
〈êi, êj〉 = δij

T (α~u + β~v) = αT (~u) + βT (~v)
A~v = λ~v

Rot(θ) =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
A = QΛQ

−1
~v =

n∑
i=1

αi êi

Rn T−→ Rm
(AB)> = B

>A>

Mathematics and Computer Science (B.MES.108)

Summer Semester, 2020

Part 1: Linear Algebra for Non-Mathematicians

Peleg Bar Sapir

1



Chapter 4: Matrices
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Matrices from Linear Transformations

Any vector in a space Rn can be written as a linear combination of

the elements of a base in Rn.

Example

The vector

(
1

−3

)
can be written as a linear combination of

the standard basis vectors in R2:

~v =

(
1

0

)
+

(
0

−3

)

=

(
1

0

)
− 3

(
0

1

)

= ê1 − 3ê2

= x̂− 3ŷ.
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Matrices from Linear Transformations

When a linear transformation T is applied to a vector

~v = α1ê1 + α2ê2 + · · ·+ αnên, linearity dictates the following:

T (~v) = T (α1ê1 + α2ê2 + · · ·+ αnên)

= T (α1ê1) + T (α2ê2) + · · ·+ T (αnên)

= α1T (ê1) + α2T (ê2) + · · ·+ αnT (ên) ,

Additivity

Scalability

i.e. - the transformed vector is a linear combination of the

transformed standard basis vectors, with the components of the

original vector as coefficients.
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~v = α1ê1 + α2ê2 + · · ·+ αnên, linearity dictates the following:
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Matrices from Linear Transformations

Example

Consider the vector ~v =

(
3

−1

)
, and the transformation

T

(
x

y

)
=

(
−2x+ y

3x− 2y

)
. We can calculate the transforma-

tion T (~v) directly:

T (~v) =

(
−2(3) + (−1)
3(3)− 2(−1)

)
=

(
−6− 1

9 + 2

)
=

(
−7
11

)
.
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Matrices from Linear Transformations
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Matrices from Linear Transformations

Generalizing this for any vector ~v =

(
x

y

)
∈ R2 yields

T

(
x

y

)
=

(
ax+ by

cx+ dy

)
,

where a, b, c, d ∈ R.

This form of writing a linear transformation applied to a vector has

a nice structure: the first component of the resulting vector is the

dot product (
a

b

)
·
(
x

y

)
,

while the second component is the dot product
(
c

d

)
·
(
x

y

)
.
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Matrices from Linear Transformations

We can collect the coefficients a, b, c and d together to a compact

structure called a matrix :

M =

(
a b

c d

)
.

Then, we can define the product of that matrix with a vector

~v =

(
x

y

)
as

M · ~v =

(
a b

c d

)(
x

y

)
=

(
ax+ by

cx+ dy

)
.
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Matrices from Linear Transformations

Note

In the matrix

M =

(
a b

c d

)
,

The column

(
a

c

)
shows us how ê1 is transformed by the

matrix M , while the column

(
b

d

)
shows us how ê2 is trans-

formed by the matrix.
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Matrices from Linear Transformations

Of course, this can be generalized to any transformation

T : Rn → Rn as

M =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann



.

T (ê1) T (ê2) T (ên)

The numbers aij are called the elements of the Matrix, where i

is the row of the element, and j is the column of the element.

In addition, each column of the matrix tells us how the respective

standard basis vector is transformed.

8



Matrices from Linear Transformations

Of course, this can be generalized to any transformation

T : Rn → Rn as

M =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann



.
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Matrices from Linear Transformations

Example

The transformation T : R3 → R3 which scales space by 2 in

the x-direction, by 0.75 in the y-direction and by 1.5 in the

z-direction, transforms the standard basis vectors x̂, ŷ and ẑ

as following:

T (x̂) =



2

0

0


 , T (ŷ) =




0

0.75

0


 , T (ẑ) =




0

0

1.5


 .

Thus, the corresponding matrix M is

M =



2 0 0

0 0.75 0

0 0 1.5


 .

9
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


0

0.75

0


 , T (ẑ) =
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Matrices from Linear Transformations

Generalizing even further, a matrix representing a linear

transformation of a type T : Rn → Rm is constructed from n

column vectors, each of m components:

M =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn




n column vectors

m components

per vector
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Matrices from Linear Transformations

Example

The matrix

M =

(
1 −3 7

2 0 −5

)

takes vectors in R3 and transforms them to vectors in R2.

