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Chapter 1: Introduction

R3 f−→ R2

A
×
B
6=
B
×
A

∅ ⊂
{1, 2, 3}



Mathematical Propositions

Definition

A mathematical propostion is a statement that can be

either true or false.

Example

• The Moon’s radius is smaller than the Earth’s radius

(true)

• 1 + 2 = 3 (true)

• Protons have no electric charge (false)

• 13 > 37 (false)

2



Mathematical Propositions

Definition

A mathematical propostion is a statement that can be

either true or false.

Example

• The Moon’s radius is smaller than the Earth’s radius

(true)

• 1 + 2 = 3 (true)

• Protons have no electric charge (false)

• 13 > 37 (false)

2



Mathematical Propositions

Definition

A mathematical propostion is a statement that can be

either true or false.

Example

• The Moon’s radius is smaller than the Earth’s radius

(true)

• 1 + 2 = 3 (true)

• Protons have no electric charge (false)

• 13 > 37 (false)

2



Mathematical Propositions

Definition

A mathematical propostion is a statement that can be

either true or false.

Example

• The Moon’s radius is smaller than the Earth’s radius

(true)

• 1 + 2 = 3 (true)

• Protons have no electric charge (false)

• 13 > 37 (false)

2



Mathematical Propositions

Definition

A mathematical propostion is a statement that can be

either true or false.

Example

• The Moon’s radius is smaller than the Earth’s radius

(true)

• 1 + 2 = 3 (true)

• Protons have no electric charge (false)

• 13 > 37 (false)

2



Operators: and, or

Propositions can be grouped together with operators such as

and, or.

• The and operator returns a true statement only if both the

statements it groups are themselves true, otherwise it returns

false.

• The or operator returns true if at least one of the statements

it groups is true.
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Operators: and, or

Example

1 + 2 = 3 and 3− 5 = −2 ⇒ true

1 + 2 = 3 and 2× 4 = 7 ⇒ false

10

2
= 1 and 24 = 16 ⇒ false

7 < 5 and 10 + 2 = 13 ⇒ false
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Operators: and, or

Example

1 + 2 = 3 or 3 > 7 ⇒ true

0 + 3 = −1 or 1 = 1 ⇒ true

2× 2 = 4 or 2 + 0 = 2 ⇒ true

3× 7 = 10 or
1

2
<

1

10
⇒ false
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Operators: and, or

Example

1 + 2 = 3 or 3 > 7 ⇒ true

0 + 3 = −1 or 1 = 1 ⇒ true
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1
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1
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Operators: Truth Table

We can summarize the behaviour of operators in a truth table :

A B AND OR

true true true true

true false false true

false true false true

false false false false

6



Mathematical Notation

Other notations that will be used throughout this course:

Symbol In words

¬a not a

a ∧ b a and b

a ∨ b a or b

a⇒ b a implies b

a⇔ b a is equivalent to b

∀x For all x (...)

∃x There exists x such that (...)

a := b a is defined to be b

7



Sets

Definition

A set is a collection of elements . Elements of a set can

be any concept - be it physical (a chair, a car, a tapir) or

abstract (a number, an idea).

Note

In this course we consider only mathematical objects as

elements of sets.

Sets can have a finite or infinite number of elements.
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Sets

Sets are denoted with curly brackets.

Example

{1, 2, 3, 4} ,
{
−4, 3

7
, 0, π, i, 0.1

}
, {all even numbers} .
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Sets

The order of elements in a set does not matter.

Example

The following sets are all identical:

{1, 2, 3, 4} = {1, 3, 2, 4} = {2, 1, 4, 3} .

Note

There is no repetition in sets, i.e. {1, 1, 3, 3, 3, 3, 5} is not a

proper set, contrary to e.g. {1, 3, 5}.
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Sets

Sets can be denoted as conditions, using a vertical separator to

denote conditions .

Example

The following set contains all odd numbers between 0 and

10: {
x is odd | 0 < x < 10

}
.

It can also be written explicitly:

{1, 3, 5, 7, 9} .

11
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Sets

Sets are usually denoted with an uppercase latin letter, while their

elements as lowercase latin or greek letters. The notation ∈ means

that an element belongs to a set.

