Part [I: Computer Science Essentials

1. Introduction to computer science

Fundamental notions, systematical overview

What is "Computer Science" / "Informatics" ?

"Computer Science" — science about a tool?

better names would be: "science of computing"
or "data processing science" (focuses on activity instead of tool)

"Informatics": continental-European for "computer

science"
- French: "Informatique” (since 1960s)
- German: "Informatik"

Definition: "Science of the systematical processing of
information, especially the automatic processing by use
of digital computers".

Latin "informare":
to give structure to something; to educate; to picture

Information:

* independent fundamental entity of the world
besides matter and energy

» depends on previous knowledge of the receiver
of the information

e various approaches to quantify it

* we can consider information simply as
"Interpreted data".

Data: represented information
(e.g. text in a book, magnetic patterns on a
harddisk, ...)

But:

Hermeneutics — "the art of interpretation” — is not
part of informatics, despite its name. Social and
cultural aspects of information are largely ignored.

"Computer": comes from "to compute”
= "to calculate".

"Algorithm":

The word comes from the Persian textbook writer
Abu Ja'far Mohammed ibn Mdsa al-Khowarizmi

(= "father of Ja'far Mohammed, son of Moses,
coming from Khowarizm" — a town in Usbekistan,
today called Khiva.)

Al-Khowarizmt lived in Bhagdad, in the "House of
Wisdom"

wrote book about calculation:

"Kitab al jabr w'al-muqgabala” (= "rules of
reconstitution and reduction")

— here the word "algebra" comes from!

Modern meaning of "algorithm":

Finite set of rules which specify a sequence of
operations in order to solve a certain problem, with
the following properties:

1. Termination: An algorithm must come to an end
after a finite number of steps.

2. Definitness: Each step must be defined
precisely.

3. Input: An algorithm can need input values (e.g.
numbers).

4. Output: An algorithm must give one or more
output values.

5. Feasibility: An algorithm must be feasible; e.q.,
no intermediate step must depend on the solution
of some still unsolved mathematical problem.

(after Knuth 1973)

"Programme” (in American English: "program"):

Version of an algorithm which can be read,
Interpreted and carried out by a computer.

Programming languages were designed to write
precise programmes (more precise than possible
In our natural language!) suitable for computers.

Some notes concerning the history of
programming:

Early phases of computer history: Hardware (= the
machines) was in focus (reason for the name
"computer science")

Later: Software (= programmes) increasingly
Important, increasingly expensive in comparison to
hardware.

First “programmer”. Was a woman (Lady Ada Lovelace, daughter
of the poet Lord Byron). Developed programs for Babbage’s (non-
functional) “analytical engine”

An early concept for a programming notation was the “Plankalkdl”
(Zuse 1944), but it was not used in practice.

Programming these machines. Started with today so-called “ma-
chine languages” and “assembler languages” (both machine-
specific).

Later: so-called "high-level languages”

- more abstraction

- better readability for humans

- trying to integrate traditional mathematical notations

- platform-independent (not specific to certain machine)

FORTRAN (1954), COBOL (1958), LISP (1960),
Pascal (1971), C (1971), C++ (extension of C, 1992),
Java (1995), XL (2008) ...

(later more about programming)

Subject areas of computer science

1960s/1970s: Development of specialized university curricula

Basis: Mathematics, electrical engineering; no interest in soci-
al or cultural conditions and consequences, or more specifically: in
consequences for life at working place and leisure

Classical branches (from first recommendations for curricula in the
1960s): (a) theoretical informatics, (b) technical informatics, (c)
practical informatics, (d) applied informatics

Theoretical informatics: mathematical basis: not general “theory”
(which would include disciplines from the humanities and social
sciences relevant to informatics), but specialized “mathematical ba-
se”. Example questions:

Which problems can in principle be solved by a machine?

How can syntax and semantics of programming languages be de-
scribed?

Which kinds of logic can be used for automatic problem solving?

How do we measure how complicated problems are, for example
with respect to time or memory requirements?

Which kinds of problems can be solved with which abstract models
of computation?

