
Computer Science	Georg-August-Universität Göttingen SoSe 20	
Calculus #1	503e 20	

This file is available for download on:	StudIP (restricted access)	https://studip-ecampus.uni-goettingen.de/
This file is available for download on:	the webpage	http://www.uni-forst.gwdg.de/~wkurth/csm20_home.htm

Sneak Peek into the topics:

Computer Science	Georg-August-Universität Göttingen SoSe 20
Calculus #1	3038 20

Computer Science	and Mathematics	Georg-August-Universität Göttingen SoSe 20
Calculus #1	505e 20	

Contents

Sequences: task #1	5
Task description	5
What you need to know:	7
Solution:	9
Sequences: task #2	11
Task description	11
What you need to know:	13
Solution:	15
Finite Series: task #3	17
Task description	17
What you need to know:	19
Solution:	21
Finite Series: task #4	24

Task description	24
What you need to know:	26
Solution:	
InFinite Series: task #5	30
Task description	30
What you need to know:	32
Solution	
Sequence - limits: task #6	
Task description	
What you need to know:	
Solution:	41
Homework Assignments:	45
Leaderboard: bonus points per capita ③, cumulative	46
Cheat Sheet of the Day S:	47

Computer Science	Georg-August-Universität Göttingen SoSe 20
Calculus #1	3038 20

								Com	pute	er Sci	ence	and	Mat	hema	atics				G	ieorg	g-Aug		Universit	ät Götti	ngen						
									Cal	culus	s #1		Sequences, Series, Infinity										SoSe 20								
<u>SK</u>	<u>#1</u>	TA	<u>SK</u>	<u>#2</u>	<u>TA</u>	<u>SK</u>	<u>#3</u>	TA	<u>SK</u>	<u>#4</u>	TA	<u>SK</u>	<u>#5</u>	TA	<u>SK</u>	#6	TA	<u>SK</u>	<u>#7</u>												

Sequences: task #1

Task description

TA

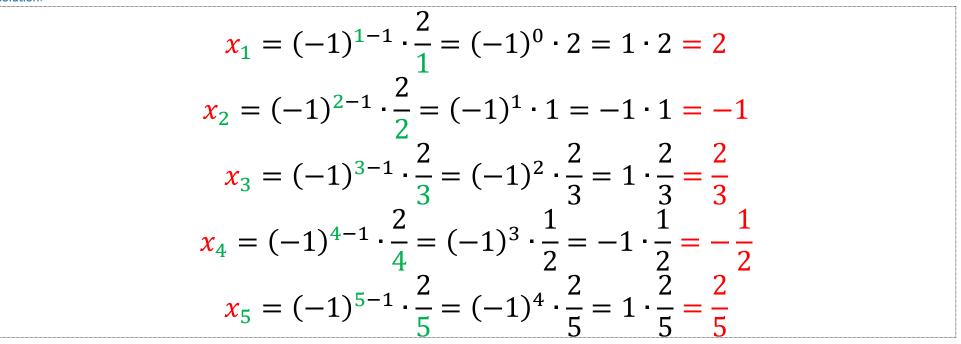
Write and plot the first **5** terms of the sequence $\{x_n\}_{n \in \mathbb{N}}$ given by:

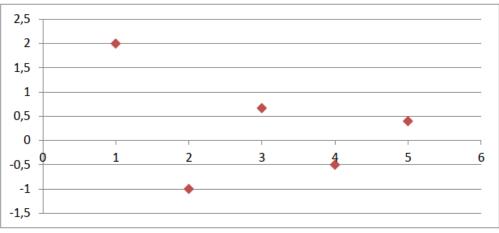
$$x_n = (-1)^{n-1} \cdot \frac{2}{n}$$

Computer Science	Georg-August-Universität Göttingen SoSe 20
Calculus #1	3038 20

				Computer Science and Mathematics														G	ieorg	g-Aug		Universität Göttinger 5 6Se 20	1				
										Cal	culus	s #1	Sequences, Series, Infinity							503e 20							
TA	<u>SK</u>	<u>#1</u>	TA	<u>SK</u>	<u>#2</u>	TA	<u>SK</u>	<u>#3</u>	TA	<u>SK</u>	<u>#4</u>	TA	<u>SK</u>	<u>#5</u>	TA	<u>SK</u>	#6	TA	<u>SK</u>	<u>#7</u>							

What you need to know:


Computer Science	Georg-August-Universität Göttingen SoSe 20
Calculus #1	3038 20

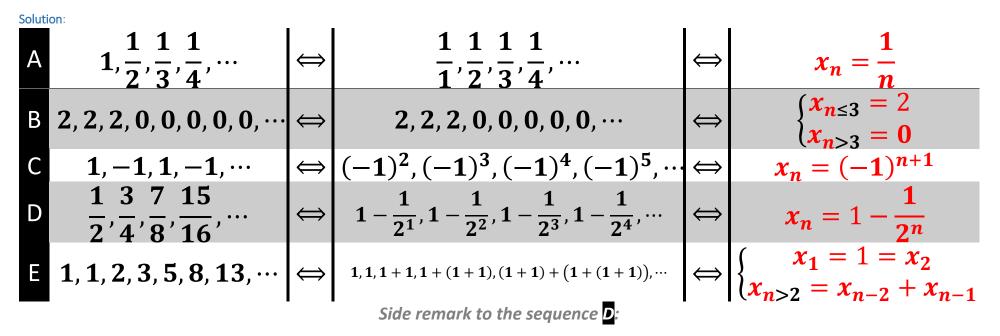

	Computer Science and Mathematics														G	eorg	-Aug				Götti	ngen	1					
		Calculus #1									Sequences, Series, Infinity										SoSe 20							
<u>#1</u>	TA	<u>SK</u>	<u>#2</u>	TA	<u>SK</u>	<u>#3</u>	TA	<u>SK</u>	#4	TA	SK		TA	<u>SK</u>	#6	TA	SK	#7										

SK

TA

Computer Science	and Mathematics	Georg-August-Universität Göttingen SoSe 20
Calculus #1	3038 20	

	Computer Science and Mat	thematics	Georg-August-Universität Göttingen
	Calculus #1	Sequences, Series, Infinity	SoSe 20
<u>#1 TA SK #2 TA SK #</u>	<u>#3 TA SK #4 TA SK #5</u>	<u>TA SK #6 TA SK #7 TA</u>	
taal 42			
<u>es</u> : task #2 scription			
прион			
a formula for :	\mathbf{x}_{m} ($n \in \mathbb{N}$) in each	ach of the followi	ng cases.
			16 663631
			15 645651
			15 645651
	A	$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots$	15 645651
	Α	$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots$	18 645651
	A B 2,2	$\frac{1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\cdots}{2,2,0,0,0,0,0,0,0,\cdots}$	18 645651
	A B 2,2	$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots$ 2, 2, 0, 0, 0, 0, 0, 0, 1, -1, 1, -1,	18 645651
	A B 2, 2 C	$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots$ 2, 2, 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, 1 3 7 15	18 645651
	A B 2, 2 C D	$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots$ 2, 2, 0, 0, 0, 0, 0, 0, \cdots 1, -1, 1, -1, \cdots $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}, \cdots$	18 645651
	A B 2, 2 C D	$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots$ 2, 2, 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, 1 3 7 15	16 00000


Computer Science	and Mathematics	Georg-August-Universität Göttingen SoSe 20
Calculus #1	3038 20	

																		G	ieorg	g-Aug		Universität Göttii SoSe 20	ıgen				
										Cal	culus	s #1				Se	quer	nces,	Serie	es, In	finity	'			5		
TA	<u>SK</u>	<u>#1</u>	TA	<u>SK</u>	<u>#2</u>	TA	<u>SK</u>	<u>#3</u>	TA	<u>SK</u>	<u>#4</u>	TA	<u>SK</u>	<u>#5</u>	TA	<u>SK</u>	#6	TA	<u>SK</u>	<u>#7</u>	TA	<u>SK</u>	#8	TA	<u>SK</u>	<u>#9</u>	

What you need to know:

Computer Science	and Mathematics	Georg-August-Universität Göttingen SoSe 20
Calculus #1	3038 20	

Computer Science	and Mathematics	Georg-August-Universität Göttingen SoSe 20						
Calculus #1	Calculus #1 Sequences, Series, Infinity							

Anna-Saray's approach [closed-form formula]:

$$\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}, \dots \Leftrightarrow \frac{2^{1}-1}{2^{1}}, \frac{2^{2}-1}{2^{2}}, \frac{2^{3}-1}{2^{3}}, \frac{2^{4}-1}{2^{4}}, \dots \Leftrightarrow x_{n} = \frac{2^{n}-1}{2^{n}}$$