Example

For the two sets

A = {1, 2, 5, 7} , B = {even numbers} ,

all the following propostions are true:

1 ∈ A, 2 ∈ A, 5 ∈ A, 7 ∈ A,
2 ∈ B, 1 /∈ B, 5 /∈ B, 7 /∈ B.
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Sets

The number of elements in a set (also called its cardinality ) is

denoted with two vertical bars.

Example

S = {−3, 0,−2, 7, 1} ⇒ |S| = 5.
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The Empty Set

An important special set is the empty set , which is the set

containing no elements. It is denoted by ∅, and has the unique

property that ∣∣∅∣∣ = 0.

14



Subsets and Supersets

If a set A contains all the elements in a set B (and perhaps

additional elements), then B is said to be a subset of A, and A

a superset of B.

Example

The sets

A = {0,−3} , B = {5,−3, 1} , C = {−2, 2, 1} ,

are some of the subsets of

D = {0,−3, 5, 1, 2,−2} .

Equivalently, D is a superset of A,B and C.
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Subsets and Supersets

Note

All sets are supersets and subsets of themselves. This is a

direct consequence of the definition of supersets and subsets.
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Subsets and Supersets

We denote that A is a superset of B as

B ⊆ A.

A Venn Diagram representation of this fact looks as following:

A

B
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Subsets and Supersets

If for some two sets A,B both A ⊆ B and B ⊆ A, then the sets

are identical.

Formally, this fact is written as

A ⊆ B ∧B ⊆ A⇔ A = B.
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Intersections and Unions

Definition

The intersection of two sets A and B is the set of all

elements that are both in A and in B.

Example

Given the sets

A = {1, 2, 5, 6, 7} , B = {−1, 0, 1, 5, 10, 13, 15} ,

the intersection of A and B is {1, 5}.
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Intersections and Unions

The symbol denoting intersection is ∩. An intersection can be

formally defined as

A ∩B =
{
x | x ∈ A ∧ x ∈ B

}
(read: ”the intersection of A and B is the set containing all

elements x, such that x is in A and x is in B”)
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Intersections and Unions

A Venn diagram visualization of A ∩B (green area):

A BA ∩B
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Intersections and Unions

If the intersection of two sets is empty (A ∩B = ∅), then the sets

are said to be disjoint :

A B
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Intersections and Unions

Definition

The union of two sets A,B is the set of all elements that

are either in A or in B (or both).

Example

The union of the sets

A = {−5, 7, 1} , B = {10,−2,−5, 2} ,

is

A ∪B = {10,−2,−5, 2, 7, 1} .
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Intersections and Unions

The symbol denoting union is ∪. A union can be formally defined

as

A ∪B =
{
x | x ∈ A ∨ x ∈ B

}
(read: ”the union of A and B is the set containing all elements x,

such that x is in A or x is in B”)
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Intersections and Unions

A Venn diagram visualization of A ∪B (purple area):

A B
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Intersections and Unions

The number of elements in a union of two sets A and B is

|A ∪B| = |A|+ |B| − |A ∩B|

Note

If A,B are disjoint, |A ∪B| = |A|+ |B| (because |A ∩B| =
0).
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Difference of Sets

Definition

The difference of A and B is the set of all elements in A

that are not elements of B. This is written as A− B (or

sometimes A \B).

Example

For the sets

A = {1, 5, 9, 10} , B = {−3, 2, 5, 9, 13} ,

The differences are

A−B = {1, 10} , B −A = {−3, 2, 13} .
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Difference of Sets

Formally:

A−B =
{
x | x ∈ A, x /∈ B

}

A Venn diagram visualization of A−B (orange area):

A B
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Difference of Sets

Formally:

A−B =
{
x | x ∈ A, x /∈ B

}
A Venn diagram visualization of A−B (orange area):

A B
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Complement

Definition

The complement of a set A in reltaion to a superset Z ⊃ A
is the difference Z −A, and is denoted Ac.

Example

For the sets

Z = {1, 2, 3, 4, 5} , A = {1, 2, 3} ,

The complement of A in relation to Z is

Ac = {4, 5}
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Complement

Formally:

Ac =
{
x ∈ Z | x /∈ A

}
.

