
60

5. Foundations of programming

Paradigms of programming:

Different viewpoints and ways of thinking
about how to conceive a computer and a
programme

Imperative paradigm:
Computer = machine for the manipulation of
variables
Programme = sequence of commands which
change values of variables, together with
specifications of the control flow (telling which
command is executed next)
Languages: Fortran, Pascal, Basic, C ...

Example (works in C or Java or XL):

 x = 0;
 while (x < 100)
 x = x + 2;

The variable x is used to produce the even
numbers from 0 to 100.
Attention: The assignment command x = x + 2 is not
a mathematical equality!

61

Object-oriented paradigm:

Computer = environment for virtual objects which
are created and destroyed during runtime (and can
interact)
Programme = collection of general descriptions of
objects (so-called classes), together with their
hierarchical dependencies (class hierarchy)
Objects can contain data and functionality
(methods)
Languages: Smalltalk, C++, Java, ...

Example (in Java):

public class Car extends Vehicle
 {
 public String name;
 public int places;
 public void print_data()
 {
 System.out.println("The car is a " + name);
 System.out.println("It has " + places + "places");
 }
 }

Typical: class (Car) with data (name, places) and
methods (print_data). The class Car inherits
further data and methods from a superclass,
Vehicle .

62

Rule-based paradigm:

Computer = machine which transforms a given
structure according to given rules

Programme = set of transformation rules
(sometimes also called a grammar)

Each step of programme application consists of
two substeps: Finding an applicable rule (matching
step) and transformation of the current structure
according to that rule (rewriting step).

Languages: Prolog, AI-languages, L-system
languages, particularly XL

Example (in XL):

public void apply()
 [
 F(x) ==> F(x/3) RU(-60) F(x/3) RU(120)
 F(x/3) RU(-60) F(x/3);
]

produces the so-called Koch curve:

63

Readability of programmes by humans

programmes: have to be executed by computers, but
also to be understood by humans

Executability can be checked automatically,
understandability not!

⇒ Recommendations:

• make frequent use of programme comments
(/* ... */ or // ... in Java, C++ or XL)

• use plenty of newlines and blanks

• put braces { ... } in lines of their own, put
matching braces in same horizontal position:

{

}

• indentation makes containment and nesting of
programme components visible

• avoid long lines, insert line breaks for readability

• avoid very long methods

• use "speaking" variable and function names
 (int iteration_counter is better than int x127 !)

• do not use variable names twice for different
purposes, even if the language allows it

• Initialise constants, default values etc. at the
beginning of a source code file, not somewhere
"deep in the code" where you don't find them
later on

• adhere to conventions used by competent
programmers!

64

Basic parts of Java and XL

Remark: The language XL is an extension of Java.
The following examples can be compiled and run
with GroIMP (see www.grogra.de), a modelling
platform which contains a development toolkit for
XL and possibilities for visualization.

A first demonstration programme:

/* A simple Java programme for execution
with the GroIMP software. */

protected void init()
 {
 println("Hello World!");
 }

(= example file prog_ex01.rgg)

Download of GroIMP:

https://sourceforge.net/projects/groimp/

65

, protected

println: predefined method – invoked with a string as its
argument, it writes the string to the GroIMP console (a special
output window) and adds a line feed.

66

3) newly declared identifiers: Their meaning is fixed by
(explicit or implicit) declarations in the programme itself.
Example: init is the name of the method which writes the
text to the console. It expects no arguments (init()).

Use of simple data types and the "while" loop

/* A simple demonstration program,
 printing out the numbers from 0 to 10
 and their squares, each pair
 on an extra line. */

protected void init()
 {
 int i;
 i = 0;
 while (i <= 10)
 {
 println(i + ": " + (i*i));
 i = i+1;
 }
 println("Finished!");
 }

(example file prog_ex02.rgg)

67

Assignments

In our example:
i = 0;
the variable named i gets the new value 0
• fundamental operation in the imperative

programming paradigm

effect: content of a place in the memory is changed

Attention:
i = 0 in a Java programme does not have
the same meaning as in a mathematical formula!
E.g., i = i+1 would mathematically be a contradiction
(it would imply 0 = 1)

68

– but makes sense in a programme (increment i by 1).
Mathematical meaning of this assignment:

inew = iold + 1.

In assignments, the order is relevant:
x1 = x2; has another effect as x2 = x1;

To underline the asymmetry, other languages (e.g.,
Pascal) use := instead of = for assignments.

XL allows both notations
(but with a slightly different meaning: := denotes a
deferred assignment, i.e., it enables a quasi-
parallel execution with other assignments.)

Comparison (checking for equality) is expressed in
Java, C and XL by = =

Java offers further assignment operators besides = :
a += b // add content of b to the content of a
–=, *=, /= etc. analogously.

69

Data types:

describe sets of values and the operations which
can be performed on them.

Example: integers, with arithmetical operations (+,
–, *, /, %) and comparisons (<, <=, >, >=, ...).