Finn's approach [recursive formula]:

$$\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}, \dots \Leftrightarrow \frac{1}{2}, \frac{3}{4} = \frac{1 \cdot 2 + 1}{2 \cdot 2} = \frac{1 \cdot 2}{2 \cdot 2} + \frac{1}{2 \cdot 2} = \frac{1}{2} + \frac{1}{2^2}, \frac{7}{8} = \frac{3 \cdot 2 + 1}{4 \cdot 2} = \frac{3}{4} + \frac{1}{2^3}, \frac{15}{16} = \frac{7 \cdot 2 + 1}{8 \cdot 2} = \frac{7}{8} + \frac{1}{2^4}, \dots \Leftrightarrow \begin{cases} x_1 = \frac{1}{2} \\ x_{n>1} = x_{n-1} + \frac{1}{2^n} \end{cases}$$

P.S.:

You both did a nice job, guys – either approach goes like clockwork 👈

Computer Science	and Mathematics	Georg-August-Universität Göttingen SoSe 20
Calculus #1	3038 20	

																		G	ieorg	g-Aug		Univers	ität Gö	tting	en				
										Cal	culu	s #1				Se	quer	nces,	Serie	es, In	finity	'			3	038 20			
4	<u>SK</u>	<u>#1</u>	TA	<u>SK</u>	<u>#2</u>	<u>TA</u>	<u>SK</u>	<u>#3</u>	TA	SK	#4	TA			TA	SK	#6	TA											

Finite Series: task #3

Task description

TA

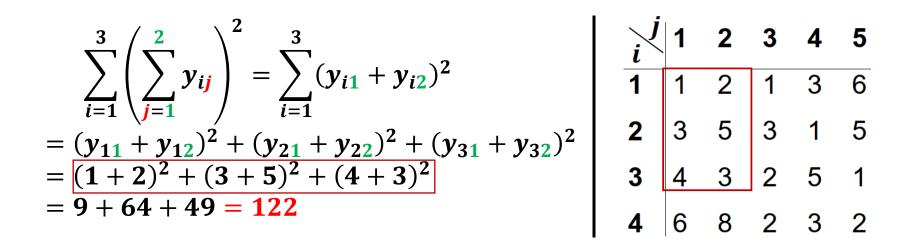
Task d	lescript	tion				
Eva	alua	ate	the	foll	ow	ving two sums:
Α						$\sum_{i=1}^{3} \left(\sum_{j=1}^{2} y_{ij} \right)^{2}$
Give	en tł	ne m	easu	irem	ents	s of y _{ij} :
$ _{i}$	1	2	3	4	5	
1	1	2	1	3	6	
2	3	5	3	1	5	
3	4	3	2	5	1	
4	6	8	2	3	2	
В						$\sum_{k=2}^{4} \sum_{j=1}^{5} (j+k)$

Computer Science	and Mathematics	Georg-August-Universität Göttingen SoSe 20
Calculus #1	3038 20	

																		G	ieorg	g-Aug		Universität Göttinge So Se 20	n				
										Cal	culus	s #1				Se	quer	nces,	Serie	es, In	finity	'			3	032 20	
<u>TA</u>	<u>SK</u>	<u>#1</u>	TA	<u>SK</u>	<u>#2</u>	TA	<u>SK</u>	<u>#3</u>	TA	<u>SK</u>	<u>#4</u>	TA	<u>SK</u>	<u>#5</u>	TA	<u>SK</u>	<u>#6</u>	TA	<u>SK</u>	<u>#7</u>							

What you need to know:

Computer Science	and Mathematics	Georg-August-Universität Göttingen SoSe 20
Calculus #1	3038 20	


	Computer S Calcul									and	Mat	hema	atics						(Georg-	Aug		Jniversit oSe 20	ät Göt	tinge	n
							Cal	culus	s #1				Se	quei	nces,	Serie	es, In	finity	у			3	038 20			

Solution:

Α

TA

SK

Computer Science	and Mathematics	Georg-August-Universität Göttingen SoSe 20
Calculus #1	Sequences, Series, Infinity	

В

Basic approach:

$$\sum_{k=2}^{4} \sum_{j=1}^{5} (j+k) = \sum_{k=2}^{4} \left(\sum_{j=1}^{5} (j+k) \right) = \sum_{k=2}^{4} \left((1+k) + (2+k) + (3+k) + (4+k) + (5+k) \right) =$$

$$\sum_{k=2}^{4} \left(1+k+2+k+3+k+4+k+5+k \right) = \sum_{k=2}^{4} \left(1+2+3+4+5+k+k+k+k+k \right) =$$

$$\sum_{k=2}^{4} \left(\frac{\left(1_{first} + 5_{last} \right) \cdot |\{1,2,3,4,5\}|}{2} + 5 \cdot k \right) = \sum_{k=2}^{4} \left(\frac{6 \cdot 5}{2} + 5 \cdot k \right) = \sum_{k=2}^{4} \left(15+5 \cdot k \right) =$$

$$\sum_{k=2}^{4} 15 + \sum_{k=2}^{4} 5 \cdot k = 15 \cdot \sum_{k=2}^{4} 1 + 5 \cdot \sum_{k=2}^{4} k = 15 \cdot (4-2+1) + 5 \cdot (2+3+4) = 15 \cdot 3 + 5 \cdot 9 = 90$$