For example,

M ·



1

2

3


 =

(
1 · 1− 3 · 2 + 7 · 3
2 · 1 + 0 · 2− 5 · 3

)

=

(
1− 6 + 21

2− 15

)
=

(
16

−13

)
.
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Types of Matrices

A matrix which represents a linear transformation T : Rn → Rn is

called a square matrix (since it has n× n elements, i.e. n rows

and n columns).

In a square matrix, the elements a11, a22, . . . , ann are called

together the principal diagonal (also main diagonal ) of the

matrix. 


a11 a12 · · · a1n

a21 a22 · · · ann
...

...
. . .

...

an1 an2 · · · ann




12



Types of Matrices

A diagonal matrix is a matrix in which any element outside the

main diagonal is zero.

Example

Some diagonal matrices:

(
1 0

0 −3

)
,



−4 0 0

0 2 0

0 0 5


 ,




1 0 0 0

0 3 0 0

0 0 3 0

0 0 0 7



.
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Types of Matrices

An upper triangular matrix is a matrix in which all the

elements below the main diagonal are equal to zero.

Similarily, a lower triangular matrix is a matrix in which all the

elements above the main diagonal are equal to zero.

14



Types of Matrices

Example

An upper triangular matrix:




1 4 3 −1
0 2 3 −1
0 0 7 7

0 0 0 −2




A lower triangular matrix:




−1 0 0 0

2 5 0 0

6 4 7 0

1 0 3 −2



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Trace

The trace of a square matrix is the sum of its main diagonal

elements, i.e. for an n× n matrix A with elements aij ,

tr(A) =

n∑

i=1

aii.

Example

The trace of

A =




1 0 2 −5
5 3 1 2

−4 9 3 −1
1 0 2 7




is 1 + 3 + 3 + 7 = 14.
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Transposing Matrices

An important operator that can be applied to matrices is the

transpose . The transpose exchanges the rows of the matrix with

its columns, i.e.

aij
transpose−−−−−→ aji.

The notation for the transpose of a matrix A is A>.

17



Transposing Matrices

Example



1 2 3

4 5 6

7 8 9




>

=



1 4 7

2 5 8

3 6 9


 ,

(
0 1 −1
2 −3 5

)>
=




0 2

1 −3
−1 5


 .

18



Transposing Matrices

Note

In square matrices, the main diagonal elements stay at the

same place when the matrix is transposed (since aii = aii).

This also means that tr(A) = tr
(
A>
)

.

Note

The transpose of a transposed matrix is the original matrix,

i.e. (
A>
)>

= A.
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Adding Matrices

Like with vectors, addition of two matrices is done element-wise,

i.e.



a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
. . .

...

an1 an2 · · · anm




+




b11 b12 · · · b1m

b21 b22 · · · b2m
...

...
. . .

...

bn1 bn2 · · · bnm




=




a11 + b11 a12 + b12 · · · a1m + b1m

a21 + b21 a22 + b22 · · · a2m + b2m
...

...
. . .

...

an1 + bn1 an2 + bn2 · · · anm + bnm



.
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Adding Matrices

Example



1 3 −7
2 0 1

0 −4 5


+



0 −2 1

3 2 3

5 6 −1


 =



1 1 −6
5 2 4

5 2 4


 ,

(
2 −1 0

1 5 9

)
+

(
1 3 1

0 0 1

)
=

(
3 2 1

1 5 10

)
.
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Multiplying a Matrix by a Scalar

Also like with vectors, multiplying a matrix A by a scalar α results

in multiplying each element aij of the matrix by α, i.e.

α ·




a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
. . .

...

an1 an2 · · · anm




=




α · a11 α · a12 · · · α · a1m
α · a21 α · a22 · · · α · a2m

...
...

. . .
...

