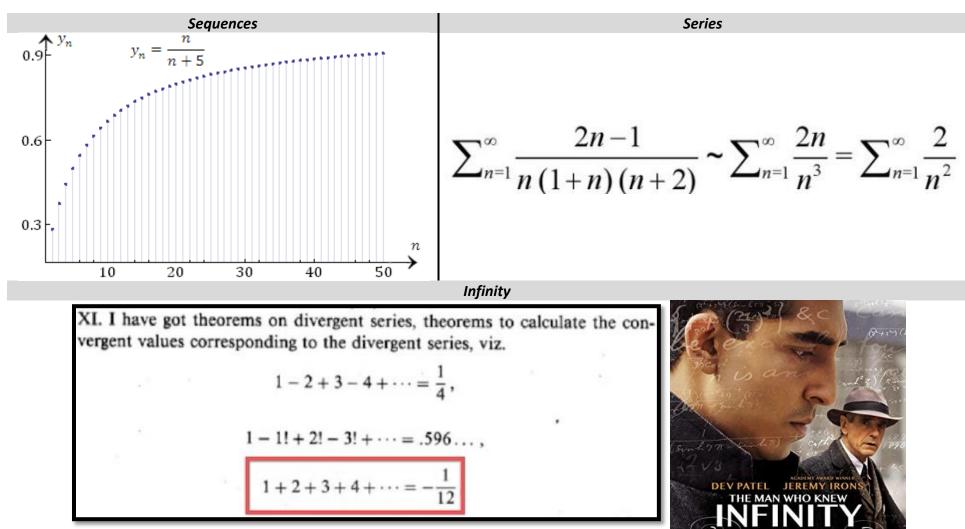
| Computer Scien | Computer Science and Mathematics      |         |  |  |  |  |  |  |  |
|----------------|---------------------------------------|---------|--|--|--|--|--|--|--|
| Calculus #2    | Killing Bills 😊 of Sequences & Series | SoSe 20 |  |  |  |  |  |  |  |
|                |                                       |         |  |  |  |  |  |  |  |

| This file is available for download on  | StudIP (restricted access) | https://studip-ecampus.uni-goettingen.de/           |
|-----------------------------------------|----------------------------|-----------------------------------------------------|
| This file is available for download on: | the webpage (bit later)    | http://www.uni-forst.gwdg.de/~wkurth/csm20_home.htm |

**Sneak Peek** into the topics:



| Computer Scien | ce and Mathematics                    | Georg-August-Universität Göttingen<br>SoSe 20 |
|----------------|---------------------------------------|-----------------------------------------------|
| Calculus #2    | Killing Bills 😊 of Sequences & Series | 505ë 20                                       |

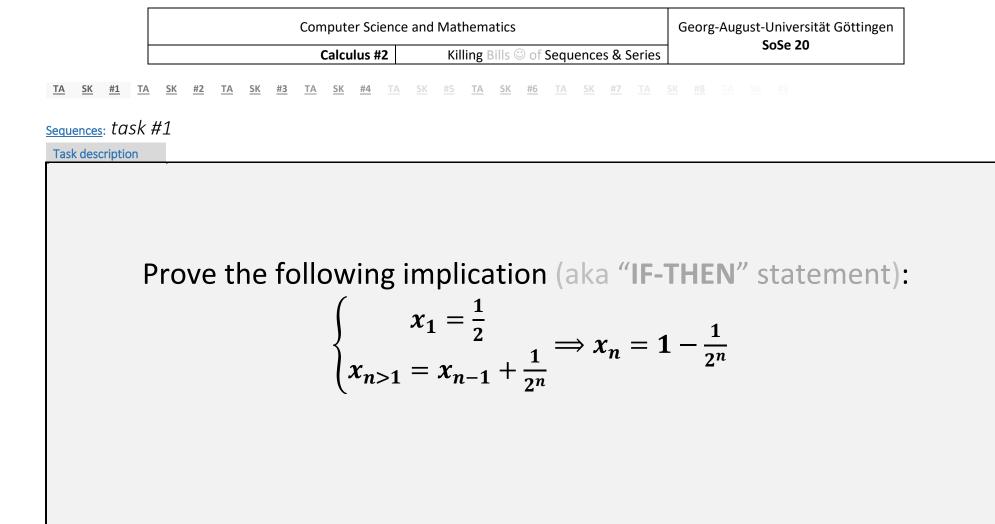
| Computer Science | Computer Science and Mathematics      |  |  |  |  |  |  |  |
|------------------|---------------------------------------|--|--|--|--|--|--|--|
| Calculus #2      | SoSe 20                               |  |  |  |  |  |  |  |
|                  | Killing Bills © of Sequences & Series |  |  |  |  |  |  |  |

# Contents

| Sequences: task #1          | 5  |
|-----------------------------|----|
| Task description            | 5  |
| What you need to know:      | 7  |
| Solution:                   | 9  |
| Sequences - limits: task #2 |    |
| Task description            |    |
| What you need to know:      |    |
| Solution:                   | 15 |
| Infinite Series: task #3    |    |
| Task description            |    |

| What you need to know:                                                                | 20 |
|---------------------------------------------------------------------------------------|----|
| Solution:                                                                             | 22 |
| Infinite Series: task #4                                                              | 24 |
| Task description                                                                      | 24 |
| What you need to know:                                                                | 26 |
| Solution:                                                                             | 28 |
| Homework Assignments:                                                                 | 31 |
| Leaderboard: bonus points per capita ©, cumulative                                    | 32 |
| Cheat Sheet of the Day S: Convergence Tests                                           | 33 |
| Cheat Sheet #2: <i>Binary</i> Decision Tree for choosing a proper Convergence<br>Test |    |
|                                                                                       |    |

| Computer Scien | ce and Mathematics                    | Georg-August-Universität Göttingen<br>SoSe 20 |
|----------------|---------------------------------------|-----------------------------------------------|
| Calculus #2    | Killing Bills 😊 of Sequences & Series | 505ë 20                                       |