How can be the correctness of a program be proved with mathe-
matical exactness?

Technical informatics: focused on hardware. Example questions:

How can computational objects and operations be represented with
physical means?

Which are the basic parts from which a computer should be built?
Which are the appropriate architectural decisions for a computer?

How can a processor be organized in order to execute a special kind
of program especially quickly?

How is information stored for quick access with small cost?

Which are the technical conditions for building networks from sepa-
rate computers?

How do we build computers which survive some defects?

Practical informatics: non application specific programming. Ex-
ample questions:

Which are the standard problems occurring in many application
areas, and how can they be solved?

Which data structures allow efficient solving of problems, and
which algorithms are best used on these data structures?

What types of programming languages are best suited to different
types of problems?

How must service programs be organized which provide the user
with an easier to use view of the machine than the bare hardware
would do?

How are high-level programs translated into a form which can be
executed by the underlying hardware?

How does one design user interfaces for end users?

How does one organize the development process of large
software systems? ("Software engineering")

Applied informatics: programming for specific application fields.
Example questions:

How are graphical objects represented in the computer, and how
can the be visualized?

Which numerical methods exist to model states and processes
happening in natural environments?

How should data base systems be structured to support the work
processes in a company?

Which techniques exist to simulate the working of the human mind
with computers?

What consequences has the use of computers for the quality of
life, both in general and at the working place in particular?

Informatics in the social context:;

What ethical questions arise from the use of computers, and
how can they be answered?

(data security, privacy guestions, computer viruses, hackers,
violence-promoting games, software piracy, ownership of
software and ideas, the open-source idea, use of information
technology for warfare, for crime, for sexual exploitation, for
terrorism...)

How does the use of computers influence our way of thinking
(about the world, about humans, about the mind, about
personal relationships of people...)?

How can computers, the Web and the "Web 2.0" (Facebook,
Twitter, Wikipedia etc.) be used to improve education /
autonomy of people / human rights / political participation... ?

What are possible dangers / cases of misuse?

2. Representation and measurement of information

In digital computers and media, all data are
represented by combinations of only 2 elementary
states: Oand1

(can be "charged" / "not charged", "on" / "off",
"magnetized" / "not magnetized", "open" / "closed",

"high current” / "low current”, "plus” / "minus"
etc.)

The smallest amount of information is thus the bit
(binary digit). It expresses which of two alternatives
IS the case. The alternatives are often written

0 and 1, or (sometimes) O and L.

n bits: represent one out of 2" alternatives.

Codes

To represent information in a computer, we must
encode all with the two symbols 0 and 1!

What is a code ?

Code (1): A mapping f: A — B from a set A of
elements to be stored or transferred to a set B
used for storage or transfer.

Code (2): The set B from definition (1).

Example:

AlB|C J Ik |L SlTIU °*

—_—T
EE_ MINIO XL\/)(
H PIAIR , V12

D
G
A= {ABC ... 2]
B=§J,0,L,. 7

MeEssace -5 3. a0d°'A' 170

digital (discrete) and analogue (continuous) codes

Analogue computers (representation of quantities with continuously
changing quantities): have vanished

Example: Vinyl records (analogue) vs. compact disks (discrete)

Benefit of discrete data representations: avoiding noise

For digital computers, we need binary codes:
B is a set of combinations of 0 and 1.

10

Examples:

For the primary compass direction: two bits necessary, and some
convention which bit-pair represents which direction. Example code:

(N,E,S,W}— {0,1}°, N — 00,E — 01,5 — 10, W ~— 11

For Boolean values ‘True’ and ‘False’;

[T,F} — {0,1},T — 1,F 0

For numbers 0 to 9: Binary Coded Decimal (BCD, non-total code,
i.e. some combinations are unused)

{0,1,...,9} — {0,1}4
0+ 0000,1+ 0001,2—0010,3— 0011,
4 — 0100,5+ 0101,6 — 0110,7 — 0111,
8 — 1000,9 +— 1001

Multiples of bits

Bits seldom occur as singles. Certain multiples of
bits are used as units for information (storage)
capacity.