α · an1 α · an2 · · · α · anm



.
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Adding Matrices

Example

5 ·



1 3 −7
2 0 1

0 −4 5


 =




5 15 −35
10 0 5

0 −20 25


 ,

−1

2
·
(
2 −6 2

0 0 −2

)
=

(
−1 3 −1
0 0 1

)
.
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The Identity Matrix

Since the columns in a matrix represent the transformation of the

standard basis vectors, a matrix which is composed from the

standard basis vectors in their original order does not change the

space at all. We call such a matrix the identity matrix , denoted

by In, where n is the dimentionality of the space.

In =




1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1



.
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The Identity Matrix

Example

I2 =

(
1 0

0 1

)
, I3 =



1 0 0

0 1 0

0 0 1


 , I4 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



, . . .
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The Identity Matrix

A shorthand way of writing the elements of the identity matrix is

by using the Kronecker delta , which is defined as

δij =




1 if i = j,

0 if i 6= j.
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Basic Matrices

Let’s now go over the basic linear transformations T : R2 → R2

mentioned in the previous chapter and construct a matrix for each

one.

We will construct each matrix by looking at what effects does the

respective transformation have on the basis vectors x̂ =

(
1

0

)
and

ŷ =

(
0

1

)
, and then joining them together to form the matrix.

When possible, we will generalize to Rn.
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Scaling Matrices

Scaling in the x- and y-axes

Scaling in the x-axis by α should transform x̂ to

(
α

0

)
.

Similarily, scaling in the y-axis by β should transform ŷ to

(
0

β

)
.

x

y

αx̂ =

(
α

0

)
βŷ =

(
0

β

)

x̂

ŷ
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Scaling Matrices

Thus, a general scaling matrix in R2 is

S =

(
α 0

0 β

)
.

This can be generalized to Rn as a diagonal matrix

S =




s1 0 · · · 0

0 s2 · · · 0
...

...
. . .

...

0 0 · · · sn



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Scaling Matrices

Thus, a general scaling matrix in R2 is

S =

(
α 0

0 β

)
.

This can be generalized to Rn as a diagonal matrix

S =




s1 0 · · · 0

0 s2 · · · 0
...

...
. . .

...

0 0 · · · sn



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Rotation Matrices

When rotating x̂ by an angle θ, we get a vector that has norm 1

(because rotation doesn’t change the norm) and thus the

components

x = cos(θ),

y = sin(θ).

θ

A · x̂

cos(θ)

sin(θ)

x

y

norm=1
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Rotation Matrices

Since ŷ is 90° ”ahead” of x̂ (i.e. its angle to the x-axis is always

90° more than that of x̂), we excpet the rotated ŷ to have the

components

x = cos (θ + 90°) ,

y = sin (θ + 90°) .

Two trigonometric identities come in handy:

1. cos (θ + 90°) = − sin(θ), and

2. sin (θ + 90°) = cos(θ).

Thus, ŷ transforms to

(
− sin(θ)

cos(θ)

)
.
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Rotation Matrices

Alltogether, in R2 the matrix representing a counter clock-wise

rotation by θ around the origin is

Rot(θ) =

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
.
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Rotation Matrices

Example

Rotation by 45° around the origin is given by

Rot (45°) =

(
cos(45°) − sin(45°)
sin(45°) cos(45°)

)
=




2√
2
− 2√

2
2√
2

2√
2


 .

Applying this to the vector ~v =

(
1

3

)
results in

~u = Rot (45°) · ~v =




2√
2
− 2√

2
2√
2

2√
2



(
1

3

)
=

√
2

2

(
1− 3

1 + 3

)

=

√
2

2

(
−2
4

)
=

(
−
√
2

2
√
2

)
.
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Rotation Matrices

Example

Let’s verify our result.

The norm of the original vector is

‖~v‖ =
√

12 + 32 =
√
10.

The norm of the resulting vector is

‖~u‖ =
√(
−
√
2
)2

+
(
2
√
2
)2

=
√
2 + 8 =

√
10 =‖~v‖ .

The cosine of the angle θ between the two vectors is

cos(θ) =
~v · ~u
‖~v‖‖~u‖ =

−1
√
2 + 3

(
2
√
2
)

√
10
√
10

=
5
√
2

10
=

√
2

2
.
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Rotation Matrices

Example

Let’s verify our result.

The norm of the original vector is

‖~v‖ =
√

12 + 32 =
√
10.

