5. Foundations of programming

Paradigms of programming:

Different viewpoints and ways of thinking
about how to conceive a computer and a
programme

Imperative paradigm:

Computer = machine for the manipulation of
variables

Programme = sequence of commands which
change values of variables, together with
specifications of the control flow (telling which
command is executed next)

Languages: Fortran, Pascal, Basic, C ...

Example (works in C or Java or XL):

X =0;
while (x < 100)
X=X+ 2;

The variable x is used to produce the even

numbers from O to 100.
Attention: The assignment command X =X + 2 IS not
a mathematical equality!

60

Object-oriented paradigm:

Computer = environment for virtual objects which
are created and destroyed during runtime (and can
Interact)

Programme = collection of general descriptions of
objects (so-called classes), together with their
hierarchical dependencies (class hierarchy)
Objects can contain data and functionality
(methods)

Languages: Smalltalk, C++, Java, ...

Example (in Java):

public class Car extends Vehicle

{

public String name;
public int places;
public void print_data()

{

System.out.printin("The car is a " + name);
System.out.printin("lt has " + places + "places");

}
}

Typical: class (Car) with data (name, places) and
methods (print_data). The class Car inherits

further data and methods from a superclass,
Vehicle

61

Rule-based paradigm:

Computer = machine which transforms a given
structure according to given rules

Programme = set of transformation rules
(sometimes also called a grammar)

Each step of programme application consists of
two substeps: Finding an applicable rule (matching
step) and transformation of the current structure
according to that rule (rewriting step).

Languages: Prolog, Al-languages, L-system
languages, particularly XL

Example (in XL):

public void apply()

[

F(x) ==> F(x/3) RU(-60) F(x/3) RU(120)
F(x/3) RU(-60) F(x/3):

]

produces the so-called Koch curve:

62

Readability of programmes by humans

programmes: have to be executed by computers, but
also to be understood by humans

Executability can be checked automatically,
understandability not!

— Recommendations:

make frequent use of programme comments
(/*...* or /... In Java, C++ or XL)

use plenty of newlines and blanks

put braces { ... } in lines of their own, put

matching braces in same horizontal position:
{

.

indentation makes containment and nesting of
programme components visible

avoid long lines, insert line breaks for readability
avoid very long methods

use "speaking" variable and function names
(int iteration_counter Is better than int x127 1)

do not use variable names twice for different
purposes, even if the language allows it

Initialise constants, default values etc. at the
beginning of a source code file, not somewhere
"deep in the code" where you don't find them
later on

adhere to conventions used by competent

programmers!
63

Basic parts of Java and XL

Remark: The language XL is an extension of Java.
The following examples can be compiled and run
with GrolMP (see www.grogra.de), a modelling
platform which contains a development toolkit for
XL and possibilities for visualization.

A first demonstration programme:

[* A simple Java programme for execution
with the GrolMP software. */

protected void init()

{
printin("Hello World!");

}

(= example file prog_ex01.rgg)

Download of GrolMP:
https://sourceforge.net/projects/groimp/

64

Basic components

Comments, spaces, newline: For human readability, and for separa-
ting words (just like in normal written language).

Special symbols: To denote different kinds of groupings, to termi-
nate commands, to construct paths etc.

Examples: Braces {, }; parentheses (,) ; brackets [, 1; dot; double-
quotes "; semicolon

Literal values: character sequences representing a value directly,
like a digit sequence for a number, or a character sequence in dou-
ble quotes for a string.

Example: "Hello World!™

Sequences of letters or digits, starting with a letter: different cate-
gories: 1) Keywords, 2) predefined identifiers, 3) newly declared
identifiers.

1) Keywords: Are fixed in the language proper, can not be given a
new meaning

Examples: public, class, static, void , prot ect ed

2) Predeclared identifiers: Meaning fixed by a declaration in the
context, often can be “overwritten”, i.e. given a new meaning. Ex-
amples:

String: data type for character sequences
println: predefined method — invoked with a string as its

argument, it writes the string to the GrolMP console (a special
output window) and adds a line feed.

