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Special cases of linear mappings 
 
(a) Rotations around the origin 
 
Let  f  be the counterclockwise rotation by the 
angle ϕ around the zero point (0; 0) (origin of the 
cartesian coordinate system). 
Each vector is rotated by ϕ, its image has the same 
length as before. 
 
Image vectors of the standard basis vectors = ? 
     

 

 

We obtain as image vectors: 








ϕ
ϕ

sin

cos
 and 







−
ϕ
ϕ

cos

sin
. 

The matrix of  f  is thus: 

 
 

We call this a rotation matrix. 
 

cos ϕ 

sin ϕ       

– sin ϕ      

cos ϕ 
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(b) Scaling 
 
Let  f  be the mapping which enlarges (or shrinks) 
every vector by a certain, fixed factor λ ≠ 0. 
Its corresponding matrix is 

, 
called a scaling matrix with factor λ.  
 

Indeed, we have 

 
 
The image of each vector has the same direction 
as before (or the opposite direction, if λ is 
negative), but a length which is modified by the 
factor |λ|. 
Parallelism and all angles remain unchanged 
under this mapping. 
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(c) Centroaffine mapping 
 
Let  f  act as a scaling by λ1 on the x axis and as a 
scaling by λ2 on the y axis, with two different 
numbers λ1 ≠ λ2. 
The corresponding matrix is 

 
 

This mapping is called centroaffine. 

Its effect: 
  

 

It works as a pure scaling on the x and y axis, but not for 
vectors which are outside these coordinate axes (they 
are also rotated a bit): 
 

   
 

The centroaffine mapping is thus not a scaling for 
all vectors. 
Certain vectors play a special role for this mapping, 
namely, those on the coordinate axes: They are 
only scaled, the others are also rotated. 

λ
      

λ
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11. Eigenvalues and eigenvectors 
 
We have seen in the last chapter:  
for the centroaffine mapping 

, 
some directions, namely, the directions of the 
coordinate axes: 









0

1  and 








1

0 , are distinguished 

among all directions in the plane: In them,  f  acts 
as a pure scaling. 
We want to generalize this to arbitrary linear 
mappings. 
 

We call a vector representing such a direction an 
eigenvector of the linear mapping f (or of the 
corresponding matrix A), and the scaling factor 
which describes the effect of f on it an eigenvalue. 
 
Examples: 

 
is eigenvector of the matrix

  
to the

 
eigenvalue 3: 

    

 
is also eigenvector of 

 
to the eigenvalue 3:
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is eigenvector of

  
to the eigenvalue 7:

 

    
 
in general: 
An eigenvector of A must fulfill , and we 
require . 
 
Definition: 
Let A be a matrix of type (n, n). If there exists a 
real number λ such that the equation  
has a solution  , we call λ an eigenvalue and 

 an eigenvector of the matrix A. 
 
 
 
 
 
 
 
 
 
If  is an eigenvector of A and a ≠ 0 an arbitrary 
factor, then also  is an eigenvector of A. 
We can choose a in a way that the length of  
becomes 1. That means, we can always find 
eigenvectors of length 1. 

xA
r⋅  

x
r
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If we insert , we can transform the equation 
 in the following way: 

 

 
 
This is equivalent to a system of linear equations 
with matrix A – λE and with right-hand side always 
zero. 
If the matrix A – λE has maximal rank (i.e., if it is 
regular), this system has exactly one solution (i.e., 
the trivial solution: the zero vector). We are not 
interested in that solution! 
The system has other solutions (infinitely many 
ones), if and only if A – λE  is singular,  
that means, if and only if 
 

det(A – λE) = 0. 
 
 
From this, we can derive a method to determine all 
eigenvalues and eigenvectors of a given matrix. 
 
The equation det(A – λE) = 0 (called the 
characteristic equation of A) is an equation 
between numbers (not vectors) and includes the 
unknown λ. Solving it for λ means finding all 
possible eigenvalues of A. 
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In the case of a 2×2 matrix A, the characteristic 
equation det(A – λE) = 0 has the form 
 

 
 

i.e., it is a quadratic equation and can be solved 
with the well-known pq formula (see Chapter 6, p. 28). 
 

Example: 

 

 

 
 

 is called the characteristic polynomial of A. 
 

Its zeros, the solutions , are the 
eigenvalues of A. 
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That means: Exactly for  and  does the 

vector equation  have nontrivial solution 

vectors , i.e., eigenvectors. 
 
The next step is to find these eigenvectors vor 
each of the eigenvalues: 
 

This means to solve a system of linear equations! 
 
We use the equivalent form . 
We are not interested in the trivial solution 0

rr =x . 
 
In the example: To find an eigenvector  

to the eigenvalue   
 

         
        (system of 2 linear equations with r.h.s. 0) 
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with elementary row operations we get: 
 

 
 

From the second-last row we deduce: 

 
We can choose one parameter arbitrarily,  
e.g., x2 = c , and obtain the general solution 

 (with c ∈ IR and c ≠ 0 because we want to 

have an eigenvector) 
 

It is enough to give just one vector as a 
representative of this direction, e.g., 

 
This is an eigenvector of A to the eigenvalue 1/2. 
 

Test:  
  

 
The eigenvectors to the second eigenvalue, 3/2, 
are determined analogously 
(a solution is 







−
1

1 .) 
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In the general case of an n×n matrix, det(A – λE) is 
a polynomial in the variable λ of degree n, i.e., 
when we develop the determinant, we get 
something of the form 

 
 
Such a polynomial has at most n zeros, so A can 
have at most n different eigenvalues. 
 
Attention: 
There are matrices which have no (real) eigen-
values at all! 
Example: Rotation matrices with angle ϕ ≠  0°, 180°. 
 
It is also possible that for the same eigenvalue, 
there are different eigenvectors with different 
directions. 

Example: For the scaling matrix , every 

vector  is eigenvector to the eigenvalue 5. 
 
 
Fixed points and attractors 
 
Let  f: IRn  → IRn  be an arbitrary mapping. 
x
r

 ∈ IRn  is called a  fixed point  of  f,  if , 
i.e., if x

r
 remains "fixed" under the mapping  f. 
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x
r

 is called attracting fixed point, point attractor or 
vortex point of  f , if there exists additionally a 
neighbourhood of x

r
 such that for each y

r
 from this 

neighbourhood the sequence 

 
converges against x

r
. 

 
The fixed points of linear mappings are exactly (by 
definition) the eigenvectors to the eigenvalue 1 and 
the zero vector. 
 
Examples: 
 

 (shear mapping): each point on the x axis 

is a fixed point. 
 

 (scaling by 2): only the origin (0; 0) is 

fixed point.  (There are no eigenvectors to the 
eigenvalue 1; the only eigenvalue is 2.) 

       The origin is not attracting. 
 

 (scaling by 1/2, i.e., shrinking): 

       the origin (0; 0) is attracting fixed point. 
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Definition: 
A stochastic matrix is an n×n matrix where all 
columns sum up to 1. 
 
Theorem: 
Each stochastic matrix has the eigenvalue 1. 
The corresponding linear mapping has thus a fixed 
point . 
 
 
Example from epidemiology: 
 
The outbreak of a disease is conceived as a 
stochastic (random) process. For a tree there are 
two possible states: 
   "healthy" (state 0)  and 
   "infected" (state 1). 
 
For a healthy tree, let us assume a probability of 
1/4 to be infected after one year, i.e.: 

,  and correspondingly:  (= probability 

to stay healthy). 
For infected trees, we assume a probability of 
spontaneous recovery of 1/3: 

 
We define the transition matrix (similar to the age-
classes example) as 
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For the purpose of calculation, we need the 
transposed of P, which is a stochastic matrix 
(and is in the literature also often called the 
transition matrix): 

 
 
A process of this sort, where the probability to 
come into a new state depends only on the current 
state, is called a Markov chain. 
 
Graphical representation of the transitions: 
 

 
 
If we assume that g1, resp., k1 are the proportions 
of healthy, resp., infected trees in the first year, the 
average proportions in the 2nd year are given by: 
 

 

"infected" 
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Question: what is the percentage of infected trees, 
if the tree stand is undisturbed for many years and 
the transition probabilities remain the same? 
 
We have to look for a fixed point of the mapping 
corresponding to PT. 
Because PT is a stochastic matrix, it has 
automatically the eigenvalue 1. 
We have only to determine a corresponding 
eigenvector (fixed point) 









'

'

k

g : 
 

 
 
By applying the standard method for solving linear 
systems, we obtain: 

. 
From this we derive the proportion of the infected 
trees: 

 
 
Remarks:  
This proportion does not depend on the number of 
infected trees in the first year. 
 










'

'

k

g  is in fact an attracting fixed point, if we restrict 

ourselves to a fixed total number of trees, g+k. 
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In the same way, a stable age-class distribution 
can be calculated in the case of the age-class 
transition matrix (see Chapter 10, p. 82-83). 
 
In that case, the stable age-class vector  has to 
be determined as the fixed point (eigenvector to 
the eigenvalue 1) of the matrix PT, i.e., as the 
solution to 

. 
 
Because the fixed point is attracting, it can be 
obtained as the limit of the sequence 

, 
starting from an initial vector 0a

r
. 

 
 
 
 