Alternative approach:

$$\sum_{k=2}^{4} \sum_{j=1}^{5} (j+k) = \sum_{k=2}^{4} \sum_{j=1}^{5} j + \sum_{k=2}^{4} \sum_{j=1}^{5} k = \sum_{k=2}^{4} \sum_{j=1}^{5} j + \sum_{k=2}^{4} \sum_{j=1}^{5} k = \sum_{k=2}^{4} (1+2+3+4+5) + \sum_{k=2}^{4} \left(k \cdot \sum_{j=1}^{5} 1\right)$$
$$= \sum_{k=2}^{4} 15 + \sum_{k=2}^{4} \left(k \cdot \sum_{j=1}^{5} 1\right) = 15 \cdot (4-2+1) + \sum_{k=2}^{4} \left(k \cdot (1+1+1+1+1)\right)$$
$$= 15 \cdot 3 + \sum_{k=2}^{4} k \cdot 5 = 45 + 5 \cdot \sum_{k=2}^{4} k = 45 + 5 \cdot (2+3+4) = 45 + 5 \cdot 9 = 90$$

Computer Science	and Mathematics	Georg-August-Universität Göttingen SoSe 20
Calculus #1	Sequences, Series, Infinity	

							Com	npute	er Sci	ence	and	Mat	hem	atics						0	Geor	g-Aug	-	Universität Göttinge SoSe 20	ı
		Calculus #												Se	equer	nces,	Serie	es, In	finity	/				3038 20	
<u>#1</u>	<u>TA</u>	<u>SK</u>	<u>#2</u>	TA	<u>SK</u>	<u>#3</u>	<u>TA</u>	<u>SK</u>	<u>#4</u>	<u>TA</u>	<u>SK</u>	#5	TA	<u>SK</u>	#6	TA	<u>SK</u>	<u>#7</u>							

Finite Series: task #4

TA SK

Task description	
Prove that	It the following holds true (i.e. for any natural n): $\sum_{k=1}^{n} (2 \cdot k - 1) = n^2$

Computer Science	and Mathematics	Georg-August-Universität Göttingen SoSe 20
Calculus #1	Sequences, Series, Infinity	

									Com	npute	er Sci	ence	and	Mat	hema	atics						G	ieorg	g-Aug		Universität Göttinger So Se 20	
										Cal	culus	s #1				Se	quer	nces,	Serie	es, In	finity	'			5		
<u>TA</u>	<u>SK</u>	<u>#1</u>	<u>TA</u>	<u>SK</u>	<u>#2</u>	<u>TA</u>	<u>SK</u>	<u>#3</u>	<u>TA</u>	<u>SK</u>	<u>#4</u>	<u>TA</u>	<u>SK</u>	<u>#5</u>	TA	<u>SK</u>	#6	TA	<u>SK</u>	<u>#7</u>							

What you need to know:

Computer Science	and Mathematics	Georg-August-Universität Göttingen SoSe 20
Calculus #1	Sequences, Series, Infinity	

									Com	npute	er Sci	ence	and	Mat	hem	atics						Ċ	Georg	g-Aug		Univers	sität Gö	ttinge	en
										Cal	culus	s #1				Se	quer	nces,	Serie	es, Ir	finity	/			3	036 20	•		
TA	<u>SK</u>	<u>#1</u>	TA	<u>SK</u>	#2	TA	<u>SK</u>	<u>#3</u>	TA	SK	#4	ТА	SK	#5	TA	SK	#6	ТА	SK	#7	ТА	SK	#8	ТА	SK	#9			

Solution:

The proof is by **induction** on **n**:

First Step [aka Base]	
We check whether the statement is true for	the <u>initial value</u> of n :
	n = 1
The left-hand side [aka LHS]:	
The right hand side [aka PUS]:	$\sum_{k=1}^{n} (2 \cdot k - 1) = \sum_{k=1}^{1} (2 \cdot k - 1) = 2 \cdot 1 - 1 = 1$
The right-hand side [aka RHS]:	$n^2 = 1^2 = 1$
As soon as LHS =	\mathbf{RHS} ($1=1$), we are done – let's go ahead and push it forward \odot
Second (and last) Step [aka Inductive]	
We assume the statement is true for $m{n}-m{1}$	and check whether it is true for n :
(to put in better words, we check if we can	climb the ladder for <i>n</i> higher than before)
Assuming the truth for $n-1$ means the for $\sum_{k=1}^{n-1} (2\cdot k-1)$ 1+3+5+	billowing holds true: = $(2 \cdot 1 - 1) + (2 \cdot 2 - 1) + (2 \cdot 3 - 1) + \dots + (2 \cdot (n - 1) - 1) =$ $\dots + (2 \cdot n - 2 \cdot 1 - 1) = 1 + 3 + 5 + \dots + (2 \cdot n - 3) = (n - 1)^2$
Then, for <u>one step further</u> , that means for $\sum_{k=1}^{n} (2 \cdot k - 1) = \sum_{k=1}^{n-1} (2 \cdot k)$	n, we have: $-1) + \sum_{k=n}^{n} (2 \cdot k - 1) = (n - 1)^{2} + 2 \cdot n - 1 = n^{2} - 2 \cdot n + 1 + 2 \cdot n - 1 = n^{2}$

Computer Science	and Mathematics	Georg-August-Universität Göttingen SoSe 20
Calculus #1	Sequences, Series, Infinity	

			Computer Science and Mathematics Calculus #1 Sequences, Series, Infinity																Ģ	Georg	g-Aug	-	Jniversit oSe 20	ät Götti	ngen		
								Cal	culus	s #1				Se	equer	nces,	Serie	es, In	finity	'			3	038 20			
<u>(#1</u>	TA	<u>SK</u>	<u>#2</u>	TA	<u>SK</u>	<u>#3</u>	TA	<u>SK</u>	<u>#4</u>	<u>TA</u>	<u>SK</u>	<u>#5</u>	<u>TA</u>	<u>SK</u>	<u>#6</u>	TA	<u>SK</u>	<u>#7</u>									

InFinite Series: task #5

TA SK

Compute the following sum [aka Guido Grandi's series]: $1 - 1 + 1 - 1 + 1 - 1 \cdots$

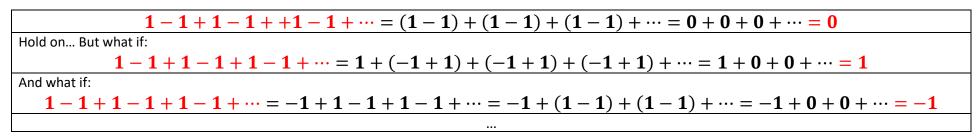
Computer Science	and Mathematics	Georg-August-Universität Göttingen SoSe 20
Calculus #1	Sequences, Series, Infinity	

									Com	·			and	l Mat	hema						_		ieorg	g-Aug		Universität (50Se 20	Göttinge	n
										Cal	culu	s #1				Se	quer	nces,	Serie	es, In	finity	'			_			
TA	<u>SK</u>	<u>#1</u>	<u>TA</u>	<u>SK</u>	<u>#2</u>	TA	<u>SK</u>	<u>#3</u>	TA	<u>SK</u>	<u>#4</u>	<u>TA</u>	<u>SK</u>	<u>#5</u>	<u>TA</u>	<u>SK</u>	<u>#6</u>	TA	<u>SK</u>	<u>#7</u>								

What you need to know:

Computer Science	and Mathematics	Georg-August-Universität Göttingen SoSe 20
Calculus #1	Sequences, Series, Infinity	

								Com	npute	er Sci	ence	and	Mat	hema	atics						Ċ	Geor	g-Aug	-	Universitä 50Se 20	it Götti	ngen
									Cal	culus	s #1				Se	equer	nces,	Serie	es, Ir	nfinity	/			3	032 20		
<u>SK</u>	<u>#1</u>	<u>TA</u>	<u>SK</u>	<u>#2</u>	<u>TA</u>	<u>SK</u>	<u>#3</u>	<u>TA</u>	<u>SK</u>	<u>#4</u>	<u>TA</u>	<u>SK</u>	<u>#5</u>	TA	<u>SK</u>	<u>#6</u>	TA	<u>SK</u>	<u>#7</u>								


Solution:

TA

Firstly, let's try to find a formula for the sequence of summands and then use our summation symbol for shortening the visual length of our series:

$$1 - 1 + 1 - 1 + \dots = (-1)^2 + (-1)^3 + (-1)^4 + (-1)^5 + \dots = \sum_{k=1}^{0 h my dayz, what should I put here... \odot} (-1)^{k+1}$$

Alright, let's just do it as it is:

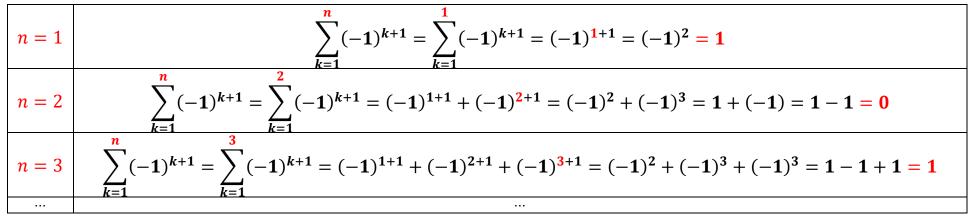
Things ain't goin' that well..., right? ©

...

Well, the reason is, we need to treat those dots …, meaning "non-stop" aka "infinity" aka "unbounded" aka #wasauchimmer[®], in the way that won't mess things up [®]

We could talk centuries on which treatment to introduce (in fact, some math fans like Newton, Cesaro, Ramanujan etc. did it for us, centuries ago ③)

So, to cut things short:


$$1 - 1 + 1 - 1 + \dots = \sum_{k=1}^{\infty} (-1)^{k+1} = \text{limit of } \sum_{k=1}^{n} (-1)^{k+1} \text{ when } n \text{ gets larger and larger} = \lim_{n \to \infty} \sum_{k=1}^{n} (-1)^{k+1}$$

Observe all the outcome possibilities for infinite sums (aka series):

have such a limit (aka are convergent)	get larger and larger (aka are ∞ -divergent)	don't have a limit (aka are divergent)
--	---	--

Computer Science	and Mathematics	Georg-August-Universität Göttingen SoSe 20
Calculus #1	Sequences, Series, Infinity	

So, what about our series? - Let's observe the behaviour of its partial sums:

Well, the partial sums give us the following sequence of alternating binaries: **1**, **0**, **1**, **0**, **1**, **0**, ...

Wait a second... but how do we know that? – We've checked only 3 partial sums \odot

Question: Does this sequence have some limit value?

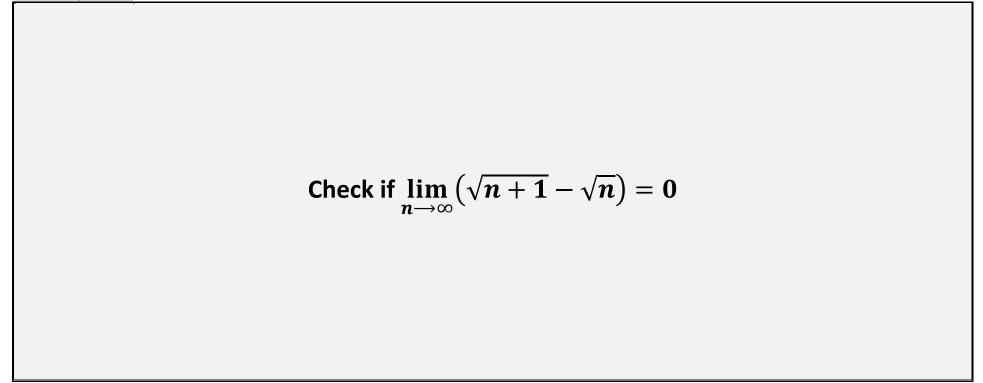
Answer: Apparently, not! This sequence just oscillates between 1 and 0, never tending to any limit value at all.

Sounds good O, but we ain't done yet O - just one more thing and we'll settle the bill:

One approach [complete the proof as a **homework**]:

$$\sum_{k=1}^{n} (-1)^{k+1} = (-1)^2 \cdot (1 + (-1)^1 + (-1)^2 + \dots (-1)^{n-1}) = 1 + (-1)^1 + (-1)^2 + \dots (-1)^{n-1} = 1 + (-1)^2 + \dots (-1)^{n-1} = 1$$

One more approach [use induction on *n* and complete the proof as a **homework**]:


$$\sum_{k=1}^{n} (-1)^{k+1} = \frac{1 + (-1)^{n+1}}{2}$$

Computer Science	and Mathematics	Georg-August-Universität Göttingen SoSe 20
Calculus #1	Sequences, Series, Infinity	