65

3) newly declared identifiers: Their meaning is fixed by
(explicit or implicit) declarations in the programme itself.
Example: init is the name of the method which writes the
text to the console. It expects no arguments (init()).

Use of simple data types and the "while" loop

[* A simple demonstration program,
printing out the numbers from 0 to 10
and their squares, each pair
on an extra line. */

protected void init()

L
int i;
1 =0;
while (i <= 10)
{
println(i + ": " + (i*));
| = i+1;
}
printin("Finished!");
}

(example file prog ex02.rgg)

66

While loop

while starts a loop: A sequence of commands which, under some
condition, are executed repeatedly.

First, the condition given in parentheses is checked. Result must
be boolean. Our example: Comparison of the current value of 1 (0)
with 10.

0<=10 is true: Thus, the body of the loop is executed: Pair of values
0 and 0*0 are printed, and i is incremented by one.

Then, execution continues with the check of the condition, and the
loop is repeated until 1 has value 11, suchthati <= 10 becomes
false.

Then, the loop body is not repeated again, and the main method
finishes.

Assignments

In our example:

| = 0;

the variable named i gets the new value O

« fundamental operation in the imperative
programming paradigm

effect. content of a place in the memory is changed

Attention:

1 =0 In a Java programme does not have
the same meaning as in a mathematical formula!
E.g.,i=i+1 would mathematically be a contradiction

(it would imply 0 = 1)
67

— but makes sense in a programme (increment i by 1).

Mathematical meaning of this assignment:
Inew = loild + 1.

In assignments, the order is relevant:
X1 = x2; has another effect as x2 = x1;

To underline the asymmetry, other languages (e.g.,
Pascal) use := Instead of = for assignments.

XL allows both notations

(but with a slightly different meaning: := denotes a
deferred assignment, i.e., it enables a quasi-
parallel execution with other assignments.)

Comparison (checking for equality) is expressed in
Java, Cand XL by ==

Java offers further assignment operators besides = :
a+=Db // add content of b to the content of a

—=, *=, /= etc. analogously.

68

Data types:

describe sets of values and the operations which
can be performed on them.

Example: integers, with arithmetical operations (+,
—, *, 1, %) and comparisons (<, <=, >, >=, ...).

In the example programme: int , String

Int : type of 32-bit two's complement integers.
The variable i used for running through the
argument list has this type.

| starts with value 0 and is incremented in the loop
until it has value 11.

String : type of character sequences. printin
expects a variable of this type as its argument.
Numbers are implicitly converted to strings here.
Concatenation of strings by +.

("Operator overloading": different meanings of + for
numbers and for strings.)

69

Literals

Literals denote values directly
String literals: Strings in quotes
Used character code for the string content: 16-bit Unicode

Special characters in strings: \: is used to introduce something “spe-
cial”. Examples:

\UXXXX (XXXX up to four hexadecimal digits):
The number of a Unicode character

\n: a line break; \ t: a tabulator; \xxx, xxx a three-digit n octal
number: The character with the given octal code.

Number literals: Signed digit sequence for integer types; for
float types: decimal point and “E"-Notation. Examples: +3453;
3.141592653; 1.17E-6

Primitive Java data types:

primitive data type defaults size (bits) min/max

boolean false 1 n.a./n.a.

Unicode characters:

char \uoooo 16 \u0000/\uFFFF

Two’s complement integers:

byte 0 8 -128/127

short 0 16 -32768/32767

int 0 32 -2147483648/2147483647

long 0 64 -9223372036854775808/
9223372036854775807

IEEE 754 floating-point numbers:

(min/max are those of absolute values)

float 0.0 32 1.4023985E-45/3.40282347E+38

double 0.0 64 4.94065645841246544E-324/
1.79769313486231570E+308

void: quasi-type for methods which return no value

70

Non-primitive Java data types: Arrays and objects

Arrays: collections of elements of the same type, accessed by
number (from 0). Example declarations of integer arrays:

int[] p = {1,3,2,10};

int[] g = new int[5];

int[] r:

Values after these declarations:

p points to a memory block of four integers, with values 1, 3, 2 and
10.

g points to a memory block of five integers, all values 0.

r does not point anywhere (it has the special value null). This
can be changed by the allocation of a block of memory via the Java
operation new:

r = new int[1000];

Now, r points to a memory block of 1000 integers, all 0.

r = p;

Now, r points to the same memory block as p.

