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9.  The determinant 
 
The determinant is a function (with real numbers 
as values) which is defined for square matrices. 
 

It allows to make conclusions about the rank and 
appears in diverse theorems and formulas. 
 
Notation: 

  
matrix,

   
determinant. 

 
Also:  A matrix,  det(A) = |A| ∈ IR determinant of A. 
 

 
We call this a determinant of order  n. 
 
 
Calculation in the special cases n = 2 and n = 3: 
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The formula for the case 3×3 is called  
"Sarrus' rule".  
Other notation for it, using auxiliary columns for 
better memorizing the products and their signs: 

 
=  
 
 
The calculation formula for the general case 
requires the notion of a subdeterminant: 
 

Let A be an n×n matrix. Its determinant is |A|.  
By omitting the ith row and the jth column we 
obtain a subdeterminant of order n–1. 
Notation:  |Aij|. 
 
In the following formulas, the value of this sub-
determinant is multiplied by the factor (–1)i+j , 
giving a sign which alternates between rows and 
columns like in a chessboard: 
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Formulas for calculating determinants  
of n×n matrices A of arbitrary size (so-called 
development theorems): 
 

(a) For a fixed jth column: 

|A| =
  

 

(b) For a fixed ith row: 

|A| = 
 

 

On the right-hand side we have again determinants, but 
with smaller size. 
 

We call this "to develop a determinant for a given 
column (or row)". 
 

Example n = 3: 

 

 
 

When we have zero entries, it is advantageous to 
choose the rows or columns with most zeros. 
Example for n = 4: 
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Rules for determinants: 
 
(1) Switching two rows or two columns changes 
the sign of the determinant. 
(2) If a matrix has a zero row (or a zero column), its 
determinant is 0. 
(3) Has a matrix two identical rows (or columns), its 
determinant is 0. 
(4) If a row (column) of a matrix is multiplied by k, 
the value of its determinant increases also by the 
factor k. 
(5) If some row (column) is a linear combination of 
the other rows (columns), the determinant is 0. 
(6) The determinant does not change its value if 
some linear combination of the other rows 
(columns) is added to a row (column). 
(7) The determinant of a matrix does not change if 
the matrix is transposed: |A| = |AT|. 
(8) The determinant of a triangular matrix is the 
product of the elements of the principal diagonal. 
 
Definition "regular" / "singular": 
An n×n matrix A is called regular if  rank(A) = n 
(i.e., if it has the maximal possible rank) 
– or, expressed in another way: if all its rows (columns) 
are linearly independent 
 

Otherwise, A is called singular. 
 
Theorem:    A is regular  ⇔   |A| ≠ 0. 
 

Corollary:        A is singular  ⇔  |A| = 0. 
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We can thus use the determinant as an indicator of 
linear independence (of all rows or columns of A). 
 
Geometrical application of the determinant: 
 

When the sign is disregarded,  is the area 
content of the parallelogram spanned by the two 

column vectors
  

and
 

.
 

 
 
(Remark: The area of the spanned triangle is exactly half 
of this value!) 
 

 
 
 
 
 
 
Analogously in IR3 : 
Disregarding the sign,  is the volume of 
the parallelepiped spanned by . 
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10. More on linear mappings and matrices 
 
Linear mappings can be carried out one after the 
other (composition of mappings): 
Let 

 
 
By composing both mappings, we obtain a new 
mapping  , the composition of f1 and f2  
(notice the notation from right to left): 
 

 
 
The new mapping : IRm → IRp  is again linear 
and has also a corresponding matrix (of type (p, m)). 
 

Its matrix is called the product of the matrices A 
and B:   B ⋅ A  
 
How is the product of two matrices calculated? 
 

be described by the matrix A, 
 

be described by the matrix B. 
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The case of two matrices of type (2, 2): 
 

 
  
All possible inner products "row of the first matrix" 
by "column of the second matrix" are calculated 
and written into the result matrix. 
 
This holds also in the general case: 
 
Definition: 
The product of two matrices A of type (m, n) and B 
of type (n, p) is a matrix C = A⋅B  of type (m, p) with 
the elements 

.
 

 
The product exists only in the case when the first 
matrix has as many columns as the second has 
rows! 
 
Example: 

   
⇒
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Attention: In the general case, A⋅B ≠ B⋅A . 
 
Example: 
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Transposition of a matrix product: 

 
 
The product of a matrix A with a column vector v

r   
is a special case of the product of two matrices 
(second factor of type (n, 1)). 
 
 
Application: 
Transformation of age-class vectors 
 
We remember: 
The age-class structure of a forest at time t can be 
described by an age-class vector. 
 

=  
 

area with trees of age class 1 
 
area with trees of age class 2 
 
 
 

area with trees of age class n 
 
 
(n = number of successive age classes) 
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The development of the age structure over time 
can be described by a linear mapping IRn → IRn . 
 
Let  pj,k be the part of the area of the jth age class 
which comes into the kth age class. 
 

Example: p3,4 = 0.7 
                p3,1 = 0.3, i.e., 30% of the stand of age class 3 are cut 
                                and the free area is immediately reforested 
                                with young trees (age class 1) 
                p3,k = 0     for all other k. 
 
Age-class transition matrix: 
 

 
 
In the calculations, more often the transposed 
matrix PT is used. In population ecology, it is called 
the Leslie matrix. 
 