| Computer Scien | ce and Mathematics                    | Georg-August-Universität Göttingen<br>SoSe 20 |
|----------------|---------------------------------------|-----------------------------------------------|
| Calculus #2    | Killing Bills 😊 of Sequences & Series | 505ë 20                                       |

|    |           |           |    |           |           |    |           |           |           |           |       |    |           |           |        | G         | Georg-August-Universität Göttingen<br>SoSe 20 |      |           |           |        |   |  |  |   |        |  |  |
|----|-----------|-----------|----|-----------|-----------|----|-----------|-----------|-----------|-----------|-------|----|-----------|-----------|--------|-----------|-----------------------------------------------|------|-----------|-----------|--------|---|--|--|---|--------|--|--|
|    |           |           |    |           |           |    |           |           | (         | Calcu     | lus # | 2  |           | Kil       | ling 🛛 | Bills 🤅   | of s                                          | Sequ | ence      | s & S     | Series | 5 |  |  | 5 | 050 20 |  |  |
| TA | <u>SK</u> | <u>#1</u> | TA | <u>SK</u> | <u>#2</u> | TA | <u>SK</u> | <u>#3</u> | <u>TA</u> | <u>SK</u> | #4    | TA | <u>SK</u> | <u>#5</u> | TA     | <u>SK</u> | #6                                            | TA   | <u>SK</u> | <u>#7</u> |        |   |  |  |   |        |  |  |

#### What you need to know:

| Computer Scien | ce and Mathematics                    | Georg-August-Universität Göttingen<br>SoSe 20 |
|----------------|---------------------------------------|-----------------------------------------------|
| Calculus #2    | Killing Bills 😊 of Sequences & Series | 505ë 20                                       |

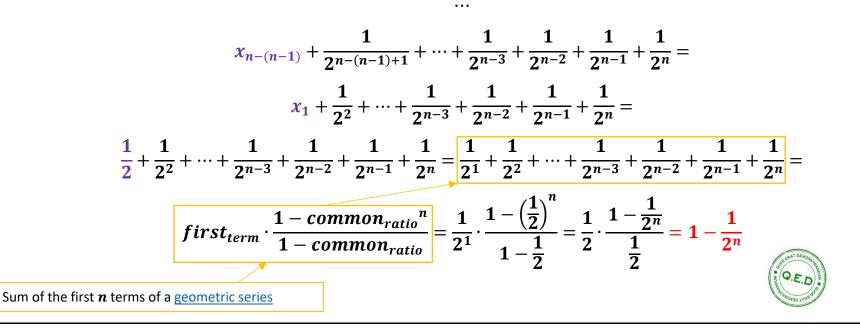
|    |    |    |    |    |    |    |       |        |           |    | Ċ   | Georg  | g-Aug   | -    | Univ<br>SoSe | ersität ( | Götting | gen    |   |  |  |  |      |    |  |  |
|----|----|----|----|----|----|----|-------|--------|-----------|----|-----|--------|---------|------|--------------|-----------|---------|--------|---|--|--|--|------|----|--|--|
|    |    |    |    |    |    | (  | Calcu | ulus # | <b>‡2</b> |    | Kil | ling 🛛 | Bills 🤅 | ) of | Sequ         | ence      | s & S   | Series | 5 |  |  |  | 3036 | 20 |  |  |
| TA | SK | #2 | ТА | SK | #3 | TA | SK    | #4     | ТА        | SK | #5  | TA     | SK      | #6   | ТА           | SK        | #7      |        |   |  |  |  |      |    |  |  |

#### Solution:

TA

All we need to do is to convert the recursive formula (i.e. the LHS of our implication) into the closed-form and to check if it coincides with the RHS:

$$x_{n} = \frac{x_{n-1}}{x_{n-1}} + \frac{1}{2^{n}} = \frac{x_{(n-1)-1}}{x_{(n-1)-1}} + \frac{1}{2^{n-1}} + \frac{1}{2^{n}} = x_{n-2} + \frac{1}{2^{n-1}} + \frac{1}{2^{n}} = x_{(n-2)-1} + \frac{1}{2^{n-2}} + \frac{1}{2^{n-2}} + \frac{1}{2^{n-1}} + \frac{1}{2^{n}} = x_{n-3} + \frac{1}{2^{n-2}} + \frac{1}{2^{n-1}} + \frac{1}{2^{n}} = x_{(n-3)-1} + \frac{1}{2^{n-3}} + \frac{1}{2^{n-2}} + \frac{1}{2^{n-1}} + \frac{1}{2^{n}} = x_{n-4} + \frac{1}{2^{n-3}} + \frac{1}{2^{n-2}} + \frac{1}{2^{n-1}} + \frac{1}{2^{n}} = x_{n-4} + \frac{1}{2^{n-3}} + \frac{1}{2^{n-2}} + \frac{1}{2^{n-1}} + \frac{1}{2^{n}} = x_{n-4} + \frac{1}{2^{n-3}} + \frac{1}{2^{n-2}} + \frac{1}{2^{n-1}} + \frac{1}{2^{n}} = x_{n-4} + \frac{1}{2^{n-3}} + \frac{1}{2^{n-2}} + \frac{1}{2^{n-1}} + \frac{1}{2^{n}} = x_{n-4} + \frac{1}{2^{n-3}} + \frac{1}{2^{n-2}} + \frac{1}{2^{n-1}} + \frac{1}{2^{n}} = x_{n-4} + \frac{1}{2^{n-3}} + \frac{1}{2^{n-2}} + \frac{1}{2^{n-1}} + \frac{1}{2^{n}} = x_{n-4} + \frac{1}{2^{n-3}} + \frac{1}{2^{n-2}} + \frac{1}{2^{n-1}} + \frac{1}{2^{n}} = x_{n-4} + \frac{1}{2^{n-3}} + \frac{1}{2^{n-2}} + \frac{1}{2^{n-1}} + \frac{1}{2^{n}} = x_{n-4} + \frac{1}{2^{n-3}} + \frac{1}{2^{n-2}} + \frac{1}{2^{n-1}} + \frac{1}{2^{n-2}} = x_{n-4} + \frac{1}{2^{n-3}} + \frac{1}{2^{n-2}} + \frac{1}{2^{n-1}} + \frac{1}{2^{n-3}} = x_{n-4} + \frac{1}{2^{n-3}} + \frac{1}{2^{n-2}} + \frac{1}{2^{n-1}} + \frac{1}{2^{n-3}} = x_{n-4} + \frac{1}{2^{n-3}} + \frac{1}{2^{n-2}} + \frac{1}{2^{n-1}} + \frac{1}{2^{n-3}} = x_{n-4} + \frac{1}{2^{n-3}} + \frac{1}{2^{n-2}} + \frac{1}{2^{n-1}} + \frac{1}{2^{n-3}} + \frac{1}{2^{n-$$



