loops:

We have already introduced the while loop.

The for loop:

189

Application example:

