Special cases of linear mappings

(a) Rotations around the origin

Let f be the counterclockwise rotation by the

angle ¢ around the zero point (0; 0) (origin of the
cartesian coordinate system).

Each vector is rotated by ¢, its image has the same
length as before.

Image vectors of the standard basis vectors = ?

We obtain as image vectors: (Z?:ZJ and (;?gfj

The matrix of f is thus:

f— |cos b SN ¢b

sSin ¢b cos ¢

We call this a rotation matrix.
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(b) Scaling

Let f be the mapping which enlarges (or shrinks)
every vector by a certain, fixed factor A £ 0.
Its corresponding matrix is

A O
0 IK

called a scaling matrix with factor A.
Indeed, we have

ax= 0L
0 AJlx,

The image of each vector has the same direction
as before (or the opposite direction, if A is
negative), but a length which is modified by the
factor [A].

Parallelism and all angles remain unchanged
under this mapping.

;\ _Tl

.f\ :\’2
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(c) Centroaffine mapping

Let f act as a scaling by A1 on the x axis and as a
scaling by A2 on the y axis, with two different

numbers A1 # Ao.
The corresponding matrix is

A, O

1

0O A

2

A=

This mapping is called centroaffine.
A 0

. ') — ?\ld
AL, Le] |ALp

Lif\2ey)

1

Its effect:

It works as a pure scaling on the x and y axis, but not for
vectors which are outside these coordinate axes (they
are also rotated a bit):

The centroaffine mapping is thus not a scaling for
all vectors.

Certain vectors play a special role for this mapping,
namely, those on the coordinate axes: They are
only scaled, the others are also rotated.
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11. Eigenvalues and eigenvectors

We have seen in the last chapter:
for the centroaffine mapping

f; , ‘)\1 0 . —_ A, X,
0 'A'E ‘)L& x:r
some directions, namely, the directions of the

coordinate axes: @ and @ are distinguished
among all directions in the plane: In them, f acts
as a pure scaling.

We want to generalize this to arbitrary linear

mappings.

7

.Tj

X,

s

We call a vector representing such a direction an
eigenvector of the linear mapping f (or of the
corresponding matrix A), and the scaling factor
which describes the effect of f on it an eigenvalue.

Examples:

H IS eigenvector of the matrix [5 g] to the

T Al

H IS also eigenvector of [5 g] to the eigenvalue 3:
3 01(2]|=|6]|=3.2
0 7110 o |0
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0

[1 IS eigenvector of [5 g] to the eigenvalue 7:
3 0]10]|=[0]=7.|0
0 7(|1 7 1

In general:
An eigenvector of A must fulfill 4-X=A-X, and we

require X #0

Definition:

Let A be a matrix of type (n, n). If there exists a
real number A such that the equation 4-X=A-X
has a solution x]#ﬁ , we call A an eigenvalue and

X, an eigenvector of the matrix A.

A

N X
\

v

If X, is an eigenvector of A and a# 0 an arbitrary
factor, then also "X, is an eigenvector of A.

We can choose ain a way that the length of a- X,

becomes 1. That means, we can always find
eigenvectors of length 1.
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If we insert X=F X, we can transform the equation
A-X=A-X in the following way:
A-F=A% o Ax3—A3%=0
< AX—-AEX
< (A-AE)¥

0
0

This is equivalent to a system of linear equations
with matrix A — AE and with right-hand side always
Zero.

If the matrix A — AE has maximal rank (i.e., if it is
regular), this system has exactly one solution (i.e.,
the trivial solution: the zero vector). We are not
Interested in that solution!

The system has other solutions (infinitely many
ones), if and only if A — AE is singular,

that means, if and only if

det(A — AE) = 0.

From this, we can derive a method to determine all
eigenvalues and eigenvectors of a given matrix.

The equation det(A — AE) = 0 (called the
characteristic equation of A) is an equation
between numbers (not vectors) and includes the

unknown A. Solving it for A means finding all
possible eigenvalues of A.
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In the case of a 2x2 matrix A, the characteristic
equation det(A — AE) = 0 has the form

= AN —la, tay,)A+ay a,—a,,a, =0

12 )

ay  dyp—A

l.e., it IS a quadratic equation and can be solved
with the well-known pg formula (see Chapter 6, p. 28).

Example:
i .
|2
= |
2
| 1] |
1 > 1A —=
' 3
5 L 5 1-A
| ]
1—A > z e o
det (4 —AE) = ! = (1—-2A) ~| = 1-2a+A .
E I—A
= ‘\3—29\+§:'0
4

A2 :Hfz is called the characteristic polynomial of A.

. | :
Its zeros, the solutions A=5. A=

, are the
eigenvalues of A.

l‘~J|JJ
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1 3
That means: Exactly for *=5 and =5 does the

vector equation 4-x=A-x have nontrivial solution
vectors x #0, i.e., eigenvectors.

The next step is to find these eigenvectors vor
each of the eigenvalues:

This means to solve a system of linear equations!

We use the equivalent form (4—AE)¥=0,
We are not interested in the trivial solution x

—

0.

In the example: To find an eigenvector
. |
to the eigenvalue A=75 @ (d=7L£)x=0

|

1
2
1
2

1

2
1
2

l\)ln—*

b | —
l\)|'_; l\)||—a

(sysfem of 2 Ii-near equations with r.h.s. 0)
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with elementary row operations we get:

0

[\J‘i—- I\')|'—
[\-J‘i—- I\.)|l—‘

—
(=)

1 -1 1§ 0
o o0 ¢ 0

From the second-last row we deduce:
x,+(—x,)=0

We can choose one parameter arbitrarily,
e.g., X2 = ¢, and obtain the general solution

?=[i] (with ¢ O IR and ¢ # 0 because we want to
have an eigenvector)

It is enough to give just one vector as a
representative of this direction, e.g.,

!

This is an eigenvector of A to the eigenvalue 1/2.

1 1
Test: 4“]: _2 m: i =%H=‘H

L
2

The eigenvectors to the second eigenvalue, 3/2,

are determined analogously
(a solution is (‘11].)
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In the general case of an nxn matrix, det(A — AE) is
a polynomial in the variable A of degree n, i.e.,
when we develop the determinant, we get
something of the form

e N+e, AT te A+,

Such a polynomial has at most n zeros, so A can
have at most n different eigenvalues.

Attention:

There are matrices which have no (real) eigen-
values at all!

Example: Rotation matrices with angle ¢ # 0°, 180°.

It is also possible that for the same eigenvalue,
there are different eigenvectors with different
directions.

50

o 5| every

Example: For the scaling matrix Azl

vector ¥ #0 is eigenvector to the eigenvalue 5.

Fixed points and attractors

Let f: IR" - IR" be an arbitrary mapping.
X OIR" is called a fixed point of f, if /(X)=X,
i.e., if X remains "fixed" under the mapping f.
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X is called attracting fixed point, point attractor or
vortex point of f, if there exists additionally a

neighbourhood of X such that for each Y from this
neighbourhood the sequence

v, fO) SO,

converges against X.

The fixed points of linear mappings are exactly (by

definition) the eigenvectors to the eigenvalue 1 and
the zero vector.

Examples:

A:[é ﬂ (shear mapping): each point on the x axis

IS a fixed point.

.4:[3 g] (scaling by 2): only the origin (0; 0) is

fixed point. (There are no eigenvectors to the
eigenvalue 1; the only eigenvalue is 2.)
The origin is not attracting.

o

(scaling by 1/2, i.e., shrinking):

the o-rigin (0; 0) is attracting fixed point.
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Definition:
A stochastic matrix is an nxn matrix where all
columns sum up to 1.

Theorem:
Each stochastic matrix has the eigenvalue 1.
The corresponding linear mapping has thus a fixed

—_—

point # 0.

Example from epidemiology:

The outbreak of a disease is conceived as a
stochastic (random) process. For a tree there are
two possible states:

"healthy" (state 0) and

"Infected" (state 1).

For a healthy tree, let us assume a probability of
1/4 to be infected after one year, i.e.:

pm:%, and correspondingly: p00=% (= probability
to stay healthy).

For infected trees, we assume a probability of

spontaneous recovery of 1/3:

_1 _2
P1o= 3 pn_%

We define the transition matrix (similar to the age-
classes example) as

Pw Pa
P Pu

P=
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For the purpose of calculation, we need the
transposed of P, which is a stochastic matrix
(and is in the literature also often called the
transition matrix):

pPl=

| |
-|—||—- -l:-|&.u
4J|[\J \.AJ||-—

A process of this sort, where the probability to
come into a new state depends only on the current
state, is called a Markov chain.

Graphical representation of the transitions:
A
e )

A
3

If we assume that g1, resp., k1 are the proportions

of healthy, resp., infected trees in the first year, the
average proportions in the 2" year are given by:

20 = pT . | &1
k, k,

o

—

oq
i

= W

0qQ
—
LI [ B9 W | —

=5
—
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Question: what is the percentage of infected trees,
If the tree stand is undisturbed for many years and
the transition probabilities remain the same?

We have to look for a fixed point of the mapping
corresponding to PT.

Because PT is a stochastic matrix, it has
automatically the eigenvalue 1.

We have only to determine a corresponding

eigenvector (fixed point) @

By applying the standard method for solving linear
systems, we obtain:

g'|=|4c
kK’ 3-c

From this we derive the proportion of the infected

c#0

trees:

k _ 3 _3
g+k 443 7
Remarks:

This proportion does not depend on the number of
Infected trees in the first year.

[ij IS In fact an attracting fixed point, if we restrict

ourselves to a fixed total number of trees, g+k.
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In the same way, a stable age-class distribution
can be calculated in the case of the age-class
transition matrix (see Chapter 10, p. 82-83).

In that case, the stable age-class vector ¢ has to
be determined as the fixed point (eigenvector to
the eigenvalue 1) of the matrix PT, i.e., as the
solution to

T —* - ¥
P-a =a

Because the fixed point is attracting, it can be

obtained as the limit of the sequence
a_.() ) PT-J{) ’ (PT\):.J{) s (PI‘)E-J@ )

—

starting from an initial vector &.
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