| Computer Scien | ce and Mathematics                    | Georg-August-Universität Göttingen<br>SoSe 20 |
|----------------|---------------------------------------|-----------------------------------------------|
| Calculus #2    | Killing Bills 😊 of Sequences & Series | 505ë 20                                       |

|    |           |           |    |           |           |    |           |           | Corr | npute     | er Sci    | ence | and       | Mat       | hem    | atics     |        |      |           |           |        | G | ieorg | g-Aug | - | Universit<br>SoSe 20 | ät Götti | ngen |
|----|-----------|-----------|----|-----------|-----------|----|-----------|-----------|------|-----------|-----------|------|-----------|-----------|--------|-----------|--------|------|-----------|-----------|--------|---|-------|-------|---|----------------------|----------|------|
|    |           |           |    |           |           |    |           |           | (    | Calcu     | lus #     | 2    |           | Kil       | ling 🛛 | Bills 🤅   | 🕑 of 🤅 | Sequ | ence      | s & S     | Series | 5 |       |       | 3 | 5038 20              |          |      |
| TA | <u>SK</u> | <u>#1</u> | TA | <u>SK</u> | <u>#2</u> | TA | <u>SK</u> | <u>#3</u> | TA   | <u>SK</u> | <u>#4</u> | TA   | <u>SK</u> | <u>#5</u> | TA     | <u>SK</u> | #6     | TA   | <u>SK</u> | <u>#7</u> |        |   |       |       |   |                      |          |      |

# Sequences - limits: task #2

Task description

| Check if: | $\left(-\frac{2}{3}\right)^n \to 0 \text{ as } n \to \infty$ |
|-----------|--------------------------------------------------------------|
|-----------|--------------------------------------------------------------|

| Computer Scien | ce and Mathematics                    | Georg-August-Universität Göttingen<br>SoSe 20 |
|----------------|---------------------------------------|-----------------------------------------------|
| Calculus #2    | Killing Bills 😊 of Sequences & Series | 505ë 20                                       |

|           |    |           |           |           |           |           | Con | npute     | er Sci    | ence | and       | Mat       | hema   | atics     |    |      |           |           |        | G | ieorg | g-Aug |   | Universität G<br>SoSe 20 | öttingen |
|-----------|----|-----------|-----------|-----------|-----------|-----------|-----|-----------|-----------|------|-----------|-----------|--------|-----------|----|------|-----------|-----------|--------|---|-------|-------|---|--------------------------|----------|
|           |    |           |           |           |           |           |     | Calcu     | lus #     | 2    |           | Kil       | ling E | Bills 🤅   | of | Sequ | ence      | s & S     | Series | 5 |       |       | 5 | 5052 20                  |          |
| <u>#1</u> | TA | <u>SK</u> | <u>#2</u> | <u>TA</u> | <u>SK</u> | <u>#3</u> | TA  | <u>SK</u> | <u>#4</u> | TA   | <u>SK</u> | <u>#5</u> | TA     | <u>SK</u> | #6 | TA   | <u>SK</u> | <u>#7</u> |        |   |       |       |   |                          |          |

#### What you need to know:

TA SK

| Computer Scien | ce and Mathematics                    | Georg-August-Universität Göttingen<br>SoSe 20 |
|----------------|---------------------------------------|-----------------------------------------------|
| Calculus #2    | Killing Bills 😊 of Sequences & Series | 505ë 20                                       |

|    |           |           |    |           |           | Con | npute     | er Sc  | ience     | and       | Mat       | hem    | atics     |      |      |           |       |        | Ģ | Georg | g-Aug | - | Universi <sup>.</sup><br>SoSe 20 | tät Gött | inger | ı |
|----|-----------|-----------|----|-----------|-----------|-----|-----------|--------|-----------|-----------|-----------|--------|-----------|------|------|-----------|-------|--------|---|-------|-------|---|----------------------------------|----------|-------|---|
|    |           |           |    |           |           | (   | Calcı     | ılus ‡ | <b>‡2</b> |           | Kil       | ling I | Bills 🤅   | 🕑 of | Sequ | ence      | s & S | Series | S |       |       |   | 5038 20                          |          |       |   |
| TA | <u>SK</u> | <u>#2</u> | TA | <u>SK</u> | <u>#3</u> | TA  | <u>SK</u> | #4     | TA        | <u>SK</u> | <u>#5</u> | TA     | <u>SK</u> | #6   | TA   | <u>SK</u> | #7    |        |   |       |       |   |                                  |          |       |   |

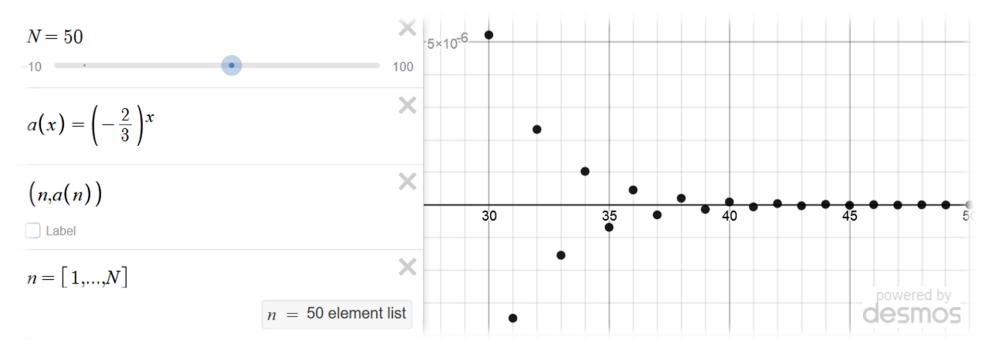
#### Solution:

SK

#1

TA

Plotting target functions and observing their behaviour visually can never go wrong (well, unless you plotted them erroneously <sup>(i)</sup>):



As the plot immediately shows, our function (**reminder**: a sequence is a function over natural numbers – in other words, a discrete function) mercilessly  $\textcircled$  tends to 0 as *n* increases [check out the scale on the *Y*-axis – we are literally in the **micro-neighbourhood of 0**, starting already from the 30<sup>th</sup> term of our sequence]. So, we do get a very strong feeling that the required check has to succeed!

Of course, just by graphing functions, you ain't proving anything in terms of rigid mathematics – so, we really have to proceed with the proof  $\odot$ :

| Computer Science | ce and Mathematics                    | Georg-August-Universität Göttingen<br>SoSe 20 |
|------------------|---------------------------------------|-----------------------------------------------|
| Calculus #2      | Killing Bills 😳 of Sequences & Series | 303e 20                                       |

As we already know, all we wanna do is to solve the following inequality for *n*:

$$\left|\left(-\frac{2}{3}\right)^n - 0\right| < \varepsilon$$

Let's simplify it a lil bit:

$$\left|\left(-\frac{2}{3}\right)^n - 0\right| < \varepsilon \Leftrightarrow \left|\left(-\frac{2}{3}\right)^n\right| < \varepsilon \Leftrightarrow \left(\frac{2}{3}\right)^n < \varepsilon$$

 $\left(\frac{2}{2}\right)^n < \varepsilon$ 

So, we've reduced out task to:

As soon as *n* is an exponent here, solving for it requires the usage of logarithms – let's take, e.g., a natural one, *ln*:

$$\left(\frac{2}{3}\right)^n < \varepsilon \Leftrightarrow \ln\left(\frac{2}{3}\right)^n < \ln(\varepsilon)$$

Using some basic properties of logarithmic functions, we end up with:

$$ln\left(\frac{2}{3}\right)^n < ln(\varepsilon) \Leftrightarrow n \cdot ln\left(\frac{2}{3}\right) < ln(\varepsilon)$$

Observe that  $ln\left(\frac{2}{3}\right) < 0$  – this yields:

For those who might wanna take a glimpse into the basics of solving inequalities: https://www.mathsisfun.com/algebra/inequality-solving.html

$$n > \frac{\ln(\varepsilon)}{\ln\left(\frac{2}{3}\right)} = n(\varepsilon)$$

Example: let's say, for  $\varepsilon = 10^{-6}$  we get  $n > \frac{ln(\varepsilon)}{ln(\frac{2}{3})} = \frac{ln(10^{-6})}{ln(\frac{2}{3})} \approx 34.1$  – so, starting from its  $35^{th}$  term, our sequence gets at least  $10^{-6}$ -close to 0.

| Computer Scien | ce and Mathematics                    | Georg-August-Universität Göttingen<br>SoSe 20 |
|----------------|---------------------------------------|-----------------------------------------------|
| Calculus #2    | Killing Bills 😊 of Sequences & Series | 505ë 20                                       |

|     |           |           |           |           |           |           | Com | npute     | er Sci | ience     | and       | Mat | hem    | atics     |           |      |           |        |        | Ģ | Georg | g-Aug | - | Unive<br><b>oSe 2</b> | rsität | Götti | ngei | n |
|-----|-----------|-----------|-----------|-----------|-----------|-----------|-----|-----------|--------|-----------|-----------|-----|--------|-----------|-----------|------|-----------|--------|--------|---|-------|-------|---|-----------------------|--------|-------|------|---|
|     |           |           |           |           |           |           | 0   | Calcu     | lus ‡  | <b>‡2</b> |           | Kil | ling I | Bills 🤅   | ) of      | Sequ | ence      | es & S | Series | 5 |       |       | 3 | 0382                  | .0     |       |      |   |
| . ] | <u>FA</u> | <u>SK</u> | <u>#2</u> | <u>TA</u> | <u>SK</u> | <u>#3</u> | TA  | <u>SK</u> | #4     | TA        | <u>SK</u> | #5  | TA     | <u>SK</u> | <u>#6</u> | TA   | <u>SK</u> | #7     |        |   |       |       |   |                       |        |       |      |   |

## Infinite Series: task #3

Task description

<u>TA SK #1</u>

# **Compute the following series:**

$$\sum_{k=2}^{\infty} \frac{2}{k^2 - 1}$$

| Computer Scien | ce and Mathematics                    | Georg-August-Universität Göttingen<br>SoSe 20 |
|----------------|---------------------------------------|-----------------------------------------------|
| Calculus #2    | Killing Bills 😊 of Sequences & Series | 505ë 20                                       |

|          |           |           |           |           |           |           |           | Con | npute     | er Sci | ence | and       | Mat       | hema   | atics     |    |      |           |           |       | G | ieorg | g-Aug |   | Universität Götting<br>SoSe 20 | en |
|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----|-----------|--------|------|-----------|-----------|--------|-----------|----|------|-----------|-----------|-------|---|-------|-------|---|--------------------------------|----|
|          |           |           |           |           |           |           |           |     | Calcu     | lus #  | 2    |           | Kil       | ling E | Bills 🤅   | of | Sequ | ence      | s & S     | eries | 5 |       |       | 3 | 032 20                         |    |
| <u>(</u> | <u>#1</u> | <u>TA</u> | <u>SK</u> | <u>#2</u> | <u>TA</u> | <u>SK</u> | <u>#3</u> | TA  | <u>SK</u> | #4     | TA   | <u>SK</u> | <u>#5</u> | TA     | <u>SK</u> | #6 | TA   | <u>SK</u> | <u>#7</u> |       |   |       |       |   |                                |    |