1 Byte: 8 bits (can represent 1 of 28
= 256 alternatives).

Example: one of the integer numbers between
—128 and +127.

1 Halfbyte: 4 bits.

11

Typically, memory stores are built for multiples of
bytes.

Prefixes: kilo, mega, giga, tera, peta, exa
- used in physics for the factors 103, 10°, 10°, 10%?,
1015’1018

- in computer science often used for the factors 219,
220 230 240 250 260 \which are slightly larger

abbre- |meaning factor

viation

KB Kilobytes |210=1024

MB Megabytes [2%°=1,048,576

GB Gigabytes |230=1,073,741,824

B Terabytes [24°=1,099,511,627,776

PB Petabytes |2°°=1,125,899,906,842,624

EB Exabytes 20 =1,152,921,504,606,846,976

12

Representation of numbers in the computer

Number systems

Question: How to represent numbers?
We focus on positive integers here.

Decimal number system: base 10; each digit represents a multiple
of an exponent of 10. Digits 0..9.

Example: 123.45615 = 1% 102 +4+2%101+3%x10+4x10"1+
5%1072 4+ 6103,

Binary number system: base 2. Only two digits: 0 and 1.

Example: 1101.015, = 1 %23 4+1%x224+0x21 + 142040+
271 1 1%272 =13.254,.

Hexadecimal system (better but unhistorical name: sedecimal num-
ber system): Base 16, digits 0..9,A..F. One digit for four bits. Examp-
les: }12.815 = 162.5q0. FF:L;:', = 2554¢.

The additional digits in the hexadecimal system:
A=10,B=11,C=12,D=13,E=14, F = 15.

Transformation from one number system to the
other:

* Special case (easy): from binary to hexadecimal
Every 4 binary digits correspond directly to a
hexadecimal digit

Example: 0000 0010 11000110
- 0 2 C 6

13

« from arbitrary system to decimal:
Horner scheme

Input: zn-1 Zn—2 ... Zo to base b

start with hn_1 = zn1

calculate for k = n-1, n-2, ..., 1:
hk-1 = he * b + zk1

Output: z = ho

Example:

Input: binary number 1010 (n=4,b =2)

Start; hn-i1=hs3=2z3=1
k=n-1=3: h=h3*2+72,=1*2+0=2

K

2. hi=hy*2+2:=2*2+1=5

k =1; ho=h1*2+2z20=2*5+0=10=2

14

« from decimal to arbitrary:
Inverse Horner scheme

start with ho =z (= input)

calculate fork=1, 2, 3, ... :
Zk-1 = hxk.r mod b,
hk = hk_l divb

(mod: rest when dividing by b, div: integral part from dividing by b)

Output: zn-1 Zn—2 ... Zo to base b

Example:

Input: decimal number 34, transform in ternary
system (b = 3)

Start: ho= 34

k=1: zo=homod 3 =34 mod 3 =1,
hi=hodiv3=34div3=11

2: zZ1=himod3=11mod 3 = ,
ho=h1div3=11div3=3

3: z2=hmod 3=3mod3=0,
hs=h,div3=3div3=1,

4: zz3=hasmod3=1mod3= ,
has = hz div3=1div3 =0 (Stop)

K

K

K

= z=1021

15

Remark:
Arbitrary real numbers can also be represented
using an arbitrary integer b > 1 as base.

Digits after the dot are interpreted as coefficients of
b™ (n=1,2,3,..).

Example:
0.111, (base b=2)

=1/2+1/4+1/8 =7/8 =0.87510

16

Representation of numbers in the computer

For positive integers, basically the binary number
system is used.

But: Numbers are usually stored in sections of
memory of fixed size (for reasons of organization

of memory access in the computer).
Integer representation in finite cells ("words" with fixed
length):

Computer memory: organized in finite cells. Typically: Multiples of
a byte.

How to store numbers in a 4-byte cell? Some encoding necessary.
232 different values can be represented.

Example: 0...232 — 1 can be represented as binary numbers.

