
〈êi, êj〉 = δij

T (α~u + β~v) = αT (~u) + βT (~v)
A~v = λ~v

Rot(θ) =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
A = QΛQ

−1
~v =

n∑
i=1

αi êi

Rn T−→ Rm
(AB)> = B

>A>
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Chapter 2: Vectors

θϕ

~u =

(
ux
uy

)
= {ru, θ}

~v =

(
vx
vy

)
= {rv, ϕ}

ux

uy

vx

vy

x

y



Basics of Vectors

There are 3 distinct approaches to describe what a vector is:

• The physicist’s approach (geometric)

• The computer scientist’s approach (algebraic)

• The mathematician’s approach (abstract)

2



Geometric Vectors

Definition

A vector is an object with a length and a direction.

3



Vector Notation

Vectors are denoted as latin letters with an arrow above them:

~u, ~v, ~x, ~a, · · ·

In maths and physics the following notations are mostly used:

u, v, x, a, · · ·
u, v, x, a, · · ·

4



Geometric Vectors

We consider all vectors starting at the same point, called the

origin .
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Scaling Vectors

We can multiply a vector by a real number, which we refer to as a

scalar . This scales only the length of the vector while keeping its

direction on the same line as before:

~v
2~v

3~v

−1~v −2~v
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Vector Addition

Adding two vectors is done by placing the origin of one vector at

the head of the other vector. The addition results in a vector

starting at the first vector’s origin and ending at the second

vector’s head:

~u

~v

~v

~w
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Vector Addition

Notice that adding vectors is a commutative operation, i.e.

~u+ ~v = ~v + ~u

~u

~v

~u

~v

~w

This is refered to as the parallelogram law of vector addition .
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The Zero Vector

And important vector is the zero vector , which has a length of

0 and no direction. It is notated as ~0, and is neutral to addition,

i.e. for any vector ~v:

~v +~0 = ~0 + ~v = ~v.

Similarily, any addition of a vector with its opposite vector results

in the zero vector:

~v + (−~v) = −~v + ~v = ~0.
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Algebraic Vectors

Placing a vector in a cartesian coordinate system:

~u

x

y

ux

uy

x-component

y
-c
om

p
on
en
t
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Algebraic Vectors

Then, drawing a perpendicular from ~v to the x-axis:

~u

x

y

ux

uy

x-component

y
-c
om

p
on
en
t
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Algebraic Vectors

And similarily for the y-axis:

~u

x

y

ux

uy

x-component

y
-c
om

p
on
en
t
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Algebraic Vectors

We call ux and uy the components of ~u.

~u

x

y

ux

uy

x-component

y
-c
om

p
on
en
t
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Column Vectors

We then notate the vector ~u as a column vector with

components ux, uy:

~u =

(
ux

uy

)
.

Since ~u has two real components, it is a member of R2.

11



Higher-dimensional Vectors

This scheme can be extended to 3-dimensional vectors:

x

y

z

vx

vy

vz

~v
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Higher-dimensional Vectors

A column vector in R3 looks as following:

~v =



vx

vy

vz


 ,

and in R4:

~a =




vx

vy

vz

vw



.

13



Higher-dimensional Vectors

A column vector in R3 looks as following:

~v =



vx

vy

vz


 ,

and in R4:

~a =




vx

vy

vz

vw



.

13



Higher-dimensional Vectors

A general column vector in Rn looks as following:

~v =




v1

v2
...

vn




n components

14



The Zero Vector

As a column vector, the zero vector in R2 is

~0 =

(
0

0

)
.

In R3 it is

~0 =



0

0

0


 .

And generally, in Rn, it is

~0 =




0

0
...

0




n components
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Length and Angle of a Vector

Using the Pythagorean theorem to calculate the length (norm) of a

vector in R2:

‖~u‖ =
√
u2x + u2y.

θ

~u

x

y

uy

ux
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Length and Angle of a Vector

The angle θ is then:

tan(θ) =
uy
ux
.