In the example programme: int , String .

int : type of 32-bit two's complement integers.
The variable i used for running through the
argument list has this type.

i starts with value 0 and is incremented in the loop
until it has value 11.

String : type of character sequences. println
expects a variable of this type as its argument.

Numbers are implicitly converted to strings here.
Concatenation of strings by +.

("Operator overloading": different meanings of + for
numbers and for strings.)

70

Literals

 \uXXXX (XXXX: up to four hexadecimal digits):
 The number of a Unicode character

Primitive Java data types:

71

72

1.0; 1.0;

73

Java operators

("assoc" = order of association, i.e., evalutation from left (L) or right (R)
when several operators of the same level occur in the same expression)

74

Functional abstraction, self-defined methods

75

Example: compute the factorial of an integer

Reminder: "factorial" n! = n * (n–1) * ... * 3 * 2 * 1.

76

Example (prog_ex03.rgg): Usage of compound
data structures (arrays)

/* Computation of the sum of elements of
an integer array. */

protected void init()
 {
 int result = 0;
 int[] p = { 4, 3, 3, 5, 15 };
 /* initialization of an array */

 int i = 0;
 while (i < p.length)
 {
 result += p[i];
 i = i+1;
 }
 println("The sum is: " + result);
 }

The same as an extra method:

77

78

79

Method call:
e.g. x = max(a, b);

Effects:
• control flow jumps from the place where the method

is called to the place where the method is defined
• the method is executed
• the control flow jumps back to the place where the

method was called and the return value is assigned
to x .

80

Control structures of Java

control structures:
language concepts designed to control the flow of
operations
– typical for the imperative programming paradigm

particularly: branching of the programme; loops.

Variants of branching:

(if the condition is false, nothing happens)

if (<condition>)
 {
 <Code for fulfilled condition>
 }
else
 {
 <Code for unfulfilled condition>
 }

81

Nesting of if...else possible:

Example application: Finding the solutions of a
quadratic equation ("pq-formula")

prog_ex04.rgg

/* Computation of the solutions of a quadratic
 equation, using a self-defined method */

public double[] solve_quadratic (double p,
 double q)
 {
 double x = -p/2, y = x*x - q;
 double[] result;

 if (y < 0)
 {
 // term under the square root is
 // negative. No solution.
 result = new double[0];
 }

82

 else
 if (y < 1e-20)
 {
 // term under the square root is zero.
 // One solution.
 result = new double[1];
 result[0] = x;
 }
 else
 {
 // term under the square root is
 // positive. Two solutions.
 double z = Math.sqrt(y);
 result = new double[2];
 result[0] = x + z;
 result[1] = x - z;
 }
 return result;
 }

module A(double p, double q) extends Sphere(3);

protected void init()
{
 [
 Axiom ==> A(0, 0);
]
 println("Click on object for input (p,q)!");
}

public void calculate()
{
 double[] res;
 double p, q;

 [
 a:A ==> { p = a[p]; q = a[q]; };
]

83

 res = solve_quadratic (p, q);

 if (res.length == 0)
 println("There is no solution.");
 if (res.length == 1)
 println("Single solution: " + res[0]);
 if (res.length == 2)
 {
 println("First solution: " + res[1]);
 println("Second solution: " + res[0]);
 }
}

Loops:

We have already introduced the while loop.

The for loop:

84

Application example:

85

Exercises

1. Write Java expressions for the following mathematical expressions:

(a) 6105.2
1

⋅+
+

c
b

a

(b) 1222 +−⋅ xyxe k

(c)




=
otherwise0

evenisif1 n
z

(Remark: x is Math.sqrt(x) , ex is Math.exp(x) ,
a % b gives the rest when dividing a by b.)

2. The following Java method m gets an integer array x as its argument:

public int m(int x[])
 {
 int c, i;
 c = 0;
 for (i = 0; i < x.length; i++)
 if (x[i] % 2 == 1) c++;
 return c;
 }

What does this method calculate (or count) ?

3. (a) Which errors can possibly occur during runtime of the following Java
program fragment?

 int i;
 float list[300];
 float x, y;
 ...
 /* i, x and y are somehow calculated */
 ...
 list[i] = 1.5 / (x + y);
 ...

(b) Which conditions (to be specified in Java syntax) should be checked to
capture these errors before they can cause trouble?

86

4. The following Java method f gets an integer array x and the length n of
the array as arguments:

 public int f(int x[], int n)
 {
 int i, k = 0;
 if (n <= 0) return –1;
 i = 1;
 while (i < n)
 {
 if (x[k] > x[i])
 k = i;
 i = i+1;
 }
 return k;
 }

(a) What does the method f calculate?

(b) What does it give as result if all fields of the array x contain the same
 number, let us say, 1 ?

5. Write an XL (or Java) program which prints all prime numbers between 1 and
1000 on the screen (and no other numbers).

Remark 1: An integer is a prime number if it is larger than 1 and if it is not divisible without
rest by any other positive integer except 1 and itself.

Remark 2: a % b = rest of the division of integer a by integer b (0 ≤ (a % b) < b).