A Venn diagram representation:

A

Ac

Z
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Power Sets

Definition

The set of all subsets of a given set A is called the

powerset of A .

Example

All the subsets of A = {1, 2, 3} are:

∅, {1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3} , {1, 2, 3} .

Thus, the power set of A is

P (A) =
{
∅, {1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3} , {1, 2, 3}

}
.
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Power Sets

Definition

The set of all subsets of a given set A is called the

powerset of A .

Example

All the subsets of A = {1, 2, 3} are:

∅, {1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3} , {1, 2, 3} .

Thus, the power set of A is

P (A) =
{
∅, {1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3} , {1, 2, 3}

}
.
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Power Sets

Note

The empty set ∅ is a subset of all sets. Each set is also a

subset of itself.
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Important Number Sets

Some important number sets, which will be used frequently in the

course (all with infinite number of elements):

• The natural numbers (symbol: N). These are the numbers

1, 2, 3, . . . .

• The integers (symbol: Z). These are the ”whole numbers”

(i.e. not fractions). They include all the natural numbers

together with their negatives (i.e. −1,−2,−3, . . . ) and 0.

• The rational numbers (symbol: Q). As their name suggests,

they are ratios between two integers (e.g. 1
2 ,
−5
3 ,

7
13).

• The real numbers (symbol: R). These are all the numbers

on the number line (e.g. 2, π,
√
3

17 ,
√
5,−7.2, eπ). A proper

definition of the real numbers is beyond the scope of this

course.
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Important Number Sets

Additionaly, the Complex Numbers are the set of all numbers

z = a+ bi,

where a and b are both real numbers, and i is the imaginary unit,

i.e. i =
√
−1.

The complex number set has the notation C.
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Important Number Sets

Table summary:

Symbol Name Definition

N Natural numbers {1, 2, 3, 4, . . . }
Z Integers

{
0,±x | x ∈ N

}
Q Rational numbers

{
p
q | p ∈ Z, q ∈ N

}
R Real numbers Not in this course

C Complex numbers
{
a+ ib | a, b ∈ R, i =

√
−1
}

35



Important Number Sets

Note

The relations between these sets are

N ⊂ Z ⊂ Q ⊂ R ⊂ C

(the symbol ⊂ means ”a proper subset”)

Note

Although each of these sets is infinite, the actual number of

elements in R and C is bigger than the number of elements

in N,Z and Q. There are different kinds of infinities.
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Intervals

The interval [a, b] is the subset of R defined as

[a, b] =
{
x ∈ R | a ≤ x ≤ b

}
.

Example

The interval I = [−5, 3] is the set of all real numbers that

are greater than or equal to −5 and are smaller than or

equal 3.

Some examples:

−5.1 /∈ I, −5 ∈ I, 0 ∈ I, 2 ∈ I, 3 ∈ I, 4 /∈ I.
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Intervals

The interval (a, b) is the subset of R defined as

[a, b] =
{
x ∈ R | a < x < b

}
.

(i.e. same as [a, b] but excluding the actual values a and b)

Example

The interval I = (−5, 3) is the set of all real numbers that

are greater than −5 and are smaller than 3.

Some examples:

−5.1 /∈ I, −5 /∈ I, 0 ∈ I, 2 ∈ I, 3 /∈ I, 4 /∈ I.
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Intervals

Similarily, the interval [a, b) is the subset of R defined as

[a, b) =
{
x ∈ R | a ≤ x < b

}
,

and the interval (a, b] is the subset of R defined as

(a, b] =
{
x ∈ R | a < x ≤ b

}
.

(i.e. in the notation for intervals a square bracket means

”less/more than or equal to”, while a round braket means

”less/more than” - without the ”equal to” part)
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Cartesian Products

Definition

The cartesian product of two sets A,B (denoted A ×
B) is the set of all possible ordered pairs, where the first

component is an element of A and the second component is

an element of B.

Example

Consider A = {1, 2, 3} , B = {x, y}. Then:

A×B =
{
(1, x) , (1, y) , (2, x) , (2, y) , (3, x) , (3, y)

}
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Cartesian Products

Note

The cartesian product of two sets A,B is not commutative,

i.e.