The norm of the resulting vector is

‖~u‖ =
√(
−
√
2
)2

+
(
2
√
2
)2

=
√
2 + 8 =

√
10 =‖~v‖ .

The cosine of the angle θ between the two vectors is

cos(θ) =
~v · ~u
‖~v‖‖~u‖ =

−1
√
2 + 3

(
2
√
2
)

√
10
√
10

=
5
√
2

10
=

√
2
2 .

cos (45°) =
√
2
2
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Rotation Matrices

In R3 the three matrices representing rotations by the angles θ, ϕ

and ψ around the x, y- and z-axes, respectively, are

Rotx(θ) =



1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)


 ,

Roty(ϕ) =




cos(ϕ) 0 sin(ϕ)

0 1 0

− sin(ϕ) 0 cos(ϕ)


 ,

Rotz(ψ) =



cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1


 .
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Skew (Shear) Matrices

A shear transformation in the x-direction doesn’t change x̂, but

adds some number kx to the x-component of ŷ, i.e.

T (ŷ) =

(
kx

1

)
.

−3 −2 −1 1 2 3

1

2

3

x

y

x̂

ŷ
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Skew (Shear) Matrices

Therefore, the matrix representing an x-direction shear by kx is

K =

(
1 kx

0 1

)
.

Similarily, a matrix representing a ky shear in the y-direction is

K =

(
1 0

ky 1

)
.
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Reflection Matrices

Reflection across the x-axis keeps x̂ the same, and flips the

y-component of ŷ.

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

x

y

x̂

ŷ
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Reflection Matrices

Thus, the matrix that reflects space across the x-axis is

Refx =

(
1 0

0 −1

)
.

Similarily, the matrix that reflects space across the y-axis is

Refy =

(
−1 0

0 1

)
.

39



Reflection Matrices

A general matrix which reflects space across a line going through

the origin with slope m is

Ref(θ) =

(
cos (2θ) sin (2θ)

sin (2θ) − cos (2θ)

)
,

where θ = arctan(m).

Note

The derivition of Ref(θ) from Refx requires a concept which

we will introduce later in this chapter, and thus will not be

given here.
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Determinants

The determinant of an n× n matrix A, denoted |A| or det(A),

is a measurement of how volumes scale when applying the

transformation represented by A to a space Rn.

Note

A determinant of a matrix can be negative, while volumes

(technically speaking) must be non-negative. We will see the

meaning of a negative determinant later in this chapter.
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Determinants

Example

The determinant of a 2 × 2 matrix A measures the change

in area after applying A to R2. In the following example,

the area denoted by S1 is transformed into the area S2 after

application of the transformation (i.e. |A| = S2
S1

).

x

y

S1

x

y
S2T
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Determinants

Example

Since linear transformations scale all areas (volumes) by the

same amount, in the following example, the determinant is

equal to the ratio between the areas of each shape after and

before application of the transformation (i.e. |A| = Safter
Sbefore

).

x

y

x
yA
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Determinants

When the image of a linear transformation T : Rn → Rn can be

spanned by m < n vectors (i.e. when it ”loses” a dimension or

more) the determinant of the matrix representing it is zero.
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Determinants

Example

A sequence of linear transformations with the determinants

of their respective matrices going to zero. When |A| = 0 all

of space is ”squished” into a line, i.e. it has zero area.

x

y

|A| = 1
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Determinants

Example

A sequence of linear transformations with the determinants

of their respective matrices going to zero. When |A| = 0 all

of space is ”squished” into a line, i.e. it has zero area.

x

y

|A| = 0.8
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Determinants

Example

A sequence of linear transformations with the determinants

of their respective matrices going to zero. When |A| = 0 all

of space is ”squished” into a line, i.e. it has zero area.

x

y

|A| = 0.625
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Determinants

Example

A sequence of linear transformations with the determinants

of their respective matrices going to zero. When |A| = 0 all

of space is ”squished” into a line, i.e. it has zero area.

xy

|A| = 0.35
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Determinants

Example

A sequence of linear transformations with the determinants

of their respective matrices going to zero. When |A| = 0 all

of space is ”squished” into a line, i.e. it has zero area.

x

y

|A| = 0
45



Determinants

Square matrices of size 3× 3 (representing transformations of the

type T : R3 → R3) have zero determinants when they ”squish”

3D-space into a single plane, a line or a point.
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Determinants

A matrix with zero determinant has columns that are linearly

dependent. This is because the columns of a matrix represent the

transformations of the basis vectors ê1, ê2, · · · , ên. If this set is

linearly dependent, the space the vectors span has a lower

dimentionality than the original space.