Theorem: 
The age class vector of the stand at time t+1 can 
be calculated as 

 
 
In the simple case n=3, this gives 
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Because some of the entries of PT are necessarily 0  
(organisms cannot stop ageing; they cannot overjump some 
age class or become younger),  this can be simplified to: 
 

 
 
We can say that P describes a forest management 
strategy. 
 
Usage of the matrix product in this context: 
 

If between times t and t+1, strategy P is applied, 
and between times t+1 and t+2 strategy Q, 
then we have in total: 

 
 
If the strategy is the same in every time step, we 
have: 
 

 
 
(Here, ()T means transposition, ()t means the t-fold product of a 
matrix with itself.) 
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The inverse matrix 
 
Let A be an n×n matrix.  
A–1 is called the inverse matrix of A if 

   (= the unit matrix). 
 
Not every matrix has an inverse. 
If the inverse matrix of A exists, it is unique. 
It is always (A–1)–1 = A. 
 

When does  A–1 exist ? 
 

A  is a matrix of type (n, n) 
corresponding linear mapping  f : IRn →  IRn 

 
 

IRn                                       IRn                                               
 
 

            x
r

                                    y
r

  
 
      xAxfy

rrr ⋅== )(  
 

when does the inverse mapping  f –1  exist?  
 

If    f   is bijective, i.e.,  
  f  injective   …… not:           
  and  
  f  surjective  ……not: 
 
 

f –1 

f 
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Exactly the regular n×n matrices have an inverse 
matrix. 
 
How to calculate it? 
Most efficient way: by elementary row operations. 
Concatenate an n×n unit matrix E to A: 
 

 
 
Then transform this larger matrix by elementary 
row operations in a way that the left part is 
transformed into the unit matrix. The resulting right 
part is then A–1:  [ E | A–1]. 
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Example: 

 
 

 
The start scheme is 

 
 

 
By subtracting the first row 3 times from the second row, and 
then the second row 3 times from the third, we get 

 
 
 
It is recommended to check if really A⋅A–1 = E 
(otherwise some error must have occurred). 
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Systems of linear equations 
 
A system of m linear equations with n unknowns 
can always be ordered and rewritten in the form 
 

 
 
If we collect the unknowns xk in a column vector 

 
and the numbers bi on the right-hand side (called 
absolute terms) also in a column vector 

 
and the coefficients aik in a matrix A of type (m, n), 
we can write the whole system as a single 
equation: 
 

 
 
 

 

is called the coefficient matrix

 
of the system, 
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Aext =

  

the extended

  
          matrix of the system. 
 
Notice: 

 can also be interpreted as bxf
rr =)(  , with  f 

the linear mapping described by the matrix A. 
 

Finding a solution of the linear system means thus 
to find a vector which is mapped to b

r
. 

 
 
For each system of linear equations, there are 
three possibilities: 
(1) The system has exactly one solution x

r
, 

(2) the system has infinitely many solutions, 
(3) the system has no solutions at all (it is then 
      called inconsistent). 
 
Examples: 

(1) The system
  

has exactly one
 

solution:
 

, that means, x1 = 2 and x2 = 3.
 

Indeed,  2 + 3 = 5   and  2⋅2 + 3 = 7, and there are no other 
combinations of numbers which fulfill both equations 
simultaneously. 
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(2) The system
  

has infinitely many
 

solutions, which all have the form 

 
(a ∈ IR), that means,

 
x1 = 5–a and x2 = a.

 
 

(3) The system
  

has no solution.
 

Both equations contradict each other. 
 
 
Frobenius' Theorem: 
 
The system of m linear equations with n unknowns 
which is described by the vector equation   
has solutions if and only if  rank(A) = rank(Aext). 
More precisely: 
(1) If rank(A) = rank(Aext) = n, the system has 
      exactly one solution. 
(2) If rank(A) = rank(Aext) < n, the system has 
     infinitely many solutions. In this case, the values 
     of n – rank(A) of the unknowns can be chosen 
     arbitrarily. 
(3) If rank(A) ≠ rank(Aext), the system has no 
     solutions at all. 
 
We can check the theorem at the examples from 
above: 

(1)
 

,
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so, Aext =  
, and we have

  
rank(A) = rank(Aext) = 2 = n, there is exactly one 
solution. 
 

(2)
 , 

Aext = 
 

Here, rank(A) = rank(Aext) = 1 < 2 = n (the second 
row is a multiple of the first one), and we have  
infinitely many solutions (2–1 = 1 unknown can be 
put to an arbitrary value). 
 

(3)
 , 

Aext = 
 

Here, rank(A) = 1 < rank(Aext) = 2. There is no 
solution. 
 
 
How to solve systems of linear equations? 
 
"Gaussian method of elimination": 
most effective method in the general case. 
 

By elementary row operations, the extended matrix 
of the system is transformed into an upper 
triangular matrix. The solutions of the 
corresponding system of equations remain the 
same! 
The system corresponding to the upper triangular matrix 
can easily be solved "bottom-up" by successive insertion 
and elimination of unknowns. 
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Example:  Solve the system 
 

 
 

Its extended matrix is  Aext =
  

 

By applying elementary row operations, one gets 

   (upper triangular matrix). 
 

From this, we can immediately see that  
rank(A) = rank(Aext) = 3 = n, 
and following Frobenius we can conclude that the 
system has exactly one solution. 
 

The system of equations corresponding to the 
transformed matrix is 
 

 
 

and this can be solved easily from the third row up 
to the second and first row by elimination of 
variables. We obtain: 

 

and thus the unique vector solution
  

.
 


