5. Foundations of programming

Paradigms of programming:

Different viewpoints and ways of thinking
about how to conceive a computer and a
programme

Imperative paradigm:

Computer = machine for the manipulation of
variables

Programme = sequence of commands which
change values of variables, together with
specifications of the control flow (telling which
command is executed next)

Languages: Fortran, Pascal, Basic, C ...

Example (works in C or Java or XL):

x =0;
while (x < 100)
X =X + 2;

The variable x is used to produce the even

numbers from O to 100.
Attention: The assignment command x = x + 2 is not

a mathematical equality!

166

Object-oriented paradigm:

Computer = environment for virtual objects which
are created and destroyed during runtime (and can
interact)

Programme = collection of general descriptions of
objects (so-called classes), together with their
hierarchical dependencies (class hierarchy)
Objects can contain data and functionality
(methods)

Languages: Smalltalk, C++, Java, ...

Example (in Java):

public class Car extends Vehicle

{

public String name;

public int places;

public void print data()
{

System.out.println("The car is a " + name);
System.out.println ("It has " + places + '"places");

}
}

Typical: class (Car) with data (name, places) and
methods (print data). The class Car inherits

further data and methods from a superclass,
Vehicle.

167

Rule-based paradigm:

Computer = machine which transforms a given
structure according to given rules

Programme = set of transformation rules
(sometimes also called a grammar)

Each step of programme application consists of
two substeps: Finding an applicable rule (matching
step) and transformation of the current structure
according to that rule (rewriting step).

Languages: Prolog, Al-languages, L-system
languages, particularly XL

Example (in XL):

public void apply ()

[

F(x) ==> F(x/3) RU(-60) F(x/3) RU(120)
F(x/3) RU(-60) F(x/3);

1

produces the so-called Koch curve:

w5

168

Readability of programmes by humans

programmes: have to be executed by computers, but
also to be understood by humans

Executability can be checked automatically,
understandability not!

— Recommendations:

make frequent use of programme comments
(/* ... *¥/or // ... indava, C++or XL)

use plenty of newlines and blanks

put braces { ... } in lines of their own, put

matching braces in same horizontal position:
{

-

indentation makes containment and nesting of
programme components visible

avoid long lines, insert line breaks for readability
avoid very long methods

use "speaking" variable and function names
(int iteration counter is betterthan int x1271)

do not use variable names twice for different
purposes, even if the language allows it

Initialise constants, default values etc. at the
beginning of a source code file, not somewhere
"deep in the code" where you don't find them
later on

adhere to conventions used by competent

programmers!
169

Basic parts of Java and XL

Remark: The language XL is an extension of Java.
The following examples can be compiled and run
with GrolMP (see www.grogra.de), a modelling

platform which contains a development toolkit for
XL and possibilities for visualization.

A first demonstration programme:

/* A simple Java programme for execution
with the GroIMP software. */

protected void init()

{
println("Hello World!") ;

}

(= example file prog ex01.rgg)

Download of GrolMP:
https://sourceforge.net/projects/groimp/

170

Basic components

Comments, spaces, newline: For human readability, and for separa-
ting words (just like in normal written language).

Special symbols: To denote different kinds of groupings, to termi-
nate commands, to construct paths etc.

Examples: Braces {, }; parentheses (,) ; brackets [, 1; dot; double-
quotes "; semicolon

Literal values: character sequences representing a value directly,
like a digit sequence for a number, or a character sequence in dou-
ble quotes for a string.

Example: "Hello World!™

Sequences of letters or digits, starting with a letter: different cate-
gories: 1) Keywords, 2) predefined identifiers, 3) newly declared
identifiers.

1) Keywords: Are fixed in the language proper, can not be given a
new meaning

Examples: public, class, static, void . protected

2) Predeclared identifiers: Meaning fixed by a declaration in the
context, often can be “overwritten”, i.e. given a new meaning. Ex-
amples:

String: data type for character sequences
println: predefined method — invoked with a string as its

argument, it writes the string to the GrolMP console (a special
output window) and adds a line feed.

171

3) newly declared identifiers: Their meaning is fixed by
(explicit or implicit) declarations in the programme itself.
Example: init is the name of the method which writes the

text to the console. It expects no arguments (init ()).

Use of simple data types and the "while" loop

/* A simple demonstration program,
printing out the numbers from 0 to 10
and their squares, each pair
on an extra line. */

protected void init()

{
int i;
i=20;
while (i <= 10)
{
println(i + ": " + (i*i));
i = 1+1;
}
println ("Finished!") ;
}

(example file prog ex02.rgg)

172

While loop

while starts a loop: A sequence of commands which, under some
condition, are executed repeatedly.

First, the condition given in parentheses is checked. Result must
be boolean. Our example: Comparison of the current value of 1 (0)
with 10.

0<=10 is true: Thus, the body of the loop is executed: Pair of values
0 and 0*0 are printed, and i is incremented by one.

Then, execution continues with the check of the condition, and the
loop is repeated until 1 has value 11, suchthati <= 10 becomes
false.

Then, the loop body is not repeated again, and the main method
finishes.

Assignments

In our example:

i = 0;

the variable named i gets the new value O

e fundamental operation in the imperative
programming paradigm

effect: content of a place in the memory is changed

Attention:

i = 0 inaJavaprogramme does not have
the same meaning as in a mathematical formula!
E.g., i = i+1 would mathematically be a contradiction
(it would imply 0 = 1)

173

— but makes sense in a programme (increment i by 1).
Mathematical meaning of this assignment:
Inew = lolg + 1.

In assignments, the order is relevant:
x1 = x2; has anothereffectas x2 = x1;

To underline the asymmetry, other languages (e.g.,
Pascal) use := instead of = for assignments.

XL allows both notations

(but with a slightly different meaning: := denotes a
deferred assignment, i.e., it enables a quasi-
parallel execution with other assignments.)

Comparison (checking for equality) is expressed in
Java, C and XL by ==

Java offers further assignment operators besides = :
a += b // add content of b to the content of a

-=, *=, /= etc. analogously.

174

Data types:

describe sets of values and the operations which
can be performed on them.

Example: integers, with arithmetical operations (+,
—, *, 1, %) and comparisons (<, <=, >, >=, ..).

In the example programme: int, String.

int: type of 32-bit two's complement integers.
The variable i used for running through the
argument list has this type.

i starts with value 0 and is incremented in the loop
until it has value 11.

String: type of character sequences. println
expects a variable of this type as its argument.

Numbers are implicitly converted to strings here.
Concatenation of strings by +.

("Operator overloading": different meanings of + for
numbers and for strings.)

175

Literals

Literals denote values directly
String literals: Strings in quotes
Used character code for the string content: 16-bit Unicode

Special characters in strings: \: is used to introduce something “spe-
cial”. Examples:

\uXXXX (XXXX: up to four hexadecimal digits):
The number of a Unicode character

\n. a line break; \ t: a tabulator; ‘\xxx, xxx a three-digit n octal
number: The character with the given octal code.

Number literals: Signed digit sequence for integer types; for
float types: decimal point and “E"-Notation. Examples: +3453;
3.141592653; 1.17E-6

Primitive Java data types:

primitive data type defaults size (bits) min/max

boolean false 1 n.a./n.a.

Unicode characters:

char \uoooo 16 \u0000/\uFFFF

Two’s complement integers:

byte 0 8 -128/127

short 0 16 -32768/32767

int 0 32 -2147483648/2147483647

long 0 64 -9223372036854775808/
9223372036854775807

IEEE 754 floating-point numbers:

(min/max are those of absolute values)

float 0.0 32 1.4023985E-45/3.40282347E+38

double 0.0 64 4.94065645841246544E-324/
1.79769313486231570E+308

void: quasi-type for methods which return no value

176

Non-primitive Java data types: Arrays and objects

Arrays: collections of elements of the same type, accessed by
number (from 0). Example declarations of integer arrays:

int[] p = {1,3,2,10};

int[] g = new int[5];

int[] 1;

Values after these declarations:

p points to a memory block of four integers, with values 1, 3, 2 and
10.

g points to a memory block of five integers, all values 0.

r does not point anywhere (it has the special value null). This
can be changed by the allocation of a block of memory via the Java
operation new:

r = new int [1000] :

Now, r points to a memory block of 1000 integers, all 0.

r = p;

Now, r points to the same memory block as p.

Array declarations and operations
Non-allocating declaration: int []1 a empty;

Allocated with room for 10 elements:
int[] a ten = new int[10];

Initialized array: int [1 lookup = {1,2,4,8,16,32,64,128};

Multiple dimensions: boolean[] [] bw screen =
new booclean[1024] [768] ;

Non-rectangular: int [] [] pascal triangle =
{{1},{2,2},{1,2,2},{1,2,3,2},{1,4,6,4,1},{1,5,10,10,5,1}};

Array access: by integer-index in brackets. Start at 0. Array-access
is checked (index may not be negative or too large)

Number of elements of array a: a.length

177

Objects: collections of elements of arbitrary types, plus associated
operations, accessed by name.

Object types must be declared before they can be used; example:

clases color |
String name;
float red;
float green;
float blue;

Use of object types

I

// Declare three color variables.
color r,w,b;

// Initialize the color wvariables to red, white and black.

r = new color;
r.name = "Red"; r.red = 1.0; r.green = 0.0; r.blue = 0.0;
W = hnew color:
w.name = "White"; w.red = 1.0; w.green =3 09; Ww.blue = 31 0;
b = new color;
b.name = "Black"; b.red = 0.0; b.green = 0.0; b.blue = 0.0;

Both non-primitive data types are handled by reference: The varia-
ble content is just the address of a memory block.

An assignment to such a variable only changes this address, not
the data of the memory block.

null is the default value for reference types

178

Java operators

Prec Operators types assoc. meaning
1 ++ arithmetic pre- or post-increment
- - arithmetic pre- or post-decrement
+,- arithmetic unary plus or minus
~ integral bit complement
! boolean logical not
(type) any typecast
2 * /% arithmetic L multiplication, division,
remainder
3 +,- arithmetic L addition, subtraction
+ String L concatenation
4 << integral L shift bits left
integral L shift bits right, filling with sign
>>: integral L shift bits right, filling with zero
5 < o=, >, e arithmetic comparisons
instancecof object, type type comparison
Prec Operators types assoc. meaning
§] ==, I= any L equality, inequality
7 & integral L bitwise AND
& boolean L boolean AND
8 ® integral L bitwise XOR
- boolean L boolean XOR
9 | integral L bitwise OR
| boolean L boolean OR
10 E& boolean L short-circuit AND
" || boolean L short-circuit OR
12 7 boolean,any,any conditional selection
13 = variable, any R assignment
=, [f=, %= variable, any R operation and assignment
+= -= =
= =, &=

("assoc" = order of association, i.e., evalutation from left (L) or right (R)
when several operators of the same level occur in the same expression)

179

