

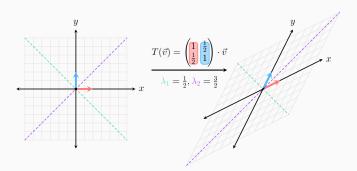
Mathematics and Computer Science (B.MES.108) Summer Semester, 2020

Part 1: Linear Algebra for Non-Mathematicians

Peleg Bar Sapir

$$(AB)^{\top} = B^{\top}A^{\top} \qquad \mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{m}$$
$$\vec{v} = \sum_{i=1}^{n} \alpha_{i} \hat{e}_{i}$$
$$A = QAQ^{-1}$$
$$Rot(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} A \vec{v} = \lambda \vec{v}$$
$$T (\alpha \vec{u} + \beta \vec{v}) = \alpha T (\vec{u}) + \beta T (\vec{v})$$
$$(\hat{e}_{i}, \hat{e}_{j}) = \delta_{ij}$$

Chapter 6: Eigenvectors and Eigenvalues



Definition

An **eigenvector** of a transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is a vector that doesn't change its direction under the transformation.

Definition

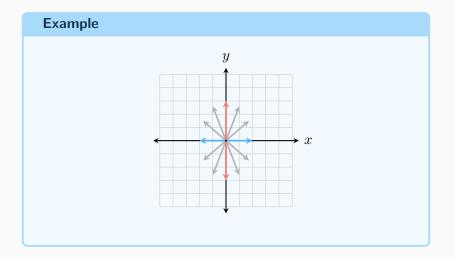
An **eigenvector** of a transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is a vector that doesn't change its direction under the transformation.

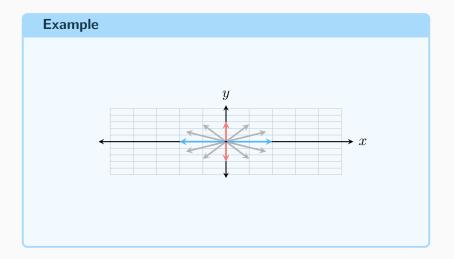
Example

The transformation represented by the matrix

$$A = \begin{pmatrix} 1.75 & 0\\ 0 & 0.5 \end{pmatrix}$$

scales each vector by 1.75 in the *x*-direction and by 0.5 in the *y*-direction. After aplication of the transformation, any vector on the *x*-axis remains on the *x*-axis (and is scaled by 1.75), and any vector on the *y*-axis remains on the *y*-axis (and is scaled by 0.5).





In matrix form, the general eigenvalue equation looks as follows:

 $A\vec{v} = \lambda\vec{v},$

where $\lambda \in \mathbb{R}$ is the scalar by which \vec{v} is streched after the application of A.

We call λ the **eigenvalue** corresponding to the eigenvector \vec{v} .

Example

In the previous example, the vectors lying on the x-axis have the corresponding eigenvalue $\lambda_1 = 1.75$, while the vectors lying on the y-axis have the corresponding eigenvalue $\lambda_2 = 0.5$.

Due to linearity, any scale of an eigenvector of a transformation T is also an eigenvector of the transformation, with the same eigenvalue.

Proof

Let A be a matrix with an eigenvector \vec{v} . Then for any scale $\alpha \vec{v} \ (\alpha \in \mathbb{R})$:

$$A(\alpha \vec{v}) = \alpha A \vec{v} = \alpha (\lambda \vec{v}) = \lambda (\alpha \vec{v}).$$

All the linearly independent eigenvectors of a transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ form a subspace of \mathbb{R}^n .

Some Properties of Eigenvectors and Eigenvalues

Linearly independent eigenvectors can have the same eigenvalues.

Example

The matrix

$$A = \begin{pmatrix} 1 & 0 & 1 \\ -2 & 3 & 1 \\ -2 & 0 & 4 \end{pmatrix}$$

has three linearly independent eigenvectors:

$$\vec{v}_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \ \vec{v}_2 = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \ \vec{v}_3 = \begin{pmatrix} 1\\0\\2 \end{pmatrix},$$

with respective eigenvalues $\lambda_1 = 2, \ \lambda_2 = \lambda_3 = 3.$

Definition

The number of linearly independent vectors with the same eigenvalue is called the **geometric multiplicity** of the eigenvalue

Example

In the previous matrix, the eigenvalue $\lambda = 2$ has a geometric multiplicity of 1, and the eigenvalue $\lambda = 3$ has a geometric multiplicity of 2.

We can rearrange the eigenvalue equation

 $A\vec{v}=\lambda\vec{v}$

to the form

$$A\vec{v} - \lambda\vec{v} = \vec{0},$$

and group \vec{v} together, yielding

$$(A - \lambda I)\,\vec{v} = \vec{0}.$$

We get that \vec{v} is the null space of the matrix $A - \lambda I$.

Since we assume that $\vec{v} \neq \vec{0}$ (otherwise the eigenvalue equation is somewhat pointless), this means that $|A - \lambda I| = 0$, since the null space of $A - \lambda I$ has more than just the zero vector.

The expression $P(\lambda) = |A - \lambda I|$ is actually a polynomial equation, due to way determinants are calculated. We therefore call $P(\lambda)$ the **characteristic polynomial** of the matrix A.

Solving for $P(\lambda) = 0$ yields all the eigenvalues of A.

Finding the Eigenvectors of a Matrix

Example The characteristic polynomial of the matrix $A = \begin{pmatrix} 1 & 0 \\ -1 & 3 \end{pmatrix}$ is $P(\lambda) = \begin{vmatrix} 1 - \lambda & 0 \\ -1 & 3 - \lambda \end{vmatrix} = (1 - \lambda) (3 - \lambda) - 0 \cdot (-1).$ Thus, the solutions for $P(\lambda) = 0$ are $\lambda_1 = 1$, $\lambda_2 = 3$.

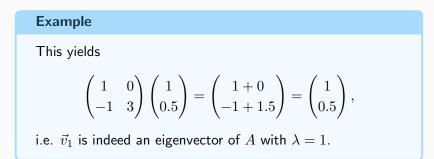
Finding the Eigenvectors of a Matrix

Example

We therefore know that the matrix A has some eigenvector with eigenvalue $\lambda = 1$. Let's find it: we want to multiply Aby a generic vector, and equate the solution to the generic vector (meaning that it has an eigenvalue $\lambda = 1$).

$$\begin{pmatrix} 1 & 0 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ -x + 3y \end{pmatrix} = 1 \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

this will happen when x = 1, y = 0.5, i.e. the vector $\vec{v}_1 = \begin{pmatrix} 1 \\ 0.5 \end{pmatrix}$ is an eigenvector of A. Let's verify this by applying A to \vec{v}_1 .



Finding the Eigenvectors of a Matrix

Example

Now for $\lambda = 3$:

 $\begin{pmatrix} 1 & 0 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 3 \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ -x + 3y \end{pmatrix}.$

The solution in this case is x = 0, y = 1, i.e. the vector $\vec{v}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Verifying:

$$\begin{pmatrix} 1 & 0 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 0 + 0 \cdot 1 \\ -1 \cdot 0 + 3 \cdot 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \end{pmatrix} = 3 \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

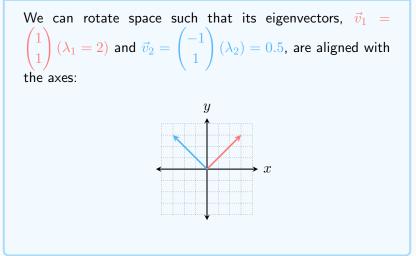
This means that \vec{v}_2 is indeed an eigenvector of A with $\lambda_2 = 3$.

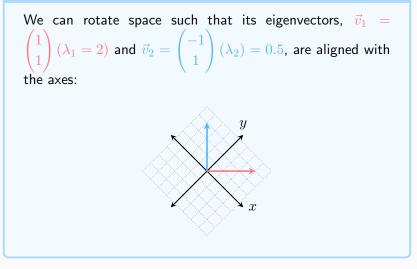
Some matrices can represent complicated looking transformations but actually perform a simple scaling if we change our perspective.

The matrix
$$A = \begin{pmatrix} 1.25 & 0.75 \\ 0.75 & 1.25 \end{pmatrix}$$
 performs the following transformation:

Some matrices can represent complicated looking transformations but actually perform a simple scaling if we change our perspective.

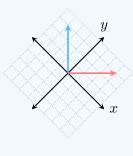
The matrix
$$A = \begin{pmatrix} 1.25 & 0.75 \\ 0.75 & 1.25 \end{pmatrix}$$
 performs the following transformation:





Example

In this perspective, applying A is simply a scaling by 2 in the x-direction and by 0.5 in the y-direction:



Example

In this perspective, applying A is simply a scaling by 2 in the x-direction and by 0.5 in the y-direction:

Example

This unisotropic scaling is expressed as a diagonal matrix:

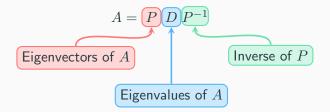
$$D = \begin{pmatrix} 2 & 0 \\ 0 & 0.5 \end{pmatrix}$$

To bring the diagonal matrix D "back" to be the original matrix A, we need to multiply it from both sides:

 $D, \ensuremath{\mathsf{Eigenvalues}}$ of A

$$A = \begin{pmatrix} 1.25 & 0.75 \\ 0.75 & 1.25 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 0.5 \end{pmatrix} \begin{pmatrix} 0.5 & 0.5 \\ -0.5 & 0.5 \end{pmatrix}.$$
$$P = \text{Eigenvectors of } A \qquad P^{-1}$$

A matrix A that can be brought to a diagonal form is called a **diagonalizable matrix**. It can be **decomposed** as following:



A matrix which can't be diagonalized is called a **defective matrix**.