θ

~u

x

y

uy

ux
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Length of a Vector

Similarily, the length of a column vector in R3, ~v =



vx

vy

vz


 is

‖~v‖ =
√
v2x + v2y + v2z .
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Length of a Vector

Challenge

Show that the above given formula is true, i.e. show that for

a box of sides a, b, c, the length of the line from A to B (see

figure) is indeed
√
a2 + b2 + c2.

A

B

a

b

c
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Length of a Vector

For a general n-dimensional vector ~w =




w1

w2
...

wn




,

‖~w‖ =
√
w2
1 + w2

2 + · · ·+ w2
n

=

√√√√
n∑

i=1

w2
i .
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Scaling Vectors

Scaling a column vector ~v by a scalar α is done by multiplying

each of its components by α:

~v =




v1

v2
...

vn




⇒ α~v =




αv1

αv2
...

αvn



.

Example

~a =




1

−2
7


 ⇒ 5~a =




5

−10
35


 .
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Scaling Vectors

Proof

The length of α~v =




αv1

αv2
...

αvn




is

‖α~v‖ =
√
(αv1)

2 + (αv2)
2 + · · ·+ (αvn)

2

=
√
α2v21 + α2v22 + · · ·+ α2v2n

=
√
α2
[
v21 + v22 + · · ·+ v2n

]

= α
√
v21 + v22 + · · ·+ v2n

= α‖~v‖ .
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Normalizing Vectors

A normalized vector (also: unit vector ) is a vector with

length (norm) = 1.

Normalization of a vector is an operation that scales the vector

to be of length 1 without changing its direction.

It is done by scaling the vector by the reciprocal of its norm. We

notate the result by a ”hat” symbol:

v̂ =
1

‖~v‖~v.
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Normalizing Vectors

Example

For ~w =

(
−3
4

)
,

‖~w‖ =
√
(−3)2 + 42 =

√
9 + 16 =

√
25 = 5.

Thus,

ŵ =
1

‖~w‖ ~w =
1

5

(
−3
4

)
=

(
−3

5
4
5

)
=

(
−0.6
0.8

)
.
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Normalizing Vectors

Challenge

Show that dividing any vector

~v =




v1

v2
...

vn




by its norm always results in a vector of the same direction

and a norm of 1.
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Vector Addition

Addition of two column vectors is done component-wise , i.e.




a1

a2
...

an




+




b1

b2
...

bn




=




a1 + b1

a2 + b2
...

an + bn



.
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Vector Addition

Example

(
3

−5

)
+

(
2

0

)
=

(
5

−5

)
,

(
−7
2

)
+

(
1

0.5

)
=

(
−6
2.5

)
,



−1
0

2


+




1

0

−2


 =



0

0

0


 ,




5

0.5

−1


+



−5
0.5

1


 =



0

1

0


 .
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Vector Addition

Subtraction of two vectors ~u and ~v is equivalent to the addition

~u+ (−~v) .

Example

(
3

−1

)
−
(
5

2

)
=

(
3

−1

)
+

(
−5
−2

)
=

(
−2
−3

)
.
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Vector Addition

Note

Addition of two vectors of different dimensionality (e.g. R2

and R3) is undefined.
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Linear Combination of Vectors

A linear combination of two vectors ~u,~v is an expression of the

form

α~u+ β~v,

where α, β ∈ R.

Example

A linear combination of the vectors ~u =

(
2

−12

)
, ~v =

(
0

3

)
:

0.5~u+ 2~v =

(
1

−6

)
+

(
0

6

)
=

(
1

0

)
.
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Linear Combination of Vectors

The definition can be extended to any n ∈ N vectors:

α1~v1 + α2~v2 + · · ·+ αn~vn =

n∑

i=1

αi~vi.

Example

A linear combination of four vectors in R3:


1

4

0


+ 3




0

−1
5


− 7



−2
1

2


+ 0.5



6

4

2


 =




18

−4
2


 .
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Linear Combination of Vectors

Note

Note that the result of a linear combination of vectors is

always a vector.
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Linear (In)Dependence of Vectors

Two vectors ~u and ~v are linearly dependent if one of them is a

scale of the other, i.e. if

~u = α~v or ~v = β~u.

Example

Examples of sets of two linearly dependent vectors:





(
1

−3

)
,

(
2

−6

)








1

1

0


 ,



−3
−3
0







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Linear (In)Dependence of Vectors

Two vectors ~u and ~v are linearly dependent if one of them is a

scale of the other, i.e. if

~u = α~v or ~v = β~u.

Example

Examples of sets of two linearly dependent vectors:







−2
1

4


 ,




1

−0.5
2















1

−2
5

−3



,




3

−6
15

−9







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Linear (In)Dependence of Vectors

The geometric interpretation of two linearly dependent vectors is

that they lie on the same line in space.

Example

The following vectors all lie on the same line in R2:

x

y

~u

~v

~w
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Linear (In)Dependence of Vectors

The definition of linear dependence can be extended to any

number n ∈ N of vectors:

Definition

A set of vectors {~v1, ~v2, · · · , ~vn} is linearly dependent if

there exists a set of coefficients {α1, α2, · · · , αn}, not all of

them 0, such that

n∑

i=1

αi~vi = α1~v1 + α2~v2 + · · ·+ αn~vn = ~0.
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Linear (In)Dependence of Vectors

The definition is equivalent to having at least one vector in the set

which is a linear combination of the other vectors in the set.

Example

The following vectors in R3 form a linearly dependent set:

~u =



1

2

3


 , ~v =



−1
6

1


 , ~w =



2

0

4


 ,

since ~v = 3~u− 2~w.
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Linear (In)Dependence of Vectors

Another equivalent definition is that of a linearly independent

set of vectors:

Definition

A set of vectors {~v1, ~v2, · · · , ~vn} is linearly independent if

the equation

n∑

i=1

αi~vi = α1~v1 + α2~v2 + · · ·+ αn~vn = ~0

is only true when α1 = α2 = · · · = αn = 0 (i.e. if

all the coefficients are equal to zero, also known as the

trivial solution ).
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Spaces, Subspaces and Basis Sets

Any vector in R2 can be constructed from a linear combination of

two linearly independent 2-dimensional vectors.

Example

Using the vectors ~u =

(
1

3

)
, ~v =

(
0

−2

)
:

(
2

0

)
= 2~u+3~v,

(
−1
−11

)
= −~u+4~v,

(
−2
10

)
= −2~u−8~v.

Generally: (
a

b

)
= a~u+

3a− b
2

~v.
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Spaces

Note

The reason why any two linearly independent vectors in R2,

~u,~v, span all of R2, i.e. that any vector ~w =

(
wx

wy

)
can

be expressed as a linear combination of ~u and ~v, is that the

linear system

{
αux + βvx = wx

αuy + βvy = wy

always has a solution under the conditions forced by the linear

independence of ~u and ~v. Linear systems will be discussed in

Chapter 5 (Systems of Linear Equations).
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Spaces

As with two linearly independent vectors in R2, any three linearly

independent vectors in R3 span all of R3.

Generally, any set of n ∈ N linearly independent vectors in Rn span

all of Rn, i.e. any vector in Rn can be expressed as a linear

combination of a set of n ∈ N linearly independent vectors in Rn.

We call such a set a basis set of Rn.
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Basis Sets

Example

In R2, the following sets of two vectors are all linearly inde-

pendent, and thus are basis sets of R2:





(
1

−2

)
,

(
0

3

)






(
1

0

)
,

(
0

−1

)






(
4

−1

)
,

(
1

1

)


And similarily for R3:








1

2

−1


 ,



0

1

0


 ,



−1
−1
2














1

0

1


 ,



0

0

2


 ,



2

3

0







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Basis Sets

Example
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
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Basis Sets

If all the vectors of a basis set are orhtogonal to each other, then

the set is called an orthogonal basis set 1.