A×B 6= B ×A,

unless A = B or any one of the sets (or both) is the empty

set.
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Cartesian Products

Defining a cartesian product formally:

A×B =
{
(a, b) | a ∈ A, b ∈ B

}
.

The number of elements in a cartesian product is

|A×B| = |A| · |B|.

The definition of a cartesian product can be expanded to n ∈ N
sets A1, A2, . . . , An:

A1×A2×· · ·×An =
{
(a1, a2, . . . , an) | a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An

}
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Cartesian Products

The definition can be made more compact by the use of the

product symbol
∏

:

n∏
i=1

Ai =
{
(a1, a2, . . . , ai) | ai ∈ Ai, i = 1, 2, . . . , n

}
.

Note

The symbol
∏

is a generalized product notation. It will be

discussed in more details later in the course.

43



Cartesian Products

The definition can be made more compact by the use of the

product symbol
∏

:

n∏
i=1

Ai =
{
(a1, a2, . . . , ai) | ai ∈ Ai, i = 1, 2, . . . , n

}
.

Note

The symbol
∏

is a generalized product notation. It will be

discussed in more details later in the course.

43



Cartesian Products

A cartesian product of the same set is written in an similar way to

a power. For example

R× R = R2,

R× R× R = R3.

These are, respectively, sets of pairs of real numbers, e.g.

(−3, 1) , (π, 2), (−
√
7

13 , 0), and triples of real numbers, e.g.

(1, 2,−π) ,
(
−6, 1√

π
, 0.2

)
,
(

1
51 ,
√
3,−4

)
.

44



Cartesian Products

Example

For the set A = {a, b},

A3 =
{
(aaa), (aab), (aba), (abb), (baa), (bab), (bba), (bbb)

}
.

For the set B = {1, 2, 3},

B2 =
{
(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3),

(3, 1), (3, 2), (3, 3)
}
.
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Cartesian Products

Example
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{
(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3),

(3, 1), (3, 2), (3, 3)
}
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Relations Between Sets

Definition

A relation between two sets A and B is a way to ”connect”

the elements in the two sets in pairs. It is a subset of the

cartesian product A×B.

Example

An example relation between the sets A = {1, 2, 3, 4, 5} and

B = {α, β, γ} is

R =
{
(1, α), (2, α), (3, β), (3, γ), (5, γ)

}
.
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Relations Between Sets

Definition

A relation between two sets A and B is a way to ”connect”

the elements in the two sets in pairs. It is a subset of the

cartesian product A×B.

Example

An example relation between the sets A = {1, 2, 3, 4, 5} and

B = {α, β, γ} is

R =
{
(1, α), (2, α), (3, β), (3, γ), (5, γ)

}
.
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Relations Between Sets

The previous relation can be visually represented as following:

1

2

3

4

5

A

α

β

γ

B

Note

Notice how not all elements are connected, and some ele-

ments in each set are connected to the same element in the

other set.
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Reversed Relations

The previous relation can be reversed, yielding a subset of B ×A:

R−1 =
{
(α, 1), (α, 2), (β, 3), (γ, 3), (γ, 5)

}
.

Graphically:

1

2

3

4

5

A

α

β

γ

B
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Reversed Relations

The previous relation can be reversed, yielding a subset of B ×A:

R−1 =
{
(α, 1), (α, 2), (β, 3), (γ, 3), (γ, 5)

}
.

Graphically:

1
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4
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Functions

Definition

A function between the sets A,B is a relation in which for

every element a ∈ A there is exactly one connection to an

element b ∈ B.

Example

A function from a set A to a set B:

1
2
3
4
5

A

α

β
γ

δ

B
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Functions

Definition

A function between the sets A,B is a relation in which for

every element a ∈ A there is exactly one connection to an

element b ∈ B.

Example

A function from a set A to a set B:

1
2
3
4
5

A

α

β
γ

δ

B
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Functions

Example

A relation which is NOT a function from A to B:

1
2
3
4
5

A

α

β
γ

δ

B
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Functions

Two additional terms that are used interchangeably with function

are transformation and map .
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Functions

Note

A function can have more than one element a ∈ A connected

to the same element b ∈ B. The only restriction is that no

element a ∈ A is connected to more than one element

b ∈ B.
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Functions

A common notation to a function f connecting between elements

of the sets A and B is

f : A −→ B .