									Com	<u> </u>		ence	and	Mat	hem								Georg	g-Aug	Universität Götti 50Se 20	ngen
										Cal	culus	s #1				Se	equer	nces,	Serie	es, In	finity	/				
<u>TA</u>	<u>SK</u>	<u>#1</u>	TA	<u>SK</u>	<u>#2</u>	TA	<u>SK</u>	<u>#3</u>	<u>TA</u>	<u>SK</u>	<u>#4</u>	<u>TA</u>	<u>SK</u>	<u>#5</u>	<u>TA</u>	<u>SK</u>	<u>#6</u>	TA	<u>SK</u>	<u>#7</u>						

Sequence - limits: task #6

Task description

Computer Science	and Mathematics	Georg-August-Universität Göttingen SoSe 20
Calculus #1	Sequences, Series, Infinity	

									Com	<u> </u>		ience	and	Mat	hema						<i>a</i>		ieorg	g-Aug		Universitä 50Se 20	it Göttir	ngen
										Cal	culu	s #1				Se	equer	ices,	Serie	es, In	tinity	1						
TA	<u>SK</u>	<u>#1</u>	TA	<u>SK</u>	<u>#2</u>	TA	<u>SK</u>	<u>#3</u>	TA	<u>SK</u>	<u>#4</u>	<u>TA</u>	<u>SK</u>	<u>#5</u>	<u>TA</u>	<u>SK</u>	<u>#6</u>	TA	<u>SK</u>	<u>#7</u>	TA	<u>SK</u>	<u>#8</u>	TA	<u>SK</u>	#9		

What you need to know:

Computer Science	and Mathematics	Georg-August-Universität Göttingen SoSe 20
Calculus #1	Sequences, Series, Infinity	

Computer Science	e and Mathematics	Georg-August-Universität Göttingen SoSe 20
Calculus #1	Sequences, Series, Infinity	303e 20

SK #4 TA SK #5 TA SK #6

Solution:

TA

Firstly, observe that we are given the sequence $\{x_n\}_{n \in \mathbb{N}}$ defined by the formula $x_n = \sqrt{n+1} - \sqrt{n}$ that allows us to compute each of its terms and also to know its order in the sequence.

So, we are perfectly clear with the task and could start solving it:

SK

TA

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} \left(\sqrt{n+1} - \sqrt{n}\right) = 0$$

Intuitive (quantitative) definition of a limit:

#2 TA

If this statement is true, $\sqrt{n+1} - \sqrt{n}$ should get closer and closer to **0** as *n* increases – well, if not strictly closer with every larger value of *n*, then at least closer starting from some *n*.

 $\sqrt{n+1} - \sqrt{n}$ gets closer to **0** means that their difference $(\sqrt{n+1} - \sqrt{n}) - \mathbf{0}$ should get smaller and smaller.

Putting loads of text doesn't make things that clear - so, how to switch to the formal language of mathematics on that?

 $(\sqrt{n+1} - \sqrt{n}) - 0$ gets smaller means its **absolute value** (let's ignore splitting in left/right for a while) should get closer to 0 - so, if we take some <u>arbitrarily small positive</u> number and call it ε , then all we say is: $|\sqrt{n+1} - \sqrt{n} - 0| < \varepsilon$

Let's translate our starting thoughts on limits (up there) into mathematical formalism and we are done:

 $\lim_{n \to \infty} x_n = some \ number \ means \ |x_n - some \ number| < \varepsilon \ for \ any \ \varepsilon > 0 \ once \ n > n(\varepsilon) > 0$

Now, we are set to proceed with the solution:

Computer Science	and Mathematics	Georg-August-Universität Göttingen SoSe 20
Calculus #1	303e 20	

In fact, it is clear even without precise computations that as n goes big, there is no real difference between $\sqrt{n+1}$ and \sqrt{n} – so, the common sense tells us that the statement is true, – but let's develop the **systematic approach** that helps us to solve any task of this sort:

$$\lim_{n\to\infty} x_n = some \ number \Leftrightarrow \lim_{n\to\infty} \left(\sqrt{n+1} - \sqrt{n}\right) = 0$$

So, our key statement to prove is:

$$|x_n - some \ number| < \varepsilon \Leftrightarrow |(\sqrt{n+1} - \sqrt{n}) - 0| < \varepsilon$$

Observe that:

$$\left|\left(\sqrt{n+1}-\sqrt{n}\right)-\mathbf{0}\right|=\left|\sqrt{n+1}-\sqrt{n}-\mathbf{0}\right|=\left|\sqrt{n+1}-\sqrt{n}\right|=\sqrt{n+1}-\sqrt{n}$$