If in addition to being orthogonal, all the vectors are also

normalized, then the set is an orthonormal basis set .

1Orthogonality is a generalization of perpendicularity, i.e. having a right angle,

for any abstract space. In this course we use the term orthogonal instead of

perpendicular.
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Basis Sets

Example

In R2 the following set is an orthogonal set:





(
1

1

)
,

(
−1
1

)


since the angle between

(
1

1

)
and the x-axis is θ1 =

arctan
(
1
1

)
= 45°, the angle between

(
−1
1

)
and the x-

axis is θ2 = arctan
(

1
−1

)
= 135°, and the difference between

these angles is θ2 − θ1 = 90°.
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Basis Sets

Example

If we take the above set and normalize each vector (the nor-

malization factor for both is 1√
2

), we get an orthonormal basis

set: 






1√
2
1√
2


 ,


−

1√
2

1√
2







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Basis Sets

In R2 the basis 



(
1

0

)
,

(
0

1

)
 ,

which is an orthonormal set, is known as the standard basis .

The vectors

(
1

0

)
and

(
0

1

)
are denoted as x̂ and ŷ, respectively.
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Basis Sets

x

y

x̂ =

(
1

0

)

ŷ =

(
0

1

)
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Basis Sets

Similarily, in R3 the standard basis is







1

0

0


 ,



0

1

0


 ,



0

0

1







,

with the vectors also named x̂, ŷ and ẑ, respectively.

Note

On both R2 and R3, x̂ and ŷ are also sometimes called î and

ĵ, respectively, while ẑ in R3 is also called k̂.
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Basis Sets

Similarily, in R3 the standard basis is



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

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0
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1

0


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1
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Basis Sets

x

y

z

x̂

ŷ

ẑ
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Basis Sets

In general, the standard basis set in Rn is the set of vectors





ê1 =




1

0
...

0



, ê2 =




0

1
...

0



, · · · , ên =




0

0
...

1








,

i.e. where the i-th basis vector is a vector that has 1 as its i-th

component, and the rest of the components are 0.
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Subspaces

In R2 every non-zero vector spans a line in R2, going through the

origin. We call this line a subspace of R2.
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Subspaces

Example

The vector ~u =

(
1

2

)
spans a line of slope m = 3 going

through the origin. Any vector that is a scale of ~u lies on this

line, and is in this subspace.

~v

x

y
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Subspaces

Similarily, any non-zero vector in R3 also spans a line going

through the origin. In addition, any two linearly independent

vectors span a plane going through the origin.
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Subspaces

And generally, any set of m < n linearly independent vectors in Rn

span a subspace of Rn which goes through the origin.
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The Dot Product

As discussed, any two linearly independent vectors ~u,~v ∈ Rn span

a plane which goes through the origin of Rn. In that plane, there

is some angle θ between the vectors.

θ

~u

~v

How can we calculate θ?
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The Dot Product
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The Dot Product

If we rotate the two vectors such that one of them lies on the

horizontal direction, we can draw a perpendicular line from ~u to ~v.

Using trigonometry we get

cos(θ) =
proj~v ~u

‖~u‖ ,

where proj~v ~u is the length of the projection of ~u on ~v.

θ

~u

~v

proj~v ~u
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The Dot Product

We define the magnitude proj~v ~u · ‖~u‖ (i.e. the length of the

projection of ~u on ~v multiplied by the length of ~v) as the

dot product of ~u and ~v.

Two common notations for the dot product of two vectors ~a,~b are

1. ~a ·~b (the one used in this course), and

2. 〈~a,~b〉.

A more common formulation of the dot product is

~u · ~v = ‖~u‖ ‖~v‖ cos(θ).
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The Dot Product
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The Dot Product

Some properties of the dot product:

• It is non-negative, i.e. ~u · ~v ≥ 0.

• It is commutative, i.e. ~u · ~v = ~v · ~u.

