
〈êi, êj〉 = δij

T (α~u + β~v) = αT (~u) + βT (~v)
A~v = λ~v

Rot(θ) =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
A = QΛQ

−1
~v =

n∑
i=1

αi êi

Rn T−→ Rm
(AB)> = B

>A>
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Chapter 6: Eigenvectors and

Eigenvalues
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Definition

An eigenvector of a transformation T : Rn → Rm is a vector

that doesn’t change its direction under the transformation.

Example

The transformation represented by the matrix

A =

(
1.75 0

0 0.5

)

scales each vector by 1.75 in the x-direction and by 0.5 in

the y-direction. After aplication of the transformation, any

vector on the x-axis remains on the x-axis (and is scaled by

1.75), and any vector on the y-axis remains on the y-axis

(and is scaled by 0.5).
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x

y

3



Definition

Example

x

y

3



Definition

In matrix form, the general eigenvalue equation looks as follows:

A~v = λ~v,

where λ ∈ R is the scalar by which ~v is streched after the

application of A.

We call λ the eigenvalue corresponding to the eigenvector ~v.
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Definition

Example

In the previous example, the vectors lying on the x-axis have

the corresponding eigenvalue λ1 = 1.75, while the vectors

lying on the y-axis have the corresponding eigenvalue λ2 =

0.5.
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Some Properties of Eigenvectors and Eigenvalues

Due to linearity, any scale of an eigenvector of a transformation T

is also an eigenvector of the transformation, with the same

eigenvalue.

Proof

Let A be a matrix with an eigenvector ~v. Then for any scale

α~v (α ∈ R):

A (α~v) = αA~v = α (λ~v) = λ (α~v) .
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Some Properties of Eigenvectors and Eigenvalues

All the linearly independent eigenvectors of a transformation

T : Rn → Rn form a subspace of Rn.
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Some Properties of Eigenvectors and Eigenvalues

Linearly independent eigenvectors can have the same eigenvalues.

Example

The matrix

A =




1 0 1

−2 3 1

−2 0 4




has three linearly independent eigenvectors:

~v1 =



1

1

1


 , ~v2 =



0

1

0


 , ~v3 =



1

0

2


 ,

with respective eigenvalues λ1 = 2, λ2 = λ3 = 3.
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Some Properties of Eigenvectors and Eigenvalues

Definition

The number of linearly independent vectors with the same

eigenvalue is called the geometric multiplicity of the

eigenvalue

Example

In the previous matrix, the eigenvalue λ = 2 has a geometric

multiplicity of 1, and the eigenvalue λ = 3 has a geometric

multiplicity of 2.
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Finding the Eigenvectors of a Matrix

We can rearrange the eigenvalue equation

A~v = λ~v

to the form

A~v − λ~v = ~0,

and group ~v together, yielding

(A− λI)~v = ~0.

We get that ~v is the null space of the matrix A− λI.
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Finding the Eigenvectors of a Matrix

Since we assume that ~v 6= ~0 (otherwise the eigenvalue equation is

somewhat pointless), this means that |A− λI| = 0, since the null

space of A− λI has more than just the zero vector.

The expression P (λ) = |A− λI| is actually a polynomial equation,

due to way determinants are calculated. We therefore call P (λ)

the characteristic polynomial of the matrix A.

Solving for P (λ) = 0 yields all the eigenvalues of A.
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Finding the Eigenvectors of a Matrix

Example

The characteristic polynomial of the matrix

A =

(
1 0

−1 3

)

is

P (λ) =

∣∣∣∣∣
1− λ 0

−1 3− λ

∣∣∣∣∣ = (1− λ) (3− λ)−����0 · (−1).

Thus, the solutions for P (λ) = 0 are λ1 = 1, λ2 = 3.
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Finding the Eigenvectors of a Matrix

Example

We therefore know that the matrix A has some eigenvector

with eigenvalue λ = 1. Let’s find it: we want to multiply A

by a generic vector, and equate the solution to the generic

vector (meaning that it has an eigenvalue λ = 1).

(
1 0

−1 3

)(
x

y

)
=

(
x

−x+ 3y

)
= 1 ·

(
x

y

)
,

this will happen when x = 1, y = 0.5, i.e. the vector ~v1 =(
1

0.5

)
is an eigenvector of A. Let’s verify this by applying

A to ~v1.
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Finding the Eigenvectors of a Matrix

Example

This yields

(
1 0

−1 3

)(
1

0.5

)
=

(
1 + 0

−1 + 1.5

)
=

(
1

0.5

)
,

i.e. ~v1 is indeed an eigenvector of A with λ = 1.
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Finding the Eigenvectors of a Matrix

Example

Now for λ = 3:
(

1 0

−1 3

)(
x

y

)
= 3 ·

(
x

y

)
=

(
x

−x+ 3y

)
.

The solution in this case is x = 0, y = 1, i.e. the vector

~v2 =

(
0

1

)
. Verifying:

(
1 0

−1 3

)(
0

1

)
=

(
1 · 0 + 0 · 1
−1 · 0 + 3 · 1

)
=

(
0

3

)
= 3

(
0

1

)
.

This means that ~v2 is indeed an eigenvector of A with λ2 = 3.
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Diagonalizing Matrices

Some matrices can represent complicated looking transformations

but actually perform a simple scaling if we change our perspective.

Example

The matrix A =

(
1.25 0.75

0.75 1.25

)
performs the following trans-

formation:

x

y
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Diagonalizing Matrices

Example

We can rotate space such that its eigenvectors, ~v1 =(
1

1

)
(λ1 = 2) and ~v2 =

(
−1
1

)
(λ2) = 0.5, are aligned with

the axes:

x

y
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Diagonalizing Matrices

Example

In this perspective, applying A is simply a scaling by 2 in the

x-direction and by 0.5 in the y-direction:

x

y
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Diagonalizing Matrices

Example

This unisotropic scaling is expressed as a diagonal matrix:

D =

(
2 0

0 0.5

)
.

To bring the diagonal matrix D ”back” to be the original

matrix A, we need to multiply it from both sides:

A =

(
1.25 0.75

0.75 1.25

)
=

(
1 −1
1 1

)(
2 0

0 0.5

)(
0.5 0.5

−0.5 0.5

)
.

P = Eigenvectors of A

D, Eigenvalues of A

P−1
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Diagonalizing Matrices

A matrix A that can be brought to a diagonal form is called a

diagonalizable matrix . It can be decomposed as following:

A = P D P−1

Eigenvectors of A

Eigenvalues of A

Inverse of P

A matrix which can’t be diagonalized is called a

defective matrix .

20


	Chapter 6: Eigenvectors and Eigenvalues