Example

The following matrix has a zero determinant:



1 0 2

3 1 5

0 4 −4


⇒ 2



1

3

0


−



0

1

4


 =




2

5

−4


 .
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Determinants

Matrices can have negative determinants, which means that after

application of their respective transformation, the space chages its

orientation .

Example

x

y

|A| = 1
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Determinants

Matrices can have negative determinants, which means that after

application of their respective transformation, the space chages its

orientation .

Example

x

y

|A| = 0.97
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Determinants

Matrices can have negative determinants, which means that after

application of their respective transformation, the space chages its

orientation .

Example

x

y

|A| = 0.87
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Determinants

Matrices can have negative determinants, which means that after

application of their respective transformation, the space chages its

orientation .

Example

x

y

|A| = 0.71
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Determinants

Matrices can have negative determinants, which means that after

application of their respective transformation, the space chages its

orientation .

Example

x

y

|A| = 0.5
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Determinants

Matrices can have negative determinants, which means that after

application of their respective transformation, the space chages its

orientation .

Example

x

y

|A| = 0.26
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Determinants

Matrices can have negative determinants, which means that after

application of their respective transformation, the space chages its

orientation .

Example

x
y

|A| = 0
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Determinants

Matrices can have negative determinants, which means that after

application of their respective transformation, the space chages its

orientation .

Example

xy

|A| = −0.26
48



Determinants

Matrices can have negative determinants, which means that after

application of their respective transformation, the space chages its

orientation .

Example

x
y

|A| = −0.5
48



Determinants

Matrices can have negative determinants, which means that after

application of their respective transformation, the space chages its

orientation .

Example

x

y

|A| = −0.71
48



Determinants

Matrices can have negative determinants, which means that after

application of their respective transformation, the space chages its

orientation .

Example

x

y

|A| = −0.87
48



Determinants

Matrices can have negative determinants, which means that after

application of their respective transformation, the space chages its

orientation .

Example

x

y

|A| = −0.97
48



Determinants

Matrices can have negative determinants, which means that after

application of their respective transformation, the space chages its

orientation .

Example

x

y

|A| = −1
48



Determinants

The orientation of R2 is determined by the relative direction

between the x- and y-axes:

• If the x-axis is to the right of the y-axis, the space is

right-handed.

• If the x-axis is to the left of the y-axis, the space is

left-handed.

x

y

Right-handed

y

x

Left-handed
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Determinants

The orientation of R3 is determined by the right-hand rule, similar

to the cross-product:

• If x̂× ŷ = ẑ, the space is right-handed.

• If x̂× ẑ = ŷ, the space is left-handed.

x

y

z

Right-handed

x

y

z

Left-handed
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Determinants

Any flip of an odd number of axes flips the orientation of a space.

Any flip of an even number of axes keeps the orientation of a

space.

x

y

z

Right-handed

flip ẑ

x

y

z

Left-handed

flip ŷ

x

y

z

Right-handed
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Determinants

Determinants can be calculated numerically directly from matrices.

The determinant of a 2× 2 matrix

A =

(
a11 a12

a21 a22

)

is

|A| = a11a22 − a12a21.
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Determinants

Example

Some 2× 2 matrices and their determinants:
∣∣∣∣∣
1 2

−3 1

∣∣∣∣∣ = 1 · 1− 2 · (−3) = 1 + 6 = 7.

∣∣∣∣∣
1 0

0 1

∣∣∣∣∣ = 1 · 1− 0 · 0 = 1.

∣∣∣∣∣
0 1

1 0

∣∣∣∣∣ = 0 · 0− 1 · 1 = −1.
∣∣∣∣∣
cos(θ) − sin(θ)

sin(θ) cos(θ)

∣∣∣∣∣ = cos(θ)2 + sin(θ)2 = 1.

