
166

5. Foundations of programming

Paradigms of programming:

Different viewpoints and ways of thinking
about how to conceive a computer and a
programme

Imperative paradigm:
Computer = machine for the manipulation of
variables
Programme = sequence of commands which
change values of variables, together with
specifications of the control flow (telling which
command is executed next)
Languages: Fortran, Pascal, Basic, C ...

Example (works in C or Java or XL):

 x = 0;
 while (x < 100)
 x = x + 2;

The variable x is used to produce the even

numbers from 0 to 100.
Attention: The assignment command x = x + 2 is not

a mathematical equality!

167

Object-oriented paradigm:

Computer = environment for virtual objects which
are created and destroyed during runtime (and can
interact)
Programme = collection of general descriptions of
objects (so-called classes), together with their
hierarchical dependencies (class hierarchy)
Objects can contain data and functionality
(methods)
Languages: Smalltalk, C++, Java, ...

Example (in Java):

public class Car extends Vehicle
 {
 public String name;
 public int places;
 public void print_data()
 {
 System.out.println("The car is a " + name);
 System.out.println("It has " + places + "places");
 }
 }

Typical: class (Car) with data (name, places) and

methods (print_data). The class Car inherits

further data and methods from a superclass,
Vehicle.

168

Rule-based paradigm:

Computer = machine which transforms a given
structure according to given rules

Programme = set of transformation rules
(sometimes also called a grammar)

Each step of programme application consists of
two substeps: Finding an applicable rule (matching
step) and transformation of the current structure
according to that rule (rewriting step).

Languages: Prolog, AI-languages, L-system
languages, particularly XL

Example (in XL):

public void apply()
 [
 F(x) ==> F(x/3) RU(-60) F(x/3) RU(120)
 F(x/3) RU(-60) F(x/3);
]

produces the so-called Koch curve:

169

Readability of programmes by humans

programmes: have to be executed by computers, but
also to be understood by humans

Executability can be checked automatically,
understandability not!

 Recommendations:

 make frequent use of programme comments
(/* ... */ or // ... in Java, C++ or XL)

 use plenty of newlines and blanks

 put braces { ... } in lines of their own, put
matching braces in same horizontal position:

{

}

 indentation makes containment and nesting of
programme components visible

 avoid long lines, insert line breaks for readability

 avoid very long methods

 use "speaking" variable and function names
 (int iteration_counter is better than int x127 !)

 do not use variable names twice for different
purposes, even if the language allows it

 Initialise constants, default values etc. at the
beginning of a source code file, not somewhere
"deep in the code" where you don't find them
later on

 adhere to conventions used by competent
programmers!

170

Basic parts of Java and XL

Remark: The language XL is an extension of Java.
The following examples can be compiled and run
with GroIMP (see www.grogra.de), a modelling

platform which contains a development toolkit for
XL and possibilities for visualization.

A first demonstration programme:

/* A simple Java programme for execution
with the GroIMP software. */

protected void init()
 {
 println("Hello World!");
 }

(= example file prog_ex01.rgg)

Download of GroIMP:

https://sourceforge.net/projects/groimp/

171

, protected

println: predefined method – invoked with a string as its

argument, it writes the string to the GroIMP console (a special
output window) and adds a line feed.

172

3) newly declared identifiers: Their meaning is fixed by
(explicit or implicit) declarations in the programme itself.
Example: init is the name of the method which writes the

text to the console. It expects no arguments (init()).

Use of simple data types and the "while" loop

/* A simple demonstration program,
 printing out the numbers from 0 to 10
 and their squares, each pair
 on an extra line. */

protected void init()
 {
 int i;
 i = 0;
 while (i <= 10)
 {
 println(i + ": " + (i*i));
 i = i+1;
 }
 println("Finished!");
 }

(example file prog_ex02.rgg)

173

Assignments

In our example:
i = 0;
the variable named i gets the new value 0

 fundamental operation in the imperative
programming paradigm

effect: content of a place in the memory is changed

Attention:
i = 0 in a Java programme does not have

the same meaning as in a mathematical formula!
E.g., i = i+1 would mathematically be a contradiction

(it would imply 0 = 1)

174

– but makes sense in a programme (increment i by 1).

Mathematical meaning of this assignment:
inew = iold + 1.

In assignments, the order is relevant:
x1 = x2; has another effect as x2 = x1;

To underline the asymmetry, other languages (e.g.,
Pascal) use := instead of = for assignments.

XL allows both notations
(but with a slightly different meaning: := denotes a

deferred assignment, i.e., it enables a quasi-
parallel execution with other assignments.)

Comparison (checking for equality) is expressed in
Java, C and XL by = =

Java offers further assignment operators besides = :
a += b // add content of b to the content of a

–=, *=, /= etc. analogously.

175

Data types:

describe sets of values and the operations which
can be performed on them.

Example: integers, with arithmetical operations (+,
–, *, /, %) and comparisons (<, <=, >, >=, ...).

In the example programme: int, String.

int: type of 32-bit two's complement integers.

The variable i used for running through the

argument list has this type.

i starts with value 0 and is incremented in the loop

until it has value 11.

String: type of character sequences. println

expects a variable of this type as its argument.

Numbers are implicitly converted to strings here.
Concatenation of strings by +.

("Operator overloading": different meanings of + for
numbers and for strings.)

176

Literals

 \uXXXX (XXXX: up to four hexadecimal digits):

 The number of a Unicode character

Primitive Java data types:

177

178

1.0; 1.0;

179

Java operators

("assoc" = order of association, i.e., evalutation from left (L) or right (R)
when several operators of the same level occur in the same expression)