Domain of f Image of f
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A common notation to a function f connecting between elements
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Functions

When used in practice, a common notation to show that an

element x ∈ A is connected to another element y ∈ B is

f(x) = y,

i.e. the function f applied to the element x ∈ A returns the

element y ∈ B.
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Real Functions

In part 3 of the course we will deal with functions of the form

f : R −→ R,

which we call real functions , i.e. functions that take a real

number x and return a real number y.

Example

The functions

f1(x) = 2x2 − 5, f2(x) = sin

(
x

3

)
, f3(x) =

1√
2π
e−

x2

2

are all real functions.
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Plotting Real Functions

We can plot a real function f on a cartesian coordinate system by

drawing a dot in each coordinate (x, y), where x is an element in

the domain of f , and y is its image (i.e. f(x) = y).
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Plotting Real Functions

Example

Plotting the function f(x) = x2 − x− 1.5:

−2 −1 1 2

−2

−1

1

2

x

y
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Injective, Surjective and Bijective Functions

A function is called injective if each of the elements in its

image is connected to by a single element in its domain.

Example

1

2

3

4

A

α

β

γ

δ

B

Injective

1

2

3

4

5

A

α

β

γ

δ

B

Not injective

57



Injective, Surjective and Bijective Functions

A function is called injective if each of the elements in its

image is connected to by a single element in its domain.

Example

1

2

3

4

A

α

β

γ

δ

B

Injective

1

2

3

4

5

A

α

β

γ

δ

B

Not injective
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Injective, Surjective and Bijective Functions

A function is called surjective if all of the elements in its image

are connected to by some element in its domain.

Example

1

2

3

4

A

α

β

γ

δ

B

Surjective

1

2

3

4

A

α

β

γ

δ

B

Not surjective
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Injective, Surjective and Bijective Functions

A function is called surjective if all of the elements in its image

are connected to by some element in its domain.

Example

1

2

3

4

A

α

β

γ

δ

B

Surjective

1

2

3

4

A

α

β

γ

δ

B

Not surjective
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Injective, Surjective and Bijective Functions

A function that is both injective and surjective is called

bijective .
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Injective, Surjective and Bijective Functions

Example

Let’s look at a few examples of real injective, surjective and

bijective functions over R:

• f(x) = x, injective + surjective = bijective.

−4 −2 2 4

−4

−2

2

4

x

y
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Injective, Surjective and Bijective Functions

Example

Let’s look at a few examples of real injective, surjective and

bijective functions over R:

• f(x) = x2, neither injective nor surjective.

−4 −2 2 4

−4

−2

2

4

x

y
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Injective, Surjective and Bijective Functions

Example

Let’s look at a few examples of real injective, surjective and

bijective functions over R:

• f(x) = x3 − 2x2, surjective.

−4 −2 2 4

−4

−2

2

4

x

y
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Injective, Surjective and Bijective Functions

Example

Let’s look at a few examples of real injective, surjective and

bijective functions over R:

• f(x) = ex, injective.

−4 −2 2 4
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2

4

x

y
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Injective, Surjective and Bijective Functions

Example

Let’s look at a few examples of real injective, surjective and

bijective functions over R:

• f(x) = sin(x), neither injective nor surjective.

−4 −2 2 4

−4

−2

2

4

x

y
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Injective, Surjective and Bijective Functions

Note

Every non-surjective function can be made surjective by

excluding the elements its image that are not connected to

by any element in its domain.

For example, the function f(x) = sin(x) is not surjective

as a function f : R → R, but is surjective as a function

f : R→ [−1, 1].
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Multivariable Functions

Functions may have several arguments and return several

arguments.

Example

The following functions take as input three real numbers, and

return a single real number (f : R3 → R). The return value

of some functions for a triplet of real numbers, (−5, 7, 1),
are:

• f (x, y, z) = x+ y+ z ⇒ f (−5, 7, 1) = −5+ 7+1 = 3

• f (x, y, z) = x2 − y2 ⇒ f (−5, 7, 1) = 25− 49 = −24
• f (x, y, z) = x√

y+z ⇒ f (−5, 7, 1) = 5√
7+1
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Multivariable Functions

Example

The function f : Z× N −→ Q is defined as

f(p, q) =
p

q
.