53



Determinants

For calculating a the determinant of a 3× 3 matrix we introduce a

new concept, a minor of a matrix :

Definition

The i, j-minor of a matrix A, denoted mij , is the determinant

of a matrix produced when the i-th row and j-th column of

A are removed.
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Determinants

Example

Two example minors of the matrix A =



1 2 3

4 5 6

7 8 9


:

m11 =

∣∣∣∣∣∣∣∣

1 2 3

4 5 6

7 8 9

∣∣∣∣∣∣∣∣
= 5 · 9− 6 · 8 = 45− 48 = −3.

m32 =

∣∣∣∣∣∣∣∣

1 2 3

4 5 6

7 8 9

∣∣∣∣∣∣∣∣
= 1 · 6− 3 · 4 = 6− 12 = −6.
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Determinants

The determinant of a 3× 3 matrix

A =



a11 a12 a13

a21 a22 a23

a31 a32 a33




is

|A| = a11m11 − a12m12 + a13m13,

where mij is the i, j-minor of A.
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Determinants

Example

Let’s calculate the determinant of the matrix

A =



−1 2 0

3 1 5

2 6 −9


 .

1. m11 =

∣∣∣∣∣
1 5

6 −9

∣∣∣∣∣ = 1 · (−9)− 5 · 6 = −9− 30 = −39.

2. m12 =

∣∣∣∣∣
3 5

2 −9

∣∣∣∣∣ = 3 · (−9)− 5 · 2 = −27− 10 = −37.

3. m13 =

∣∣∣∣∣
3 1

2 6

∣∣∣∣∣ = 3 · 6− 1 · 2 = 18− 2 = 16.
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Determinants

Example

Thus,

|A| = a11m11 − a12m12 + a13m13

= −1 · (−39)− 2 · (−37) + 0 · 16
= 39 + 74

= 113.
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Determinants

The determinant of higher order n× n matrices proceeds

recursively from that of (n− 1)× (n− 1) matrices.

The definition will not be given here1.

1and such determinants will not be in the exam in any way, don’t worry.
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Matrix-Vector Product

As we saw in the beginning of the chapter, multiplying a matrix

with a vector is essencially a way to apply the transformation

represented by the matrix on the vector. This was developed for

vectors in R2 and 2× 2 matrices.

We will now review a general product of an n×m matrix by an

m-dimentional vector.
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Matrix-Vector Product

The product of an n×m matrix A and an m-dimentional vector ~u

is an n-dimentional vector ~v, with the i-th component of ~v being

vi = Ai · ~u,

where Ai is the i-th row of A.




a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
. . .

...

an1 an2 · · · anm







u1

u2
...

um




=




v1

v2
...

vn



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Matrix-Vector Product

The product of an n×m matrix A and an m-dimentional vector ~u

is an n-dimentional vector ~v, with the i-th component of ~v being
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
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


u1

u2
...

um




=




v1

v2
...

vn



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Matrix-Vector Product

The product of an n×m matrix A and an m-dimentional vector ~u

is an n-dimentional vector ~v, with the i-th component of ~v being

vi = Ai · ~u,

where Ai is the i-th row of A.




a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
. . .

...

an1 an2 · · · anm







u1

u2
...

um




=




v1

v2
...

vn



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Matrix-Vector Product

Example




1 −3 0

4 2 7

−2 3 −5
6 0 −9







7

−1
0


 =




1 · 7 + (−3) · (−1) + 0 · 0
4 · 7 + 2 · (−1) + 7 · 0

−2 · 7 + 3 · (−1) + (−5) · 0
6 · 7 + 0 · (−1) + (−9) · 0




=




10

26

−17
42



.
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Matrix-Matrix Product

Matrices can be multiplied together. The result of the product of

two matrices A and B, A ·B, is a matrix C, in which the i-th

column is the product of the matrix A by the i-th column of the

matrix B.

Example




3 −2 8

−2 −4 0

−9 −2 3


·




7 − 8 − 2

−8 1 −6
1 7 −3


 =




45 30 − 18

18 12 28

−44 91 21


 .
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Matrix-Matrix Product

Matrices can be multiplied together. The result of the product of

two matrices A and B, A ·B, is a matrix C, in which the i-th

column is the product of the matrix A by the i-th column of the
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Matrix-Matrix Product

Another way to formulize the matrix-matrix product of two

matrices A and B is by considering the dot product of rows of A

with columns of B, i.e.