#### What you need to know:

TA SK

| Computer Scien | ce and Mathematics                    | Georg-August-Universität Göttingen<br>SoSe 20 |
|----------------|---------------------------------------|-----------------------------------------------|
| Calculus #2    | Killing Bills 😊 of Sequences & Series | 505ë 20                                       |

|           |           |           |    |           |           |    |           |           | Corr | npute     | er Sci | ence | and       | Mat | hem    | atics     |     |      |           |           |        | Ģ         | Georg | g-Au | -         | Universi<br><b>SoSe 20</b> | tät Göt | tinge | n |
|-----------|-----------|-----------|----|-----------|-----------|----|-----------|-----------|------|-----------|--------|------|-----------|-----|--------|-----------|-----|------|-----------|-----------|--------|-----------|-------|------|-----------|----------------------------|---------|-------|---|
|           |           |           |    |           |           |    |           |           | 0    | Calcu     | ılus ‡ | 2    |           | Kil | ling 🛛 | Bills (   | of: | Sequ | ience     | s & S     | Series | 5         |       |      |           | 5032 20                    |         |       |   |
| <u>TA</u> | <u>SK</u> | <u>#1</u> | TA | <u>SK</u> | <u>#2</u> | TA | <u>SK</u> | <u>#3</u> | TA   | <u>SK</u> | #4     | TA   | <u>SK</u> | #5  | TA     | <u>SK</u> | #6  | TA   | <u>SK</u> | <u>#7</u> | TA     | <u>SK</u> | #8    | TA   | <u>SK</u> | <u>#9</u>                  |         |       |   |

#### Solution:

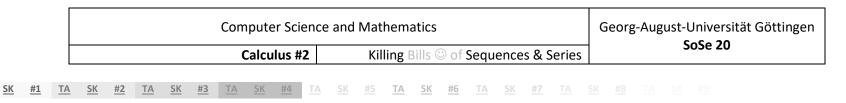
First of all, notice that:

$$\frac{2}{k^2 - 1} = \frac{2}{k^2 - 1^2} = \frac{2}{(k - 1) \cdot (k + 1)} = \frac{(k + 1) - (k - 1)}{(k - 1) \cdot (k + 1)} = \frac{(k + 1)}{(k - 1) \cdot (k + 1)} - \frac{(k - 1)}{(k - 1) \cdot (k + 1)} = \frac{1}{k - 1} - \frac{1}{k + 1}$$

This turns our target series into an easy-to-compute **telescopic series**:

$$\sum_{k=2}^{\infty} \frac{2}{k^2 - 1} = \sum_{k=2}^{\infty} \left(\frac{1}{k - 1} - \frac{1}{k + 1}\right) = \lim_{n \to \infty} \sum_{k=2}^{n} \left(\frac{1}{k - 1} - \frac{1}{k + 1}\right) = \lim_{n \to \infty} \left(\sum_{k=2}^{n} \left(\frac{1}{k - 1}\right) - \sum_{k=2}^{n} \left(\frac{1}{k + 1}\right)\right) = \lim_{n \to \infty} \left(\frac{1}{2 - 1} + \frac{1}{3 - 1} + \sum_{k=4}^{n} \left(\frac{1}{k - 1}\right) - \sum_{k=2}^{n-2} \left(\frac{1}{k + 1}\right) - \frac{1}{(n - 1) + 1} - \frac{1}{n + 1}\right) = \lim_{n \to \infty} \left(\frac{1}{1} + \frac{1}{2} + \sum_{k=4=2}^{n=2} \left(\frac{1}{(k - 1) + 2}\right) - \sum_{k=2}^{n-2} \left(\frac{1}{k + 1}\right) - \frac{1}{n - 1} - \frac{1}{n + 1}\right) = \lim_{n \to \infty} \left(\frac{1}{1} + \frac{1}{2} + \sum_{k=4=2}^{n-2} \left(\frac{1}{(k - 1) + 2}\right) - \sum_{k=2}^{n-2} \left(\frac{1}{k + 1}\right) - \frac{1}{n - 1} - \frac{1}{n + 1}\right) = \lim_{n \to \infty} \left(\frac{1}{1} + \frac{1}{2} - \frac{1}{n - 1} - \frac{1}{n + 1}\right) = \frac{1}{1} + \frac{1}{2} - \lim_{n \to \infty} \left(\frac{1}{1} + \frac{1}{2} - \frac{1}{n - 1} - \frac{1}{n + 1}\right) = \frac{1}{1} + \frac{1}{2} - \lim_{n \to \infty} \left(\frac{1}{n} + \frac{1}{n + 1}\right) = \frac{1}{1} + \frac{1}{2} - \frac{1}{n - 1} = \frac{1}{1} + \frac{1}{2} - \frac{1}{n - 1} = \frac{1}{1} + \frac{1}{2} - \frac{1}{1} = \frac{1}{1} + \frac{1}{2} - \frac{1}{1} = \frac{1}{1} + \frac{1}{2} - \frac{1}{1} = \frac{1}{1} = \frac{1}{1} + \frac{1}{1} = \frac{1}{1}$$