• It equals zero in only one of two cases:

1. One of the vectors (or both) is the zero vector, or

2. The angle θ between the vectors is 90° (since then

cos(θ) = cos (90°) = 0).
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The Dot Product

The Last point is so important that it’s worth framing it and

hanging it on a wall2. We will forgoe the hanging part here, and

only frame it:

Note

When the dot product of two (non zero) vectors is equal

to zero, they are orthogonal to each other.

m

When two (non zero) vectors are orthogonal to each

other, their dot product is zero.

2Preferably, above your bed so you see it when you wake up and when you go

to sleep.
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The Dot Product

Example

What is the dot product of the two vectors ~v =

(
4

4

)
and

~v =

(
−1
2

)
?

The angle θ between ~u and the x-axis is

tan(θ) =
4

4
= 1 ⇒ θ = 45°.

The angle ϕ between ~v and the x-axis is

tan(ϕ) =
2

−1 = −2 ⇒ ϕ ≈ 116.57°.
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The Dot Product

Example

Thus, the angle between the two vectors is ω = ϕ − θ =

71.57°.
The norm of ~u is

‖~u‖ =
√

42 + 42 =
√
16 + 16 =

√
32,

and of ~v is

‖~v‖ =
√
(−1)2 + 22 =

√
1 + 4 =

√
5.

Thus, the dot product of the two vectors is:

~u · ~v =
√
32
√
5 cos(71.57°) =

√
160 · 0.32 = 4.
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The Dot Product

When two vectors are given as column vectors, their dot product

can be calculated as the sum of their component-wise product, i.e.




a1

a2
...

an



·




b1

b2
...

bn




= a1b1 + a2b2 + · · ·+ anbn =

n∑

i=1

aibi.
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The Dot Product

Example

Using the vectors ~u =

(
4

4

)
and ~v =

(
−1
2

)
from the previous

example, we get

~u · ~v = 4 · (−1) + 4 · 2 = −4 + 8 = 4,

which is exactly the result we got in the previous example.
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The Cross Product

Another product of two vectors is the cross product . Unlike the

dot product, the cross product is only defined on R3 (and with a

somewhat different meaning on R2 as well).

Geometrically, the cross product of two vectors ~u,~v ∈ R3 is defined

as a vector ~w which is orthogonal to both ~u and ~v, and has a

magnitude

rw = ‖~u‖ ‖~v‖ sin(θ),

where θ is the angle between ~u and ~v.
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The Cross Product

θ

~u

~v

~w = ~u× ~v
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The Cross Product

The direction of ~u× ~v is determined by the right-hand rule :

using a person’s right hand, when ~u points in the direction of their

index finger and ~v in the direction of their middle finger, then

~w = ~u× ~v points in the direction of their thumb:
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The Cross Product

The cross product is anti-commutative , i.e. changing the order

of the vectors results in inverting the product:

~u× ~v = − (~v × ~u) .

When the vectors are given as column vectors

~u =



ux

uy

uz


 , ~v =



vx

vy

vz


, the resulting cross product is

~u× ~v =



uyvz − uzvy
uzvx − uxvz
uxvy − uyvx



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The Cross Product

Example

What is the cross product of ê1 =



1

0

0


 and ê2 =



0

1

0


?

ê1 × ê2 =



���0 · 0−���0 · 1
���0 · 0−���1 · 0
1 · 1−���0 · 0


 =



0

0

1


 = ê3.
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The Cross Product
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���0 · 0−���1 · 0
1 · 1−���0 · 0




=



0

0

1


 = ê3.
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ê1 × ê2 =
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The Cross Product

Note

The cross product of two of the standard basis vectors in R3

is the third basis vector. Its sign (±) is determined by a cyclic

rule:

sign
(
êi × êj

)
=





1 if (i, j) ∈
{
(1, 2), (2, 3), (3, 1)

}
,

−1 if (i, j) ∈
{
(3, 2), (2, 1), (1, 3)

}
,

0 otherwise.

Challenge

Using component calculation and utilizing the dot product,

show that ~u× ~v is indeed orthogonal to both ~u and ~v.
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