17

Example including negative numbers: —231 .. 231 _ 1 can be re-
presented as two's complements numbers.

Two’s complement: Most used representation for integers from
range —2"—1 ... 27—1 _ 1 (with n-bit cell).

Non-negative numbers: Are represented simply as binary numbers.
Using n bits, the highest bit is always O.

Negative numbers: (a) Represent their absolute value as binary
number, (b) then invert all bits (including the infinite number of lea-
ding zeros, resulting in an infinite number of leading ones), and (c)
add a 1. The last n bits are the two’s complement of the value to be
represented.

Example for the "Two's complement":

8-bit two's complement representation of —77

1. Represent +77 as a binary number: 1001101
2. Invert all bits, including the leading Os: ...1110110010
3. Add 1: ...1110110011

4. Use only the lowest (= rightmost) 8 bits: 10110011

Notice:
For 16-bit cells, the result would be 1111111110110011.

18

decimal system

8-bit two’s complement

-128
-127
-126
-2

-1

0

1
126
127

1000 0000
1000 0001
1000 0010

1111 1110
1111 1111
0000 0000
0000 0001

0111 1110
0111 1111

Properties of the two's complement:

Code represents numbers —27— 1 2n—1 _ 1

High bit represents sign.

Minimal value represented by 1000..., maximal by 0O111....

—1 represented by 111....

19

Floating-point representations

Built analogously to the "scientific representation”
of numbers in the form m * 10°

- but using the binary system:
Represent numbers in the form

sxm x 2°¢

with sign s (41 or —1), non-negative mantissa m, and integer ex-
ponent e.

Representation is normalized if 1 < m < 2.

Finite number of bits for sign, mantissa and exponent; often used: 32
bits (single precision), 64 bits (double precision), 80 bits (extended
precision)

Typical layout of 32-bit floating point number:
Bit 31: represents s (1: negative; 0: positive)

Bits 30..23 (8 bits): represent e: Binary representation of ¢ + 127,
which allows the values —126...127. Value O is used in represen-
tation of number 0 and of unnormalized numbers. Value 255 used
to represent infinity and other exceptional values.

Bits 22..0 (23 bits): represent m, by binary representation of the
integer part of m = 223, without the leading 1.

Example: representing +26.625 as a 32-bit normalized floating
point number: 26.6250 = 11010.101». Normalizing yields
1.1010/10105 = 2%, 32-bit floating point number (s=0, e=1311¢):

0'10000011'10101010000000000000000

20

Digital representation of text

based on representation of letters

- depending on the alphabet: certain number of bits
necessary

- for 26 letters: at least 5 bits necessary
(24=16 < 26, 2° =32 > 26)

- but also encoding of digits, special signs, upper- and
lower-case letters... desirable

traditional 7-bit code:

ASCII (= American Standard Code for Information
Interchange)

ISO-646 norm

later extended to 8-bit code

examples: 00110000 = hex 30 = 4810 = digit 0
00110001 = hex 31 = 491 = digit 1

00111010 = hex 3A = 5810 ="'

01000001 = hex 41 = 6510 = ‘A’
01000010 = hex 42 = 6610 = 'B’

01100001 = hex 61 = 9710 = 'a'

ASCII Table:

21

Dez

© 0O N O 0 b~ W N O

R e
NS

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
127

Okt
000
001
002
003
004
005
006
007
010
011
012
013

014

015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
027
0177

Non-printable characters

Hex
0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
Ox0A
0x0B

0x0C

0x0D
OxO0E
OxOF
0x10
0x11
0x12
0x13
0x14
0x15
0x16
0x17
0x18
0x19
Ox1A
0x1B
0x1C
0x1D
Ox1E
Ox1F
Ox7F

Char
Ctrl-@
Ctrl-A
Ctrl-B
Ctrl-C
Ctrl-D
Ctrl-E
Ctrl-F
Ctrl-G
Ctrl-H
Ctrl-I
Ctrl-J
Ctrl-K

Ctrl-L

Ctrl-M
Ctrl-N
Ctrl-O
Ctrl-P
Ctrl-Q
Ctrl-R
Ctrl-S
Ctrl-T
Ctrl-U
Ctrl-v
Ctrl-w
Ctrl-X
Ctrl-Y
Ctrl-Z
Ctrl-[
Ctrl-\
Ctrl-]
Ctrl-»
Ctrl-_

Code

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
NP
CR
o)
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
suB
ESC
FS
GS
RS
us
DEL

Remark

Null prompt
Start of heading
Start of text

End of Text

End of transmission
Enquiry
Acknowledge
Bell

Backspace
Horizontal tab
Line feed
Vertical tab
Form feed

New page
Carriage return
Shift out

Shift in

Data link escape
X-ON

X-Off

No achnowledge
Synchronous idle
End transmission blocks
Cancel

End of medium
Substitute
Escape

File separator
Group separator
Record separator
Unit separator

Delete or rubout

Dez
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

Okt
040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077

0100
0101
0102
0103
0104
0105
0106
0107
0110
0111
0112
0113
0114
0115
0116
0117

Printable characters

Hex |Char |Remark

0x20 blank

0x21 | ! |exclamation mark
0x22
0x23 | #
ox24 | $
0x25 | %
0x26 | &
ox27 | '
0x28 | (
0x29 |)
Ox2A | *
0x2B | +
ox2C | ,
0x2D | - |minus sign
Ox2E | . |dot
Ox2F
0x30
0x31
0x32
0x33
0x34
0x35
0x36
0x37
0x38
0x39
Ox3A
0x3B
0x3C | <
0x3D
Ox3E
Ox3F
0x40
0x41
0x42
0x43
Ox44
0x45
0x46
0x47
0x48
0x49
Ox4A
0x4B
0x4C
0x4D
Ox4E

quotation mark

Dollar character

apostroph

asterisk
plus sign
comma

slash

©| o N o g A W NP O —

colon
semicolon

less than

euqality character
greater than
interrogation mark
at

I O Mmoo w>»Q v VvV

oz Z|r X«

0x4F

22

| 800120 | 0x50 |

| 810121 |0x51 |

| 820122 [0x52 |

| 830123 [0x53 |

| 840124 |0x54 |

| 850125 | 0x55 |

| 860126 | 0x56 |

| 870127 |0x57 |

| 880130 |0x58 |

| 890131 |0x59 |

| 90 /0132 |Ox5A |

| 910133 [0x5B |

| 920134 |ox5C |

|backslash

| 930135 |0x5D |

>s|—| - —|N|<| X| S| </ c|Hd|wn B O|T

| 940136 |0x5E |

|caret

| 950137 |ox5F | _

low line

| 960140 [ox60 | °

|back quote

| 97 0141 | 0x61 |

| 980142 | 0x62 |

| 99 |0143 | 063 |

1100 (0144 | 0x64 |

1101 (0145 | 0x65 |

1102 (0146 | 0x66 |

-~ 0O Qo T 9

1103|0147 | 0x67 |

1104|0150 | 0x68 |

o|lQ

1105|0151 | 0x69 |

1106 (0152 |0x6A |

1107|0153 |0x68 |

=~

1108|0154 |0x6C |

1109 |0155 |0x6D |

1110 |0156 |OX6E |

1111|0157 |Ox6F |

1112 (0160 | 0x70 |

1113 (0161 | 0x71 |

1114 (0162 | 0x72 |

|l ©v|o| >3 3

1115|0163 | 0x73 |

~| 0

1116 |0164 | 0x74 |

1117|0165 | 0x75 |

1118 (0166 | 0x76 |

1119 (0167 | 0x77 |

1120 (0170 | 0x78 |

1121 (0171 [0x79 |

1122 0172 |0x7A |

1123 0173 |0x7B |

1124 (0174 |ox7C |

1125 (0175 |0x7D |

1126 |0176 |OX7E |

|l |~ —|~I N < | XxX|s|<|c

23

ASCII not sufficient for alphabets of the non-Anglo-
american world (not even for European alphabets with &,
0,0, R, é @01, a..)