Array declarations and operations
Non-allocating declaration: int []1 a empty;

Allocated with room for 10 elements:
int[] a ten = new int[10];

Initialized array: int [1 lookup = {1,2,4,8,16,32,64,128};

Multiple dimensions: boolean[] [] bw screen =
new booclean[1024] [768] ;

Non-rectangular: int [] [] pascal triangle =
{{1},{2,2},{1,2,2},{1,2,3,2},{1,4,6,4,1},{1,5,10,10,5,1}};

Array access: by integer-index in brackets. Start at 0. Array-access
is checked (index may not be negative or too large)

Number of elements of array a: a.length

71

Objects: collections of elements of arbitrary types, plus associated
operations, accessed by name.

Object types must be declared before they can be used; example:

clases color |
String name;
float red;
float green;
float blue;

Use of object types

I

// Declare three color variables.
color r,w,b;

// Initialize the color wvariables to red, white and black.

r = new color;
r.name = "Red"; r.red = 1.0; r.green = 0.0; r.blue = 0.0;
W = hnew color:
w.name = "White"; w.red = 1.0; w.green =10; w.blue = 1.0;
b = new color;
b.name = "Black"; b.red = 0.0; b.green = 0.0; b.blue = 0.0;

Both non-primitive data types are handled by reference: The varia-
ble content is just the address of a memory block.

An assignment to such a variable only changes this address, not
the data of the memory block.

null is the default value for reference types

12

Java operators

Prec Operators types assoc. meaning
1 ++ arithmetic pre- or post-increment
- - arithmetic pre- or post-decrement
+,- arithmetic unary plus or minus
~ integral bit complement
! boolean logical not
(type) any typecast
2 * /% arithmetic L multiplication, division,
remainder
3 +,- arithmetic L addition, subtraction
+ String L concatenation
4 << integral L shift bits left
integral L shift bits right, filling with sign
>>: integral L shift bits right, filling with zero
5 < o=, >, e arithmetic comparisons
instancecof object, type type comparison
Prec Operators types assoc. meaning
§] ==, I= any L equality, inequality
7 & integral L bitwise AND
& boolean L boolean AND
8 ® integral L bitwise XOR
- boolean L boolean XOR
9 | integral L bitwise OR
| boolean L boolean OR
10 E& boolean L short-circuit AND
" || boolean L short-circuit OR
12 7 boolean,any,any conditional selection
13 = variable, any R assignment
=, [f=, %= variable, any R operation and assignment
+= -= =
e .

. |

("assoc" = order of association, i.e., evalutation from left (L) or right (R)
when several operators of the same level occur in the same expression)

73

Functional abstraction, self-defined methods

Phenomenon to deal with: repetition of identical or almost identi-
cal code fragments — especially if these fragments are quite long.

Problems:

(1) Changes in the code have to be repeated for each occurrence
of the code fragment.

(2) Code cannot occur in itself — recursive algorithms cannot be
coded directly.

Solution: methods (in OO-languages) and procedures and functi-
ons (in non-00 languages).

Methods can be used like extensions of the language.

Example: compute maximum of two integers

int maxi{int pl, int pZ)

{

return (pl=p2 ? pl : p2);

}

Use of the method:

int a, b:
int x:

¥ = maxia,b);

74

Example: compute the factorial of an integer
Reminder: "factorial" n!'=n*(n-1)*..*3*2*1,

Recursion: Compute factorial

int faci{int 1)

{

if (1<=1)

{

return 1;

}

elae

{

return i*fac(i-1);

|
f

For this problem, nobody would use recursion! A simple while-
loop would suffice. Recursion can be unnecessarily inefficient.