So, our key statement reduces to:

$$\sqrt{n+1} - \sqrt{n} < \varepsilon$$

We obviously need some "algebraic" trick to solve this for \boldsymbol{n} - the first that comes to mind is:

$$(x-y)\cdot(x+y) = x^2 - y^2 \Longrightarrow x - y = \frac{x^2 - y^2}{x+y}$$

Applying this identity to our boy \bigcirc yields:

$$\sqrt{n+1} - \sqrt{n} = \frac{\sqrt{n+1}^2 - \sqrt{n}^2}{\sqrt{n+1} + \sqrt{n}} = \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} < \varepsilon$$

Things got kinda better, but not quite that much 🙂 - so, some smarter trick is needed... what about getting a leaner denominator:

$$\frac{1}{\sqrt{n+1}+\sqrt{n}} < \frac{1}{\sqrt{n}}$$

Computer Science	and Mathematics	Georg-August-Universität Göttingen SoSe 20							
Calculus #1	Calculus #1 Sequences, Series, Infinity								

As soon as:

$$\frac{1}{\sqrt{n}} < \varepsilon \Longrightarrow \frac{1}{\sqrt{n+1} + \sqrt{n}} < \varepsilon$$

We've managed to simplify our task even further:

$$\frac{1}{\sqrt{n}} < \varepsilon$$

Well, this dude gets easily solved:

$$\frac{1}{\sqrt{n}} < \varepsilon \Leftrightarrow \left(\frac{1}{\sqrt{n}}\right)^2 < \varepsilon^2 \Leftrightarrow \frac{1}{n} < \varepsilon^2 \Leftrightarrow n^2 \cdot \frac{1}{n} < n^2 \cdot \varepsilon^2 \Leftrightarrow n < n^2 \cdot \varepsilon^2 \Leftrightarrow 1 < n \cdot \varepsilon^2 \Leftrightarrow 1 \cdot \frac{1}{\varepsilon^2} < n \cdot \varepsilon^2 \cdot \frac{1}{\varepsilon^2} \Leftrightarrow \frac{1}{\varepsilon^2} < n \cdot 1 \Leftrightarrow n > \frac{1}{\varepsilon^2} = n(\varepsilon)$$

Computer Science	and Mathematics	Georg-August-Universität Göttingen SoSe 20
Calculus #1	303e 20	

	Computer Science and Mathematics															Georg-August-Universität Göttinger SoSe 20								
	Calculus #1 Sequences, Series, Infinity														'									
<u>TA SK #1 TA</u>	<u>SK</u> <u>#2</u>	TA	<u>SK</u>	<u>#3</u>	TA	<u>SK</u>	<u>#4</u>	<u>TA</u>	<u>SK</u>	<u>#5</u>	<u>TA</u>	<u>SK</u>	<u>#6</u>	<u>TA</u>	<u>SK</u>	<u>#7</u>	<u>TA</u>	<u>SK</u>	<u>#8</u>	<u>TA</u>	<u>SK</u>	<u>#9</u>		

Homework Assignments:

are exam-relevant, and if completed & submitted/shown prior to the next week class sessions (either in written or oral form), could bring bonus points for the exam

			Computer Science and Mathematics															Georg-August-Universität Göttingen SoSe 20										
									Cal	culus	s #1				Se	equer	nces,	Serie	es, In	, 50Se 20								
K	<u>#1</u>	TA	<u>SK</u>	<u>#2</u>	TA	<u>SK</u>	<u>#3</u>	TA	<u>SK</u>	<u>#4</u>							<u>TA</u>	<u>SK</u>	<u>#7</u>	<u>TA</u>	<u>SK</u>	<u>#8</u>	<u>TA</u>	<u>SK</u>	<u>#9</u>			

Leaderboard: bonus points per capita ©, cumulative

TA SK

					Computer Science and Mathematics															Georg-August-Universität Göttingen SoSe 20										
										Cal	culu	s #1				Se	equer	nces,	Serie	es, In	S038 20									
TA	<u>SK</u>	<u>#1</u>	TA	<u>SK</u>	<u>#2</u>	TA	<u>SK</u>	<u>#3</u>	TA	<u>SK</u>	<u>#4</u>	<u>TA</u>	<u>SK</u>	<u>#5</u>	<u>TA</u>	<u>SK</u>	<u>#6</u>	<u>TA</u>	<u>SK</u>	<u>#7</u>	<u>TA</u>	<u>SК</u>	<u>#8</u>	<u>TA</u>	<u>SК</u>	<u>#9</u>				

Cheat Sheet of the Day 🙂: