Foundations of programming (continued)

Data types:

describe sets of values and the operations which
can be performed on them.

Example: integers, with arithmetical operations (+,
—, *, 1, %) and comparisons (<, <=, >, >=, ...).

In the example programme: i nt, String.

| nt : type of 32-bit two's complement integers.
The variable i used for running through the
argument list has this type.

| starts with value 0 and is incremented in the loop
until it has value 11.

St ri ng: type of character sequences. pri ntl n
expects a variable of this type as its argument.
Numbers are implicitly converted to strings here.
Concatenation of strings by +.

("Operator overloading": different meanings of + for
numbers and for strings.)

175

Literals

Literals denote values directly
String literals: Strings in quotes
Used character code for the string content: 16-bit Unicode

Special characters in strings: \: is used to introduce something “spe-
cial”. Examples:

\ UXXXX (XXXX: up to four hexadecimal digits):
The number of a Unicode character

\n: a line break; \ t: a tabulator; \xxx, xxx a three-digit n octal
number: The character with the given octal code.

Number literals: Signed digit sequence for integer types; for
float types: decimal point and “E"-Notation. Examples: +3453;
3.141592653; 1.17E-6

Primitive Java data types:

primitive data type defaults size (bits) min/max

boolean false 1 n.a./n.a.

Unicode characters:

char \uoooo 16 \u0000/\uFFFF

Two’s complement integers:

byte 0 8 -128/127

short 0 16 -32768/32767

int 0 32 -2147483648/2147483647

long 0 64 -9223372036854775808/
9223372036854775807

IEEE 754 floating-point numbers:

(min/max are those of absolute values)

float 0.0 32 1.4023985E-45/3.40282347E+38

double 0.0 64 4.94065645841246544E-324/
1.79769313486231570E+308

void: quasi-type for methods which return no value

176

Non-primitive Java data types: Arrays and objects

Arrays: collections of elements of the same type, accessed by
number (from 0). Example declarations of integer arrays:

int[] p = {1,3,2,10};

int[] g = new int[5];

int[] r:

Values after these declarations:

p points to a memory block of four integers, with values 1, 3, 2 and
10.

g points to a memory block of five integers, all values 0.

r does not point anywhere (it has the special value null). This
can be changed by the allocation of a block of memory via the Java
operation new:

r = new int[1000];

Now, r points to a memory block of 1000 integers, all 0.

r = p;

Now, r points to the same memory block as p.

Array declarations and operations
Non-allocating declaration: int []1 a empty;

Allocated with room for 10 elements:
int[] a ten = new int[10];

Initialized array: int [1 lookup = {1,2,4,8,16,32,64,128};

Multiple dimensions: boolean[] [] bw screen =
new booclean[1024] [768] ;

Non-rectangular: int [] [] pascal triangle =
{{1},{2,2},{1,2,2},{1,2,3,2},{1,4,6,4,1},{1,5,10,10,5,1}};

Array access: by integer-index in brackets. Start at 0. Array-access
is checked (index may not be negative or too large)

Number of elements of array a: a.length

177

Objects: collections of elements of arbitrary types, plus associated
operations, accessed by name.

Object types must be declared before they can be used; example:

clases color |
String name;
float red;
float green;
float blue;

Use of object types

I

// Declare three color variables.
color r,w,b;

f

// Initialize the color wvariables to red, white and black.

r = new color;
r.name = "Red"; r.red = 1.0; r.green = 0.0; r.blue = 0.0;
W = hnew color:
w.name = "White"; w.red = 1.0; w.green =1,0;: w.blue = 1 0;
b = new color;
b.name = "Black"; b.red = 0.0; b.green = 0.0; b.blue = 0.0;

Both non-primitive data types are handled by reference: The varia-
ble content is just the address of a memory block.

An assignment to such a variable only changes this address, not
the data of the memory block.

null is the default value for reference types

178

Java operators

Prec Operators types assoc. meaning
1 ++ arithmetic pre- or post-increment
- - arithmetic pre- or post-decrement
+,- arithmetic unary plus or minus
~ integral bit complement
! boolean logical not
(type) any typecast
2 * /% arithmetic L multiplication, division,
remainder
3 +,- arithmetic L addition, subtraction
+ String L concatenation
4 << integral L shift bits left
integral L shift bits right, filling with sign
>>: integral L shift bits right, filling with zero
5 < o=, >, e arithmetic comparisons
instancecof object, type type comparison
Prec Operators types assoc. meaning
§] ==, I= any L equality, inequality
7 & integral L bitwise AND
& boolean L boolean AND
8 ® integral L bitwise XOR
- boolean L boolean XOR
9 | integral L bitwise OR
| boolean L boolean OR
10 E& boolean L short-circuit AND
" || boolean L short-circuit OR
12 7 boolean,any,any conditional selection
13 = variable, any R assignment
=, [f=, %= variable, any R operation and assignment
+= -= =
e .

. |

("assoc" = order of association, i.e., evalutation from left (L) or right (R)
when several operators of the same level occur in the same expression)

179

Functional abstraction, self-defined methods

Phenomenon to deal with: repetition of identical or almost identi-
cal code fragments — especially if these fragments are quite long.

Problems:

(1) Changes in the code have to be repeated for each occurrence
of the code fragment.

(2) Code cannot occur in itself — recursive algorithms cannot be
coded directly.

Solution: methods (in OO-languages) and procedures and functi-
ons (in non-00 languages).

Methods can be used like extensions of the language.

Example: compute maximum of two integers

int maxi{int pl, int pZ)

{

return (pl=p2 ? pl : p2);

}

Use of the method:

int a, b:
int x:

¥ = maxia,b);

180

Example: compute the factorial of an integer
Reminder: "factorial" n!'=n*(n-1)*..*3*2*1,

Recursion: Compute factorial

int faci{int 1)

{

if (1<=1)

{

return 1;

}

elae

{

return i*fac(i-1);

|
f

For this problem, nobody would use recursion! A simple while-
loop would suffice. Recursion can be unnecessarily inefficient.

181

Example (pr og_ex03. r gg): Usage of compound
data structures (arrays)

/* Conputation of the sumof el enents of
an i nteger array. */

protected void init()

{

Int result = O;
int[] p={ 4, 3, 3, 5 15 };
/[* initialization of an array */

int i = 0;
while (i < p.length)
{

result += p[i];
I = 1 +1;
}

println("The sumis: " + result);

}

The same as an extra method:

182

Example: compute the sum of the elements of an array:

int computeSum{int[] p)

{

// This wvariable accumilates the result.
int r = 0;

// This variables points to the different positions in (p),
J/ starting at 0 and running to the end.
int 1 = 0;

// Run with (i) through (p), accumulating the sum of elements in
fo(x).
while (il « p.length)
{
r
i

}

// Return result.
return r;

r + plil;
i+ 1;

Questions regarding computeSum: Details are important!

Does it work for empty (p) ?

Is = the right comparison in the condition of the while clause, or
would <= be right?

Should i start with another value than 07

How could a solution look like in which 1 runs through p in the op-
posite direction?

183

General structure of method declaration (incomplete version)

<tvpes> <methodName= (<parameterlist, empty for no parameterss |

{

<method body, including '‘return <expressicon='"'=

f

Method interface: type of return value, name of method, and types
and names of parameters.

Method body: code fragment performing the work.

return statement: Execution leaves the method and returns the
value of the expression as result.

Problems solved:

(1) Similar code does not have to be repeated — where it is nee-
ded, it is just invoked or called with the proper parameters. Chan-
ges only have to be done once.

(2) Recursion can be coded directly.

Further consequences:

(3) Functionality of code fragments can be documented by giving
a symbolic name to a code fragment.

(4) Code fragments are usable without that all the details are

known — only knowledge about the interface and the I/O-behavior
Is necessary. Consequence: Implementation can be changed.

184

Method call:
e.g. X = max(a, b);

Effects:

» control flow jumps from the place where the method
Is called to the place where the method is defined

» the method is executed

» the control flow jumps back to the place where the
method was called and the return value is assigned
to X.

185

Control structures of Java

control structures:

language concepts designed to control the flow of
operations

— typical for the imperative programming paradigm

particularly: branching of the programme; loops.

Variants of branching:

if (=condition=)

{

<Code for fulfilled condition=

}

(if the condition is false, nothing happens)

I f (<condition>)

{
<Code for fulfilled condition>
}
el se
{
<Code for unfulfilled condition>
}

186

Nestingof if...else possible:

if (<condls)

{
=Code for fulfilled =condls>=
1
elge ifi{<zcond2=)
{
<Code for non-fulfilled <condls, but fulfilled =condZ:>=
}
elee
{

«Code to be ewxecuted if WO condition isgs fulfilleds

Example application: Finding the solutions of a
guadratic equation ("pg-formula”)

prog_ex04.rgg

/* Conputation of the solutions of a quadratic
equation, using a self-defined nethod */

publ i c doubl e[] sol ve quadratic(doubl e p,
doubl e Q)
{

double x = -p/2, y = X*X - (;
doubl e[] result;

if (y < 0)
{

// termunder the square root is
/1 negative. No sol ution.
result = new doubl e[0];

}

187

el se

if (y < le-20)

{

/!l termunder the square root is zero.

[/ One sol ution.
result = new doubl e[1];
result[0] = Xx;

}

el se

{

// termunder the square root is
/1l positive. Two sol utions.
double z = Math.sqgrt(y);

result = new doubl e[2];

result[0] = x + z;
result[1l] = x - z;
}

return result;

}

nodul e A(doubl e p,

protected void init()

{

}

[
Axi om ==> A(0, 0);

]

println("Cick on object for

public void cal cul ate()

{

doubl e[] res;
doubl e p, q;

[
?A:>{p=dm;q=dm;%

doubl e g) extends Sphere(3);

input (p,q)!");

188

res = solve quadratic(p, Qq);

If (res.length == 0)
println("There is no solution.");
I f (res.length == 1)
println("Single solution: " + res[0]);
I f (res.length == 2)
{
println("First solution: " + res[1]);
println("Second solution: " + res[0]);

}

Loops:

We have already introduced the whi | e loop.

The for loop:

for(<Initialization=>;:<Condition=;<Increment=)

{

<Code to be repeateds

Similar to:

zInitializations;
while(<Condition=]
<Code to be repeateds:

<Increments>

189

Application example:

static public int computeSum(int[] p)

{

int result = 0;

F

for(int 1=0; i<p.length; ++1]

{

result += pli];

return resul T ;

190