75

Example (prog_ex03.rgg): Usage of compound
data structures (arrays)

[* Computation of the sum of elements of
an integer array. */

protected void init()

{

Int result = O;
intjp={4,3, 3,5, 15}
[* initialization of an array */

inti=0;
while (i < p.length)
{

result += p[i];
| = i+1;
}

printin("The sum is: " + result);

}

The same as an extra method:

76

Example: compute the sum of the elements of an array:

int computeSum{int[] p)

{

// This wvariable accumilates the result.
int r = 0;

// This variables points to the different positions in (p),
J/ starting at 0 and running to the end.
int 1 = 0;

// Run with (i) through (p), accumulating the sum of elements in
fo(x).
while (il « p.length)
{
r
i

}

// Return result.
return r;

r + plil;
i+ 1;

Questions regarding computeSum: Details are important!

Does it work for empty (p) ?

Is = the right comparison in the condition of the while clause, or
would <= be right?

Should i start with another value than 07

How could a solution look like in which 1 runs through p in the op-
posite direction?

1

General structure of method declaration (incomplete version)

<tvpes> <methodName= (<parameterlist, empty for no parameterss |

{

<method body, including '‘return <expressicon='"'=

f

Method interface: type of return value, name of method, and types
and names of parameters.

Method body: code fragment performing the work.

return statement: Execution leaves the method and returns the
value of the expression as result.

Problems solved:

(1) Similar code does not have to be repeated — where it is nee-
ded, it is just invoked or called with the proper parameters. Chan-
ges only have to be done once.

(2) Recursion can be coded directly.

Further consequences:

(3) Functionality of code fragments can be documented by giving
a symbolic name to a code fragment.

(4) Code fragments are usable without that all the details are

known — only knowledge about the interface and the I/O-behavior
Is necessary. Consequence: Implementation can be changed.

78

Method call:
e.g. x = max(a, b);

Effects:

» control flow jumps from the place where the method
Is called to the place where the method is defined

» the method is executed

» the control flow jumps back to the place where the
method was called and the return value is assigned
to X.

79

Control structures of Java

control structures:

language concepts designed to control the flow of
operations

— typical for the imperative programming paradigm

particularly: branching of the programme; loops.

Variants of branching:

if (=condition=)

{

<Code for fulfilled condition=

}

(if the condition is false, nothing happens)

if (<condition>)

{

<Code for fulfilled condition>

}

else

{

<Code for unfulfilled condition>

}

80

Nesting of if...else possible:

if (<condls)

{
=Code for fulfilled =condls>=
1
elge ifi{<zcond2=)
{
<Code for non-fulfilled <condls, but fulfilled =condZ:>=
}
elee
{

«Code to be ewxecuted if WO condition isgs fulfilleds

Example application: Finding the solutions of a
guadratic equation ("pg-formula”)

prog_ex04.rgg

[* Computation of the solutions of a quadratic
equation, using a self-defined method */

public double[] solve_quadratic (double p,
double q)
{

double x = -p/2, y = x*x - (;
double[] result;

if (y <0)
{
/[term under the square root is
/[negative. No solution.
result = new doublel0];

}

81

else

if (y < 1e-20)
{
/[term under the square root is zero.
/l One solution.
result = new double[1];
result[0] = x;
}

else
{
// term under the square root is
/l positive. Two solutions.
double z = Math.sqrt(y);
result = new double[2];
result[0] = x + z;
result[1] = x - z;
}

return result;

}
module A(double p, double qg) extends Sphere(3);

protected void init()

{

[

Axiom ==> A(0, 0);

]

printin("Click on object for input (p,q)!");
}

public void calculate()

{

double[] res;
double p, q;

[
?A==>{p=amkq=aMLk

82

res = solve_quadratic (p, 9);

if (res.length == 0)

printin("There is no solution.");
if (res.length == 1)

printin("Single solution: " + res[0]);
if (res.length == 2)

{

printin("First solution: " + res[1]);
printin("Second solution: " + res[0]);

}

Loops:

We have already introduced the while loop.

The for loop:

for(<Initialization=>;:<Condition=;<Increment=)

<Code to be repeateds

Similar to:

zInitializations;
while(<Condition=]
<Code to be repeateds:

<Increments>

83

Application example:

static public int computeSumi{int[]

{

int result = 0;

F

for(int 1=0; i<p.length; ++1]

{

result += pli];

return resul T ;

p)

84

Exercises

1. Write Java expressions for the following mathgoal expressions:

@ —2 T +2500°

b+
C

(b) e O/x?—2xy+1

(c) z=

1 if niseven
0 otherwise

(Remark: Jx is Math.sqrt(x) , €is Math.exp(x)
a% b gives the rest when dividing by b.)