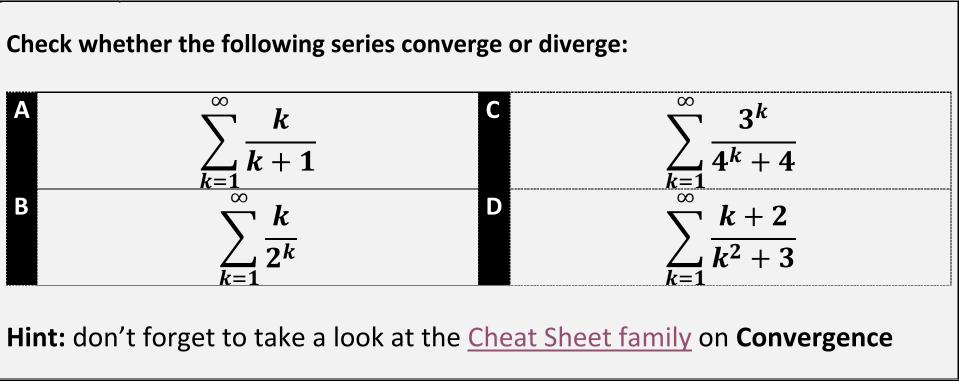
| Computer Scien | ce and Mathematics                    | Georg-August-Universität Göttingen<br>SoSe 20 |
|----------------|---------------------------------------|-----------------------------------------------|
| Calculus #2    | Killing Bills 😊 of Sequences & Series | 505ë 20                                       |



## Infinite Series: task #4

Task description

TA



| Computer Scien | ce and Mathematics                    | Georg-August-Universität Göttingen<br>SoSe 20 |
|----------------|---------------------------------------|-----------------------------------------------|
| Calculus #2    | Killing Bills 😊 of Sequences & Series | 505ë 20                                       |

|           |           |           |    |           |           |    |           |           | Corr      | npute     | er Sci    | ence      | and | Mat       | hema   | atics     |      |      |           |           |        | Ģ | ieorg | g-Aug | - | Universität Göt<br><b>50Se 20</b> | tingen |
|-----------|-----------|-----------|----|-----------|-----------|----|-----------|-----------|-----------|-----------|-----------|-----------|-----|-----------|--------|-----------|------|------|-----------|-----------|--------|---|-------|-------|---|-----------------------------------|--------|
|           |           |           |    |           |           |    |           |           | (         | Calcu     | ılus ‡    | <b>!2</b> |     | Kil       | ling E | Bills 🤅   | of : | Sequ | ence      | s & S     | Series | 5 |       |       | 5 |                                   |        |
| <u>TA</u> | <u>SK</u> | <u>#1</u> | TA | <u>SK</u> | <u>#2</u> | TA | <u>SK</u> | <u>#3</u> | <u>TA</u> | <u>SK</u> | <u>#4</u> | ТА        | SK  | <u>#5</u> | TA     | <u>SK</u> | #6   | TA   | <u>SK</u> | <u>#7</u> |        |   |       |       |   |                                   |        |

#### What you need to know:

| Computer Scien | ce and Mathematics                    | Georg-August-Universität Göttingen<br>SoSe 20 |
|----------------|---------------------------------------|-----------------------------------------------|
| Calculus #2    | Killing Bills 😊 of Sequences & Series | 505ë 20                                       |

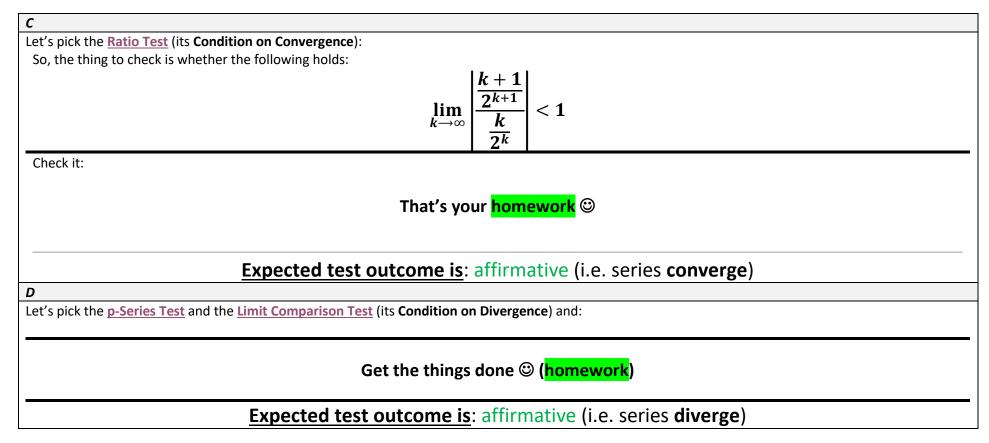
|          |          |    |           |           |    |           |           | Com | npute     | er Sci    | ence | and       | Mat | hema   | atics   |      |      |           |           |       | G | ieorg | g-Aug |   | Universit<br><b>oSe 20</b> | ät Gött | inge | n |
|----------|----------|----|-----------|-----------|----|-----------|-----------|-----|-----------|-----------|------|-----------|-----|--------|---------|------|------|-----------|-----------|-------|---|-------|-------|---|----------------------------|---------|------|---|
|          |          |    |           |           |    |           |           | 0   | Calcu     | lus #     | 2    |           | Kil | ling E | Bills 🤅 | of : | Sequ | ence      | s & S     | eries |   |       |       | 5 | 036 20                     |         |      |   |
| <u>S</u> | <u> </u> | TA | <u>SK</u> | <u>#2</u> | TA | <u>SK</u> | <u>#3</u> | TA  | <u>SK</u> | <u>#4</u> | TA   | <u>SK</u> |     | TA     | SK      | #6   | TA   | <u>SK</u> | <u>#7</u> |       |   |       |       |   |                            |         |      |   |

Solution:

TA

| Solution:                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------|
| Α                                                                                                                             |
| Let's pick the Divergence Test:                                                                                               |
| So, the thing to check is if the following holds:                                                                             |
| $\lim_{k\to\infty}\frac{k}{k+1}\neq 0$                                                                                        |
| Check it:                                                                                                                     |
| That's your <mark>homework</mark> , folks 😊                                                                                   |
| Expected test outcome is: affirmative (i.e. series diverge)                                                                   |
| Let's pick the <u>Geometric Series Test</u> and the <u>Direct Comparison Test</u> (their Conditions of Convergence), because: |
| We could easily notice that: $\frac{3^k}{4^k+4} < \frac{3^k}{4^k} = \left(\frac{3}{4}\right)^k$                               |
| Another (and last) thing to notice is that:                                                                                   |
| The rest here is also your <mark>homework</mark> ⓒ                                                                            |
| Expected test outcomes are: affirmative (i.e. series converge)                                                                |

| Computer Science | e and Mathematics                     | Georg-August-Universität Göttingen<br>SoSe 20 |
|------------------|---------------------------------------|-----------------------------------------------|
| Calculus #2      | Killing Bills 😳 of Sequences & Series | 503e 20                                       |



| Computer Scien | ce and Mathematics                    | Georg-August-Universität Göttingen<br>SoSe 20 |
|----------------|---------------------------------------|-----------------------------------------------|
| Calculus #2    | Killing Bills 😊 of Sequences & Series | 505ë 20                                       |

|   |    |           |           |           |           |           | Com | npute     | er Sci    | ence      | and       | Mat       | hema      | atics     |           |           |           |           |        | G         | eorg      | -Aug      |           |           | ersität | Göttir | ıgen |
|---|----|-----------|-----------|-----------|-----------|-----------|-----|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--------|-----------|-----------|-----------|-----------|-----------|---------|--------|------|
|   |    |           |           |           |           |           | (   | Calcu     | lus #     | 2         |           | Kil       | ling E    | Bills 🤅   | ) of      | Sequ      | ence      | s & S     | Series | ;         |           |           | 3         | oSe 2     | 20      |        |      |
|   |    |           |           |           |           |           |     |           |           |           |           |           |           |           |           |           |           |           |        |           |           |           |           |           |         |        |      |
| 1 | ΓA | <u>SK</u> | <u>#2</u> | <u>TA</u> | <u>SK</u> | <u>#3</u> | TA  | <u>SK</u> | <u>#4</u> | <u>TA</u> | <u>sк</u> | <u>#5</u> | <u>TA</u> | <u>SК</u> | <u>#6</u> | <u>TA</u> | <u>SK</u> | <u>#7</u> | TA     | <u>SK</u> | <u>#8</u> | <u>TA</u> | <u>SK</u> | <u>#9</u> |         |        |      |

Homework Assignments:

#1

SK

are exam-relevant, and if completed & submitted/shown prior to the next week class sessions (either in written or oral form), could bring bonus points for the exam

### Task #1: Sequences/Series

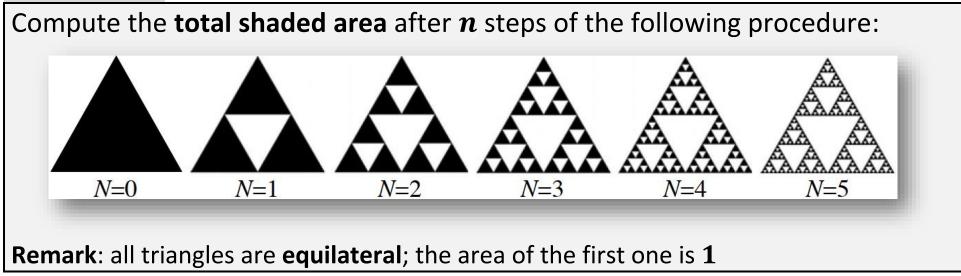
# By using either sequences or series, show that: $\frac{1}{3} = 0.333333 \cdots$

Task #2: Sequences

Check what happens with the following sequence of squares:

$$x_n = n^2$$





|    |    |           |    |           |           |    |           |           | Con | npute     | er Sci    | ence | and | Mat | hema   | atics   |      |           |           |           |           | G         | ieorg     | g-Aug     |           | Jnive<br>oSe 2 |    | Göttir | ngen |  |
|----|----|-----------|----|-----------|-----------|----|-----------|-----------|-----|-----------|-----------|------|-----|-----|--------|---------|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------------|----|--------|------|--|
|    |    |           |    |           |           |    |           |           | (   | Calcu     | lus #     | 2    |     | Kil | ling B | Bills 🤅 | of S | Sequ      | ence      | s & S     | Series    | 5         |           |           | 3         | 0384           | 20 |        |      |  |
|    |    |           |    |           |           |    |           |           |     |           |           |      |     |     |        |         |      |           |           |           |           |           |           |           |           |                |    |        |      |  |
| TA | SK | <u>#1</u> | TA | <u>SK</u> | <u>#2</u> | TA | <u>SK</u> | <u>#3</u> | TA  | <u>SK</u> | <u>#4</u> |      |     |     |        |         |      | <u>TA</u> | <u>SK</u> | <u>#7</u> | <u>TA</u> | <u>SK</u> | <u>#8</u> | <u>TA</u> | <u>SK</u> | <u>#9</u>      |    |        |      |  |

Leaderboard: bonus points per capita ©, cumulative





| Computer Scien | ce and Mathematics                    | Georg-August-Universität Göttingen<br>SoSe 20 |
|----------------|---------------------------------------|-----------------------------------------------|
| Calculus #2    | Killing Bills 😊 of Sequences & Series | 505e 20                                       |
|                |                                       |                                               |