Definition

The product C = AB of two matrices A and B is a matrix

in which the element cij is

cij = Ai ·Bj ,

where Ai is the i-th row of A (considered as a vector), and

Bj is the j-th column of B (considered as a vector).
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Matrix-Matrix Product

Of course, for the above matrix-matrix product to be defined, the

number of elements in each column vector of B must be equal to

the number of columns in A, i.e.

Definition

For the matrix-matrix product C = AB to be defined, the

dimensions of A and B must respectively be

m× n, n× k.

The resulting matrix C has dimensions

m× k.
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Matrix-Matrix Product

Graphically:

M

N

N

K

M

K

A B C·

·

=

=
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Matrix-Matrix Product

Matrix-matrix product (even for square matrices of the same

dimensions) is non-commutative, i.e. for most matrices A,B

AB 6= BA.

Example

For A =

(
1 2

0 1

)
and B =

(
0 3

−1 1

)
:

AB =

(
1 2

0 1

)
·
(

0 3

−1 1

)
=

(
−2 5

−1 1

)
,

BA =

(
0 3

−1 1

)
·
(
1 2

0 1

)
=

(
0 3

−1 −1

)
6= AB.
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Matrix-Matrix Product

For two matrices A and B, where A represents the linear

transformation TA and B represents the linear transformation TB,

the product C = AB represents the composit transformation

TC = TA ◦ TB.
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Matrix-Matrix Product

Example

The matrix A =

(
2 0

0 1

)
represents a scaling of space by 2

in the x-direction. The matrix B =

(
0 −1
1 0

)
represents a

rotation of space by 90° counter clock-wise. The product

C = AB =

(
2 0

0 1

)
·
(
0 −1
1 0

)
=

(
0 −2
1 0

)

represents a 90° counter clock-wise rotation, followed by scal-

ing by 2 in the x-direction.
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Matrix-Matrix Product

Note

The product D = BA represents the composition of the

transformations in the opposite order: first scaling space by

2 in the x-direction, followed by a 90° counter clock-wise

rotation, i.e. TD = TB ◦ TA.
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Matrix-Matrix Product

Since the product of two matrices is in fact composition of the

respective transformations they represent, the determinant of the

product of two matrices A and B is simply the product of the

determinants of the two matrices, i.e. if C = AB then

|C| = |A||B|.
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Matrix-Matrix Product

Example

For A =

(
1 −3
0 4

)
and B =

(
0 1

2 2

)
,

|A| = 1 · 4−����(−3) · 0 = 4,

|B| =���0 · 2− 1 · 2 = −2,

|AB| =

∣∣∣∣∣∣

(
−6 −5
8 8

)∣∣∣∣∣∣
= −6 · 8− (−5) · 8

= −48 + 40 = −8 = |A| · |B|.
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Matrix-Matrix Product

The transpose of the product of two matrices is the opposite

product of the transpose of each matrix, i.e.

(AB)> = B>A>.
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Matrix-Matrix Product

Example

For A =

(
1 −3
0 4

)
and B =

(
0 1

2 2

)
,

AB =

(
−6 −5
8 8

)
,

and so

(AB)> =

(
−6 8

−5 8

)
.
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Matrix-Matrix Product

Example

On the other hand,

B>A> =

(
0 2

1 2

)
·
(

1 0

−3 4

)

=

(
−6 8

−5 8

)

= (AB)> .
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Matrix-Matrix Product

The trace of a Matrix-Matrix Product AB does not depend on the

order of multiplication, i.e.

tr (AB) = tr (BA) .

Challenge

Prove the above statement.
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Inverse Matrices

An inverse matrix A−1 of a matrix A is a matrix for which

AA−1 = A−1A = I.

Not every matrix A has an inverse matrix; if |A| = 0, then A

”loses” at least one dimension, which results in more than one

vector in its image being connected to by more than one vector in

its domain. Therefore, A−1 does not exist.