2. The following Java methoth gets an integer array as its argument:
public int m(int x[])

intc, i;

c=0;

for (i = 0; i < x.length; i++)
if (X[]] % 2 ==1) c++;

return c;

}

What does this method calculate (or count) ?

3. (a) Which errors can possibly occur during imetof the following Java
program fragment?

inti;

float list[300];

float x, y;

I* i, x andy are somehow calculated
listfi] = 1.5 / (x +y);

(b) Which conditions (to be specified in Java ayhtshould be checked to
capture these errors before they can cause trouble?

85

4. The following Java methofl gets an integer array and the lengtm of
the array as arguments:

public int f(int x[], int n)
{
inti, k=0;
if (n <= 0) return -1,
i=1;
while (i < n)

{

if (x[K] > X[i])
=1

i =i+1;

}

return k;

}

(a) What does the methdd calculate?

(b) What does it give as result if all fields oétarrayx contain the same
number, let us say, 1 ?

5. Write an XL (or Java) program which prints alihpe numbers between 1 and
1000 on the screen (and no other numbers).

Remark 1: An integer is a prime number if it iggkarthan 1 and if it is not divisible without
rest by any other positive integer except 1 aralfits

Remark 2:a % b = rest of the division of integerby integeb (0< (@% b) < b).

86

6. Introduction to rule-based simulation

Examples of processes which are studied by
simulation on a computer:

e growth and crown development of a plant

« chemical reactions in a cell

» population dynamics of competing tree species

« foraging behaviour of ants

« water flow in the soill

* interception of photosynthetically-active
radiation by a canopy

« dynamics of traffic on a road network

e economic decisions of traders on a market

Different formal systems, programming languages
and software platforms are in use which support
such simulations.

(See also: NetLogo, in "Ecosystem Modelling")

As an example, we demonstrate here the usage of
graph-grammar rules in the language XL to
simulate the 3-dimensional development of plants.

XL = eXtended L-system language

L-systems (Lindenmayer systems):
rules working on character strings,
named after the botanist

Aristid Lindenmayer (1925-1989)

87

L-systems (Lindenmayer systems)

rule systems for the replacement of
character strings

In each derivation step parallel
replacement of all characters for
which there Is one applicable rule

An L-system mathematically:
atriple (Z, o, R) with:
Y a set of characters, the alphabet,

o a string with characters from X, the start word (also
"Axiom"),

R a set of rules of the form
character — string of characters;

with the characters taken from =.

A derivation step (rewriting) of a string consists of the
replacement of all of its characters which occur in left-hand
sides of rules by the corresponding right-hand sides.

characters for which no rule is applicable stay
as they are.

Result:

Derivation chain of strings, developed from the start word
by iterated rewriting.

88

Example:

alphabet {A, B}, start word A
set of rules:

A—>B
B - AB

derivation chain:
A —> B —> AB - BAB — ABBAB — BABABBAB

— ABBABBABABBAB — BABABBABABBABBABABBAB
— ..

still missing for modelling biological structures in space:
a geometrical interpretation

Thus we add:
a function which assigns to each string a subset of 3-D space

Jinterpreted” L-system processing

oL —> G, = Gy —> Gy —> ...

Voolod
81 S2 83

S;, S,, S,, ... can be seen as developmental steps of an
object, a scene or an organism.