<u>SK</u>

<u>#9</u>

TΑ

1

SK

## Cheat Sheet of the Day ©: Convergence Tests

#2 TA

SK

#3

TA SK

#4

SK

TA

SK

#1 TA

|                                                                                                |                                                                                                          | 2                                                                                                     |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Divergence or nth Term Test                                                                    | 2<br>Geometric Series Test                                                                               | 3<br>p - Series Test                                                                                  |
| Series: $\sum_{n=1}^{\infty} a_n$                                                              | Series: $\sum_{n=0}^{\infty} ar^n$                                                                       | Series: $\sum_{n=1}^{\infty} \frac{1}{n^p}$                                                           |
| Condition(s) of Convergence:<br>None. This test cannot be used to<br>show convergence.         | $\frac{\text{Condition of Convergence:}}{ r  < 1}$                                                       | $\frac{\text{Condition of Convergence:}}{p > 1}$                                                      |
| $\frac{\text{Condition(s) of Divergence:}}{\lim_{n \to \infty} a_n \neq 0}$                    | Sum: $\mathbf{S} = \lim_{n \to \infty} \frac{a(1-r^n)}{1-r} = \frac{a}{1-r}$<br>Condition of Divergence: | $\frac{\text{Condition of Divergence:}}{p \leq 1}$                                                    |
|                                                                                                |                                                                                                          |                                                                                                       |
| 4<br>Alternating Series Test                                                                   | 5 Integral Test                                                                                          | 6<br>Ratio Test                                                                                       |
| Series: $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$                                                   | Series: V                                                                                                | Series: $\sum_{n=1}^{\infty} a_n$                                                                     |
| $\frac{\text{Condition of Convergence:}}{0 < a_{n+1} \leq a_n} \\ \lim_{n \to \infty} a_n = 0$ | and $f$ is continuous and decrease                                                                       | $\frac{\text{Condition of Convergence:}}{\lim_{n \to \infty} \left  \frac{a_{n+1}}{a_n} \right  < 1}$ |
| or if $\sum_{n=0}^{\infty}  a_n $ is convergent                                                | $\frac{C}{\int_{1}^{\infty} f} \frac{\text{ion of } Comparison Converges}{\int_{1}^{\infty} f}$          | Condition of Divergence:                                                                              |
| Condition of Divergence:<br>None. This test cannot be used<br>to show divergence.              | Con <u>divergence:</u>                                                                                   | $\lim_{n \to \infty} \left  \frac{a_{n+1}}{a_n} \right  > 1$ * Test inconclusive if                   |
| * Remainder: $ R_n  \le a_{n+1}$                                                               | * Remainder: $0 < R_N \le \int_N^\infty f(x) dx$                                                         | $\lim_{n \to \infty} \left  \frac{a_{n+1}}{a_n} \right  = 1$                                          |
| 7                                                                                              | 8                                                                                                        | 9                                                                                                     |
| Root Test                                                                                      | Direct Comparison Test                                                                                   | Limit Comparison Test                                                                                 |
| Series: $\sum_{n=1}^{\infty} a_n$                                                              | $(a_n, b_n > 0)$                                                                                         | $(\{a_n\},\{b_n\}>0)$                                                                                 |
| Condition of Convergence:                                                                      | Series: $\sum_{n=1}^{\infty} a_n$                                                                        | Series: $\sum_{n=1}^{\infty} a_n$                                                                     |
| $\frac{\lim_{n \to \infty} \sqrt[n]{ a_n } < 1}{\lim_{n \to \infty} \sqrt[n]{ a_n } < 1}$      | $\frac{\text{Condition of Convergence:}}{0 < a_n \leq b_n}$                                              | $\frac{\text{Condition of Convergence:}}{\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0}$                |
| Condition of Divergence:                                                                       | and $\sum_{n=0}^{\infty} b_n$ is absolutely                                                              | $\lim_{n \to \infty} \frac{d}{b_n} = L > 0$                                                           |
| $\frac{\text{Conductor of Divergence.}}{\lim \sqrt[n]{ a_n }} > 1$                             | convergent                                                                                               | and $\sum_{n=0}^{\infty} b_n$ converges                                                               |
| n→∞ • 1 • n 1 •                                                                                | Condition of Divergence:                                                                                 | Condition of Divergence:                                                                              |
| * Test inconclusive if                                                                         | $0 < b_n \leq a_n$                                                                                       | $\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$                                                         |
| $\lim_{n\to\infty} \sqrt[n]{ a_n } = 1$                                                        | and $\sum_{n=0}^{\infty} b_n$ diverges                                                                   | and $\sum_{n=0}^{n \to \infty} b_n$ diverges                                                          |
| 10                                                                                             | 1                                                                                                        | NOTE: These tests prove                                                                               |
| Telescoping Series Test                                                                        | NOTE:                                                                                                    | convergence and divergence, not<br>the actual limit L or sum S.                                       |
| Series: $\sum_{n=1}^{\infty} (a_{n+1} - a_n)$                                                  | <ol> <li>May need to reformat with partial<br/>fraction expansion or log rules.</li> </ol>               |                                                                                                       |
|                                                                                                | 2) Expand first 5 terms. n=1,2,3,4,5.                                                                    | Sequence: $\lim_{n \to \infty} a_n = L$                                                               |
| $\frac{\text{Condition of Convergence:}}{\lim_{n \to \infty} a_n = L}$                         | <ol> <li>Cancel duplicates.</li> <li>Determine limit L by taking the</li> </ol>                          | $(a_n, a_{n+1}, a_{n+2},)$                                                                            |
| $n \to \infty$                                                                                 | limit as $n \to \infty$ .                                                                                | Series: $\sum_{n=1}^{\infty} a_n = \mathbf{S}$                                                        |
| Condition of Divergence: None                                                                  | 5) Sum: $S = a_1 - L$                                                                                    | $(a_n + a_{n+1} + a_{n+2} + \cdots)$                                                                  |

Copyright © 2011-2016 by Harold Toomey, WyzAnt Tutor

| Computer Science and Mathematics |                                       | Georg-August-Universität Göttingen<br>SoSe 20 |
|----------------------------------|---------------------------------------|-----------------------------------------------|
| Calculus #2                      | Killing Bills 😊 of Sequences & Series | 505ë 20                                       |

Cheat Sheet #2: Binary Decision Tree for choosing a proper Convergence Test