87

6. Introduction to rule-based simulation

Examples of processes which are studied by
simulation on a computer:

• growth and crown development of a plant
• chemical reactions in a cell
• population dynamics of competing tree species
• foraging behaviour of ants
• water flow in the soil
• interception of photosynthetically-active

radiation by a canopy
• dynamics of traffic on a road network
• economic decisions of traders on a market
• ...

Different formal systems, programming languages
and software platforms are in use which support
such simulations.
(See also: NetLogo, in "Ecosystem Modelling")

As an example, we demonstrate here the usage of
graph-grammar rules in the language XL to
simulate the 3-dimensional development of plants.

XL = eXtended L-system language

L-systems (Lindenmayer systems):
rules working on character strings,
named after the botanist
Aristid Lindenmayer (1925-1989)

88

An L-system mathematically:

89

Example:

For the interpretation: turtle geometry

90

91

92

Exercise:

93

94

95

now we make the turtle-generated patterns
dynamic

Interpreted L-system:
The alphabet of the L-system contains the turtle
command language as a subset.

96

also modelling of objects different from plants

A simple plant with dichotomous branching:

97

98

99

Example of a graph grammar rule:

100

special variant of graph grammars:
Relational growth grammars (RGG)

- parallel application, same as for L-systems
- attributed vertices and edges
- vertex types with object hierarchy (a vertex type
 can inherit properties from another vertex type)

During execution of an XL program, there is one
graph (represented in the computer memory)
which is transformed by the rules

- the nodes (vertices) of this graph are basically
 Java objects
 (they can also be geometrical objects)

101

Example:
rules for the fractal curve shown previously

Queries in the graph

102

A simple functional-structural plant model (FSPM)
in XL:
see example file sfspm09.gsz

includes:
- light emitted from a lamp
- interception of light by the leaves of the plant
- a submodel for photosynthesis
- transport of assimilates along the plant axes
- formation of new internodes and leaves
- growth of the organs
- flowering

executable by GroIMP

103

The software GroIMP

GroIMP = "growth-grammar related interactive
modelling platform"

see http://www.grogra.de ,

there you find also the link to the download site
http://sourceforge.net/projects/groimp/
and a gallery of examples.

See also the learning units about GroIMP
(author: K. Petersen, M.Sc. Forest Science),
available in StudIP.

GroIMP is an open source project. It combines:

- XL compiler and interpreter
- a development environment for XL
- an interactive 3-d modeller
- several 3-d renderers
- a 2-d graph visualization tool
- an editor for 3-d objects and attributes
- tools for texture generation
- an interface for measured tree architecture data
- a simulation tool for radiation in scenes
- support for solving differential equations in a
 numerically stable way (for submodels)
- interfaces for data formats like dxf, obj, mtg, pdb
- ...

104

screenshot:

example applications:

virtual barley
(Buck-Sorlin 2006)

105

virtual Black Alder tree, generated with GroIMP,
in a VRML scene (for Branitz Park Foundation, Cottbus;
Rogge & Moschner 2007)

This and next images: students' results from
architecture seminar, BTU Cottbus 2007

106

107

108

virtual landscape with beech-spruce mixed stand
(Hemmerling et al. 2008)

109

Exercises

1. Write a turtle command sequence which generates a balls-and-sticks molecule model of

formic acid (structural formula:).

The atoms shall be represented by spheres with different sizes and colours (depending on the
chemical element), and the bonds by cylinders (F(...) command of the turtle). The double
bond shall be represented by a thicker cylinder.
Hint: The colour of an atom X can be specified as in the following example:
 module X extends Sphere(1.0)
 {{ setShader(BLUE);}};

Test your solution with GroIMP.

2. (a) Write an L-system which simulates the primary growth of a plant in annual steps. The
annual shoots of the vertical main axis (stem) shall all have the same length. The uppermost
annual shoot shall bear an apical bud (= a red sphere) and a lateral bud (= a green sphere).
The apical bud is supposed to produce a new annual shoot of the main axis next year, and
from the lateral bud shall grow a shorter lateral shoot with a branching angle of 45°, which
will terminate its growth next year (i.e., there are no buds at the lateral shoots). The positions
of the lateral branches are alternating (left-right-left-right-...) along the stem. The simulation
shall start with an apical bud.

(b) Modify the model by introducing a trend: Assume that the annual shoots get 10 per cent
shorter each year.

(c) Assume additionally that the apical bud produces a flower (= a large blue cone) after 7
years, and that the plant then stops to grow.

Test your solutions with GroIMP.

Remarks: By M(–s) you can cause the turtle to move back along the main axis by stepsize s.
Cone(h, r) stands for a cone with height h and radius r.

3. Open the example "Molecules" in GroIMP's built-in example portfolio ("File" /
"Show Examples").
Make several model runs by clicking on the buttons "Run run" and "Reset", and observe what
happens.
Now modify the model in the following ways:
(a) Increase the number of atoms from 10 to 20.
(b) Switch off the output of text to the console.
(c) Double the distance threshold for formation of a bond between two atoms.