For the interpretation: turtle geometry

Turtle:

goes according to commands

o

89

FO FO RU(90)

&

FO RU(90) FO

FO RU(90) FO RU(90) LMul(0.5) FO

*_

90

Jurtle”: virtual device for drawing or construction
in 2-D or 3-D space

- able to store information (graphical and non-
graphical)

- equipped with a memory containing state
information (important for branch construction)

- current turtle state contains e.g. current line
thickness, step length, colour, further properties
of the object which is constructed next

Turtle commands in XL (selection):

FO "Forward", with construction of an element

(line segment, shoot, internode...),
uses as length the current step size
(the zero stands for ;no explicit specification of length™)

M0 forward without construction (Move)

L (x) change current step size (length) to x
LAdd (x) increment the current step size to x
LMul (x) multiply the current step size by x

D (x) , DAdd(x), DMul (x) analogously for current
thickness

Repetition of substrings possible with "for"
e.d.,, for ((1:3)) (ABC)

yelds ABCABCABC
91

Exercise:
what is the result of the interpretation of

L(10) for ((1:6))
(FO RU(90) ILMul (0.8)) 7

Example:

L(100) D(3) RU(-90) F(50) RU(90) MO RU(90) D(10) FO FO
D(3) RU(S0) FO FO RU(S0) F(150) RU(S0) F(140) RU(S0)
M(30) F(30) M(30) F(30) RU(120) MO Sphere(1l5)

generates

Extension to 3-D graphics:

turtle rotations by 3 axes In space

left

head

*/

up
92

RL

-

RU

3-D commands:
RU (45) rotation of the turtle around the "up" axis by 45°

RL(...) , RH(...) analogously by "left" and "head" axis

up-, left- and head axis form an orthogonal spatial coordinate
system which is carried by the turtle

Branches:
realization with memory commands

[put current state on stack
("Ablage", Stack)
] take current state from stack

and let it become the current state
(thus: end of branch!)

FO [RU(-20) FO] RU(20) DMul (2) FO

—<

93

How to execute a turtle command sequence
with GrolMP

write into a GrolMP project file (or into a file with filename
extension . rgg):

protected void init()

[
Axiom ==> turtle command sequence ;

]

Example: Drawing a triangle

&

protected void init()
[Axiom ==> RU(30) F(10) RU(120) F(10) RU(120) F(10) 1]

see file sm09 e01.rgg

94

now we make the turtle-generated patterns
dynamic

Interpreted L-system:
The alphabet of the L-system contains the turtle
command language as a subset.

Example:

rules
A => FO0 [RU(45) B] A ;
B ==> FO B ;

start word A

A —» FO[RU(@45)B]A — FO[RU(45)FOB]FO[RU(45) B]A — ..

v v

interpretation” : -
by ’ :
turtle geometry 4
Fo|
A 4 /Fo
08
FO Fo

(A and B are normally not interpreted geometrically.)

95

also modelling of objects different from plants

example space filling curve:

Axiom ==> L(10) RU(-45) X RU(-45) F(1) RU(-45) X;

X ==> X FO X RU(-45) F (1) RU(-45) X FO X

&
00
ORI
OO O
CSCE
0
OGS
OIS,
(OBOSOL OSOLOLO OB
.‘,’,‘3‘.‘3‘,‘3‘,‘3‘ SO traditional Indian kolam
IR RIRERIRIRIRIRIRIKR Anklets of Krishna*
S O R T 0 OO OO OGO "
SIS
NI DI
s &L

*
Ao CAE D, K AXo, Ao, LAXo

LN NN,
CREAREALEAREARZ A ARED
KL L

R0, K0, ko
CSiost
O
&

A simple plant with dichotomous branching:
sample file sm09 e03.rgg

/* You learn at this example:

- how to construct a simple plant model (according to architectural model Schoute)

- how to specify branches with [] */
// Example of a simple tree architecture (Schoute architecture)

f/=mm——————— Extensions to the standard alphabet -—---—-—---

//8hoot () is an extension of the turtle-command F() and stands for an annual shoot

module Shoot (float len) extends F(len);

// Bud is an extension of a sphere object and stands for a terminal bud

// its strength controls the length of the produced shoot in the next timestep
module Bud(float strength) extends Sphere(0.2)

{{ setShader (RED); setTransform(0, 0, 0.3); }}; * 5 %

protected void init ()

[// start structure (a bud)
Axiom ==> Bud (5) ;

1

public void run ()
[
// a square bracket [] will indicate a branch
// (daughter relation)
// Rotation around upward axis (RU) and head axis (RH)
// Decrease of strength of the Bud (each step by 20%)

