
〈êi, êj〉 = δij

T (α~u + β~v) = αT (~u) + βT (~v)
A~v = λ~v

Rot(θ) =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
A = QΛQ

−1
~v =

n∑
i=1

αi êi

Rn T−→ Rm
(AB)> = B

>A>
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Chapter 7: Some Real-World Uses

of Linear Algebra
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Least Squares Approximation

What is the best linear approximation to a set of measurements?

x

y

A good approximation is the line f(x) = ax+ b for which the sum

of the distances from the line to each point (xi, yi) is minimal, i.e.

S = min

 n∑
i=1

[
f (xi)− yi

] .
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Least Squares Approximation

We can collect all the y values of our measurement points to a

vector:

~y =


y1

y2
...

yn

 ,

and similarily collect all the y = f(x) values of the line:

~f =


f (x1)

f (x2)
...

f (xn)

 .
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Least Squares Approximation

The sum s =
n∑

i=1

[
f (xi)− yi

]
then becomes:

s =

n∑
i=1

[
f (xi)− yi

]
=

n∑
i=1

[
~fi − ~yi

]
.

However, s is a bit problematic, as some elements ~fi − ~yi can be

negative. Instead, we can minimize the following expression:

s∗ =

n∑
i=1

[
~fi − ~yi

]2
.
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Least Squares Approximation

...and the expression

s∗ =

n∑
i=1

[
~fi − ~yi

]2

is exactly the square norm of the vector

~∆ =


f1 − y1

f2 − y2
...

fn − yn

 = ~f − ~y.

5



Least Squares Approximation

Drawing the a 2-dimentional scheme of the vectors ~v, ~f and their

difference ~∆ = ~f − ~v:

~f

~y

~∆ = ~f − ~y
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Least Squares Approximation

The norm of the vector ~∆ = ~f − ~y is minimal when ~f ⊥ ~∆, i.e.

when
~f · ~∆ = ~f ·

(
~f − ~y

)
= 0.

Let’s find what condition on ~f yields this.
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Least Squares Approximation

First, we note that the vector ~f can be written as a matrix-vector

product:

~f =


f (x1)

f (x2)
...

f (xn)

 =


ax1 + b

ax2 + b
...

axn + b

 =


x1 1

x2 1
...

xn 1


(
a

b

)
.

A v

Thus, the condition ~f ·
(
~f − ~y

)
= 0 becomes

A~v · (A~v − ~y) = 0.

8



Least Squares Approximation

Some algebra:

A~v · (A~v − ~y) = 0.

Since A~v is a vector, it can be dotted with either itself or ~y.

However, we can consider A~v as an n× 1 matrix, and to keep the

product defined we transpose it, i.e.

(A~v)> ·A~v = (A~v)> · ~y.

This doesn’t change the truthness of the equation.
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Least Squares Approximation

Expanding the transposed product (A~v)> yields

~v>A>A~v = ~v>A>~y,

where ~v> is a row vector.

We can remove ~v> from both sides, leaving us with

A>A~v = A>~y.

This linear system is surprisingly easy to solve!
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Least Squares Approximation

Example

Let’s look at 6 points:

p1 = (−2,−7.3)

p2 = (−1,−3.9)

p3 = (0,−1.2)

p4 = (1, 2.4)

p5 = (2, 4.7)

p6 = (3, 7.7)

11



Least Squares Approximation

Example

The linear system we need to solve is thus

(−2 −1 0 1 2 3
1 1 1 1 1 1)

(
−2 1
−1 1
0 1
1 1
2 1
3 1

)
(a
b) = (−2 −1 0 1 2 3

1 1 1 1 1 1)

(
−7.3
−3.9
−1.2
2.4
4.7
7.7

)
.

Multiplying both matrix-matrix products yields(
19 3

3 6

)(
a

b

)
=
(

53.4 2.4
)
,

which when solved for a and b yields

a = 2.98 b = −1.09.
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Least Squares Approximation

How can we quantify the ”goodness” of fit between the proposed

approximation and out data points?
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Least Squares Approximation

We can first look at the average difference between yi and the

linear approximation (the variance in the y-values in respect to

the line):

σline =
1

n

n∑
i=1

[
f (xi)− yi

]2
.e

x

y
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Least Squares Approximation

Then we look at the average y value of our data points:

ȳ =
1

n

n∑
i=1

yi.e

x

y

ȳ
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Least Squares Approximation

We can calculate the total distance of out data points to ȳ:

SEȳ = (y1 − ȳ)2 + (y2 − ȳ)2 + · · ·+ (yn − ȳ)2 =

n∑
i=1

(yi − ȳ)2 .e

x

y

ȳ
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Least Squares Approximation

The average of SEȳ is the variance in the y-values:

σy =
1

n
SEȳ =

1

n

n∑
i=1

(yi − ȳ)2 .e

x

y

ȳ
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Least Squares Approximation

The ratio of the two variances

ρ =
σline
σȳ

is a measurement of what percentage of the total variation is NOT

described by the linear approximaion. It is in the range

0 ≤ ρ ≤ 1.

Thus,

r2 ≡ 1− ρ = 1− σline
σȳ

describes how much of the total variation is described by the linear

approximation.
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Least Squares Approximation

An r2 close to 1 means that ρ is close to 0, i.e. the variation of yi

from the line, σline, is small compared to the total variance of the

points.
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Least Squares Approximation

Example

The average y value of the points in the previous example is

ȳ =
1

6
(−7.3− 3.9− 1.2 + 2.4 + 4.7 + 7.7) =

2.4

6
= 0.4.

Their total variance is thus

σȳ =
1

6

[
(−7.3− 0.4)2 + (−3.9− 0.4)2 + (−1.2− 0.4)2

+ (2.4− 0.4)2 + (4.7− 0.4)2 + (7.7− 0.4)2
]

=
1

6
[59.29 + 18.49 + 2.56 + 4 + 18.49 + 53.29]

= 26.02.
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Least Squares Approximation

Example

The linear approximation was calculated as f(x) = 2.98x −
1.09, and so the variance to the linear approximation is

σline =
1

6

[
(−7.05 + 7.3)2 + (−4.07 + 3.9)2 + (−1.09 + 1.2)2

+(1.89− 2.4)2 + (4.87− 4.7)2 + (7.85− 7.7)2
]

=
1

6
[0.06 + 0.03 + 0.01 + 0.26 + 0.03 + 0.02]

= 0.0692.
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Least Squares Approximation

Example

Thus,

r2 = 1− σline
σȳ

= 1− 0.0692

26.02
= 1− 0.0027 = 0.9973,

which means that the linear approximation given by the least

squares method for this set of points is an exceptionally good

approximation.
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