More formally:

∃A−1 ⇔ |A| 6= 0.
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Inverse Matrices

Example

The matrix

A =



3 −1 1

0 −1 −2
1 0 1




has zero determinant, since A3 = A1+2A2. Therefore, A−1

doesn’t exist.
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Inverse Matrices

Example

The matrix

B =



2 −4 2

0 1 0

1 5 3




has a determinant of 4, and thus B−1 exists, and is equal to

B−1 =




0.75 5.5 −0.5
0 1 0

−0.25 −3.5 0.5


 .
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Inverse Matrices

A matrix that does not have an inverse matrix is called a

singular matrix (also a degenerate matrix ). A matrix with

an inverse is called an invertible matrix (also a

nonsingular matrix and a nondegenerate matrix ).

Finding the inverse of a nonsingular matrix is not straight-forward,

and there are many methods that were developed for this purpose.

Some examples are Gaussian elimination ,

Newton’s method and Eigendecomposition . We will not

discuss these methods in these lectures, and will only show the

practical inversion of 2× 2 matrices.
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Inverse Matrices

The inverse of a nonsingular 2× 2 matrix

A =

(
a b

c d

)

is

A−1 =
1

|A|

(
d −b
−c a

)
.

=
1

ad− bc

(
d −b
−c a

)
.
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Inverse Matrices

The inverse of a nonsingular 2× 2 matrix

A =

(
a b

c d

)

is

A−1 =
1

|A|

(
d −b
−c a

)
.

=
1

|ad− bc|

(
d −b
−c a

)
.

equal 0 when

A is singular
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Inverse Matrices

Example

The inverse of the matrix

A =

(
3 −1
0 2

)

is

A−1 =
1

3 · 2−����(−1) · 0

(
2 1

0 3

)

=
1

6

(
2 1

0 3

)
.
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Inverse Matrices

Since multiplying a nonsingular matrix by its inverse results in the

identity matrix, inverse matrices represent the inverse

transformations, i.e. if A represents the transformation T , then

A−1 represents the transformation T−1.
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Inverse Matrices

Let’s use inverse matrices to construct the general 2× 2 reflection

matrix.

We know how to reflect across the x-axis: this simply means

inverting the y-component.

x

y

~v

~u
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Inverse Matrices

For a reflection across any line going through the origin, we can do

the following:

1. Rotate space to align the reflection line with the horizontal

direction.

2. Reflect across the horizontal direction (i.e. flip the

y-components of all vectors).

3. Rotate space back, i.e. by the opposite angle as before.
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Inverse Matrices

x

y
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Inverse Matrices

x

y
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Inverse Matrices

x

y
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Inverse Matrices

x

y
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Inverse Matrices

x

y
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Inverse Matrices

Writing all these operations as a matrix product:

Ref(θ) =

(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)(
1 0

0 −1

)(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)

=

(
cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)

)
.

3. Rotate back

2. Flip vertically
1. Rotate
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Kernel, Null Space

The kernel (also null space ) of a linear transformation

T : Rn → Rm is the set of all vectors that the linear

transformation maps to the zero vector in Rm, i.e.

ker(T ) =
{
~v ∈ Rn | T (~v) = ~0

}
.

The kernel of a matrix A is the kernel of the linear transformation

it represents.
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Kernel, Null Space

Any linear combination of vectors in the kernel of a transformation

T is also in its kernel.

Proof

Suppose that ~v =
k∑

i=1
αk ~wk, where ~wi ∈ ker(T ) and αi ∈ R.

Due to the linearity of T ,

T (~v) = T (α1 ~w1 + α2 ~w2 + · · ·+ αk~vk)

= α1T (~w1) + α2T (~w2) + · · ·+ αkT (~wk)

= α1~0 + α2~0 + · · ·+ αk
~0

= ~0.

Therefore, ~v ∈ ker(T ).
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Kernel, Null Space

This means that ker(T ) is a subspace of the domain of T .

Rn

ker(T )

Rm

~0

T
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Kernel, Null Space

When refering to the matrix A which represents the transformation

T , the kernel is refered to as the null space of A (denoted

Null(A)).

The dimension of Null(A) is called the nullity of A.
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Kernel, Null Space

The rank of a matrix is the dimentionality of its

column space , which is the space spanned by its columns when

regarded as vectors.

If the dimentionality of the column space of an n× n matrix is

smaller than n, the matrix is singular (i.e. it has a zero

determinant).
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Kernel, Null Space

For a matrix A of dimension n× n,

rank(A) = n⇔ |A| 6= 0.
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