Bud(x) ==> Shoot(x) [RU(30) Bud(0.8*x)] [RU(-30) Bud(0.8*x)];

96

extension of the concept of symbol:

allow real-valued parameters not only for turtle commands like
"RU (45) " and "F (3) ", but for all characters

— parametric L-systems

arbitrarily long, finite lists of parameters
parameters get values when the rule matches

Example:
rue A(x, y) ==> F(7*x+10) B(y/2)

current symbol is e.g.: A(2, 6)
after rule application: F(24) B(3)

parameters can be checked in conditions
(logical conditions with Java syntax):

A(x, y) (x >= 17 && y !'= 0) ==

Stochastic L-systems
usage of pseudo-random numbers

Example:

deterministic stochastic

Axiom ==> L(100) D(5) A; Axiom ==> L(100) D(5) A;

A ==> FO LMul(0.7) DMul(0.7) A ==> FO LMul (0.7) DMul(0.7)
[RU(50) 2] [RU(-10) A]; if (probability(0.5))

([RU(50) A] [RU(-10) A])
else
([RU(-50) A] [RU(10) A]),

97

XL functions for pseudo-random numbers:

Math.random() (enerates floating-point random number
between O and 1

random(a, b) generates floating point random number
between a and b

probability (x) gives 1 with probability X,
O with probability 1-x

How to create a random distribution in the plane:
Axiom ==> D(0.5) for ((1:300))
([Translate(random(0, 100), random(0O, 100), 0)
F(random(5, 30)) 1)~

view from above oblique view

nwu
|||| jis |'H' |
“(m f”'\l\” l”'llrﬂl

R lll

98

The step towards graph grammars

drawback of L-systems:

* in L-systems with branches (by turtle commands)

only 2 possible relations between objects:
"direct successor" and "branch"

4

extensions:

« to permit additional types of relations
« to permit cycles

— graph grammar

Example of a graph grammar rule:

==> (B)} (%)

» each left-hand side of a rule describes a
subgraph (a pattern of nodes and edges,
which is looked for in the whole graph), which
is replaced when the rule is applied.

» each right-hand side of a rule defines a new
subgraph which is inserted as substitute for
the removed subgraph.

99

special variant of graph grammars:
Relational growth grammars (RGG)

- parallel application, same as for L-systems

- attributed vertices and edges

- vertex types with object hierarchy (a vertex type
can inherit properties from another vertex type)

The language XL

specification: Kniemeyer (2008)

e extension of Java

e allows also specification of L-systems and RGGs
(graph grammars) in an intuitive rule notation

imperative blocks, like in Java: {...}

rule-oriented blocks (RGG blocks): [...]

During execution of an XL program, there is one
graph (represented in the computer memory)
which is transformed by the rules

- the nodes (vertices) of this graph are basically
Java objects

(they can also be geometrical objects)
100

Example:
rules for the fractal curve shown previously

public void derivation ()

[

Axiom ==> RU(90) F(10) ;

F(x) ==> F(x/3) RU(-60) F(x/3) RU(120) F(x/3) RU(-60) F(x/3);
1

nodes of the edges (type ,successor’)
graph

Queries in the graph

a query is enclosed by (* *)

The elements are given in their expected order, e.g.:
(* A A B *) searches for a subgraph which consists of a
sequence of nodes of the types A A B, connected by

successor edges.
example for a graph query:

binary tree, growth shall start only if there is enough distance
to other F objects

Axiom ==> F(100) [RU(-30) A(70)] RU(30) A(100) ;
a:A(s) ==> if (forall(distance(a, (* F *)) > 60))
(RH(180) F(s) [RU(-30) A(70)] RU(30) A(100))

without the | if* condition with the if* condition

101

A simple functional-structural plant model (FSPM)
in XL:
see example file sfspm09.gsz

Includes:

- light emitted from a lamp

- interception of light by the leaves of the plant
- a submodel for photosynthesis

- transport of assimilates along the plant axes
- formation of new internodes and leaves

- growth of the organs

- flowering

executable by GrolMP

102

The software GrolMP

GrolMP = "growth-grammar related interactive
modelling platform"

see http://www.grogra.de ,

there you find also the link to the download site
http://sourceforge.net/projects/groimp/

and a gallery of examples.