Unicode:
2 byte (= 16 bit) code for multilingual text processing
- can represent 65536 characters

amongst them: 27786 Chinese-Japanese-Korean
characters
11172 Hangul characters (Korean)
ancient Nordic runes
Tibetan characters
Cherokee characters ...

complete list see http://ww. uni code. org/ charts/

Unicode "Escape sequence” (to utilise it in the pro-
gramming language Java):
e.g., \u0041 ="A' (0041 = hexadecimal representation)

Some characters occur more frequently in texts than
others:
better use variable-length code

UTF-8: Universal Transformation Format

Characters encoded with variable number of bytes

= for texts with many ASCII characters (like on many
web pages) shorter as Unicode

Strings (or words): sequences of characters
encoded by sequences of the corresponding code words

24

Digital representation of pictures

Gray levels: encode each gray level by a number from a
fixed interval (e.g. 0, 1, ..., 255: 8-bit representation —
0 = black, 255 = white)

Colours:

several colour models possible

the most frequently used one: RGB model

(red / green / blue: primary colours for additive colour
composition)

Each colour from a certain range ("gamut") can be mixed
from these primary colours

examples with 8-bit intensities:

black (0, 0, 0)

white (255, 255, 255)

medium gray (127, 127, 127)

red (255, 0, 0)

green (0, 255, 0)

blue (0, 0, 255)

light blue (127, 127, 255)

yellow (255, 255, 0)
Pictures:

typically represented as raster images —
rectangular array (matrix) of pixels, each pixel
represented by its 3 colour values.

25

Representation of text documents (book pages,
web pages...)

Level of representation is important.
(1) Is there text on the page? — One bit.

(2) What is the text on the page? —
Representation of letter sequence (e.g., string of
ASCII characters).

(3) What is the exact layout of the text on the page? —
"formatted text"
- use special characters for formatting, or
- represent the page by a rasterized black-and-white
image.

Text documents with graphical elements:
- represent all as a single raster image, or

- use combined representation: several data files,
one for the text, the other for the pictorial parts

- HTML web pages are built like this

file <name>.html or <name>.htm contains text,
layout information and links to other pages

files <name>.gif or <name>.jpg or <name>.png
contain images

26

Messages and redundancy

Message: A finite sequence of letters, used to transfer some infor-
mation via encoding/transfer/decoding

Signal: The physical representation of the message (examples: as
voltage pattern or light pattern)

Redundancy: Part of a message which is not necessary for the
transferred information (later explained more exactly)

Error correction by redundant codes: Natural languages allow to
detect many errors.

Example in informatics: Parity bits. Even parity: 9 bits per byte. 9th
bit makes number of one-bits even. Allows detection of single-bit
errors. Computer memory sometimes uses 9 bits per byte for this
purpose.

Other example: ISBN code (International Standard Book Number) —
last character is a parity character

Entropy and quantification of information

Shannon's information theory:
Information as a measurable, statistical property of
signals

How can we measure information and redundancy of
characters in a message?

Assumption: N-character alphabet { x1, X2, ..., Xn }

Number of bits per character:
Ho = log2 N

(Remember: log2 N = (log N)/(log 2))

27

Information content of a single character x; : '99: p(x)

Here, p(Xi) is the probability of x;.

Entropy = average value of information content
of all characters

- — [l
= H = Zp(xk) 00, ——~ p()

Binary encoding needs at least, on average, H bits per
character.

Redundancy: R = Hp — H.

Example: Four-letter alphabet {a. b, ¢, d}

Probabilities: p, = 0.5, p, = 0.25,p. = 0.125,p; = 0.125
Thus:

Ho = 2 bits per character encodable

Entropy: 0.5x1 4+ 0.25%x2+4+0.125%«3+4+ 0.125%3 = 1.75 bits
per character encoded

Redundancy: 0.25 bits per character
Examples:

—a+— 00,b— 01,c+— 10,d — 11: on average 2 bits per charac-
ter

—a+— 0,b+— 10,¢ — 110,d — 111: on average 1.75 bits per
character (optimal, no redundancy)

28