The return values of f for some example inputs are

• f(1, 2) = 1
2 ,

• f(−5, 2) = −5
2 = −2.5,

• f(0, 13) = 0
13 = 0.
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Composition of Functions

Functions can be composed together, generating new functions.

Example

Consider the functions

f(x) = x2, g(x) = sin(x).

We can compose the two functions in two ways:

• g1(x) = f
(
g(x)

)
=
[
sin(x)

]2
, and

• g2(x) = g
(
f(x)

)
= sin(x2).
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Composition of Functions

We denote a composition of two functions f : A→ B and

g : B → C as

g ◦ f : A→ C.

Note

For a composition to be valid, the domain of the second

function (here g) must be the same as the image of the first

function.
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Composition of Functions

Example

A graphical representation of composing two functions:

1

2

3

4

A

α

β

γ

δ

Bf g

a

b

c

C

g ◦ f
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Composition of Functions

Example

A graphical representation of composing two functions:

1
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4

A

α
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Bf g

a

b

c

C
g ◦ f
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Graphs

Definition

A graph is a mathematical structure composed of nodes

connected to other nodes by edges .

Example

A graph with 5 nodes and 7 edges:

Node

Edge
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Graphs

Definition

A graph is a mathematical structure composed of nodes

connected to other nodes by edges .

Example

A graph with 5 nodes and 7 edges:

Node

Edge
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Graphs

In the graphical representation of a graph, the actual position of

nodes does not matter - what matters are the connections (edges)

between them.

Example

The following three graphs are identical:
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In the graphical representation of a graph, the actual position of

nodes does not matter - what matters are the connections (edges)

between them.

Example
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Graphs

Definition

A graph in which edges have directions is called a

directed graph .

Example

A directed graph with 4 nodes and 6 edges:
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directed graph .

Example

A directed graph with 4 nodes and 6 edges:

69



Graphs

Definition

A path in a graph is a sequence of edges in which each

edge shares a vertex with the previous edge (except the first

edge).

Example

A path in a graph (note that the nodes are labeled):

1

2 3

4 5

6 7

8
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Graphs

Definition

A path in a graph is a sequence of edges in which each

edge shares a vertex with the previous edge (except the first

edge).

Example

A path in a graph (note that the nodes are labeled):

1

2 3

4 5

6 7

8
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Graphs

Definition

When the start and end vertices coincide the path is known

as a circle . A directed circle is known as a cycle .
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Graphs

Definition

If one or more pathes exist between two vertices a, b in a

graph, the number of edges in the shortest path is defined to

be the distance between the two vertices, and is denoted

as dist(a, b).
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Graphs

Example

In the following graph three paths between vertices a and

b are shown. The number of edges in the shortest path,

highlighted in red, is defined as the distance dist(a, b), and

is equal to 3.

a b
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Graphs

Definition

A tree is a graph with no circles.

Example

A tree (notice that no circles are present):
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Definition

A tree is a graph with no circles.

Example

A tree (notice that no circles are present):
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Graphs

Some trees have a distinctive root node, and are known as

rooted trees . A node that is ”branched” from a higher level

node is called a child node . The last level nodes are called

leaves (singular: leaf). The rest of the nodes are known as

inner nodes .
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Graphs

Example

A rooted tree, with the root node highlighted in red and the

leaves in green:

Root

Children of root

In
n

er
n

o
d

es

Leaves
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Graphs

Definition

A tree with 2 children per node (except the leaves) is called

a binary tree . Similarily, trees can be ternary, quaternary,

etc.

Example

A binary tree:
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Graphs

Rooted trees are used to describe hierarchies, e.g. in biological

systematics, organisations or nested directories of data.
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Graphs

Definition

The complete graph Kn is the graph with n vertices where

every pair of different vertices is connected by an edge (Also

called a clique ).

Example

The cliques K1, . . . ,K6:

K1 K2 K3 K4 K5 K6
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