See also the learning units about GrolMP
(author: K. Petersen, M.Sc. Forest Science),
available in StudIP.

GrolMP is an open source project. It combines:

- XL compiler and interpreter

- a development environment for XL

- an interactive 3-d modeller

- several 3-d renderers

- a 2-d graph visualization tool

- an editor for 3-d objects and attributes

- tools for texture generation

- an interface for measured tree architecture data

- a simulation tool for radiation in scenes

- support for solving differential equations in a
numerically stable way (for submodels)

- interfaces for data formats like dxf, obj, mtg, pdb

103

screenshot:
: e
s

File Edit Oh]ecl:s Panels Net Help
E [| sedlt - Pipe.rog | [attribute Edor |
File Edt Search Markers Folding View Utiities Macros Plugins Help

View DEIQB E}E %f}‘#m- Q\@ :ﬂ._lq'

Afdir,del vig) ==. ;I
if (del >0 {.
Aldir,del-1,vig).
] else if (probability (p)) (.
0(0.001,0,1) Miwig) RH{30).
[Mark Circle(l) RU{RlAnglekdir) A(dir,DEL,vig*¥DECR)]. _I
DI {ROAnglekdir) A(-dir,DEL,vigkVDECR) .

detive. Runderive. Stop Reset
- -

] else |.
0{0.00L,0,1) Wiwig) RH{3I0).
- ik FU(RlAngle*dir) .
Leaf(53) 0(0.001,0,2.5) 1&af(0.9, 0.5), (setMaterial (le®

4 | »

1.1 41%

7] Messagasl] 5L Consnlal Granhl
layout graph

=3 Meta Objects | File Explarer. | Shﬁdal’5|
Object:

example applications:

i
e
S~

virtual barley
(Buck-Sorlin 2006)

104

; F i 1 T e & —
T S

virtual Black Alder tree, generated with GrolMP,
in a VRML scene (for Branitz Park Foundation, Cottbus;
Rogge & Moschner 2007)

= SR St T

This and next images: students' results from

architecture seminar, BTU Cottbus 2007
105

106

107

virtual landscape with beech-spruce mixed stand
(Hemmerling et al. 2008)

108

Exercises

1. Write a turtle command sequence which geneeabesls-and-sticks molecule model of

o)
formic acid (structural formulz /'&\)-
H™ ~OH

The atoms shall be represented by spheres witkrdift sizes and colours (depending on the
chemical element), and the bonds by cylinddt6.() command of the turtle). The double
bond shall be represented by a thicker cylinder.
Hint: The colour of an atorX can be specified as in the following example:
module X extends Sphere(1.0)
{{ setShader(BLUE);}};

Test your solution with GrolMP.

2. (a) Write an L-system which simulates the priyygnowth of a plant in annual steps. The
annual shoots of the vertical main axis (stem) shall all have #ame length. The uppermost
annual shoot shall bear apical bud (= a red sphere) andateral bud (= a green sphere).
The apical bud is supposed to produce a new arshoal of the main axis next year, and
from the lateral bud shall grow a shottateral shoot with a branching angle of 45°, which
will terminate its growth next year (i.e., there ao buds at the lateral shoots). The positions
of the lateral branches are alternating (left-rigifit-right-...) along the stem. The simulation
shall start with an apical bud.

(b) Modify the model by introducing a trend: Assuthat the annual shoots get 10 per cent
shorter each year.

(c) Assume additionally that the apical bud produagdélower (= a large blue cone) after 7
years, and that the plant then stops to grow.

Test your solutions with GrolMP.

Remarks: B\M(—s) you can cause the turtle to move back along tha mas by stepsizs.
Cone(h, r) stands for a cone with heightind radius.

3. Open the example "Molecules” in GrolMP's builtexample portfolio ("File" /

"Show Examples").

Make several model runs by clicking on the butttfgn run” and "Reset", and observe what
happens.

Now modify the model in the following ways:

(a) Increase the number of atoms from 10 to 20.

(b) Switch off the output of text to the console.

(c) Double the distance threshold for formatioradfond between two atoms.

109

