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Inner product and cross product 
 

(a) The inner product of vectors and the norm of a 
vector 
 

The inner product of two vectors 
     
 a product of vectors which gives as result a scalar! 
 

Let there be given:
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yx
rr ⋅  is not a vector, thus, e.g., cba

rrr +⋅ )(  is senseless. 
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Significance: 
The inner product enables propositions about 
lengths and angles of vectors. 
 
The (Euclidean) norm of x

r  ∈ IR2  is defined as  
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analogously in IR³.                                                                                   
                                                                                             
            
geometrical interpretation is thus: 
norm = length of the vector (arrow). 
 

The vector )
||||

1
..(

||||
x

x
ei

x

x r
rr

r

⋅   has length 1. 

It is called normed. 
 
 
General definition of the norm (or length) of a 
vector: 
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Two vectors yx
rr

,  are mutually orthogonal 
(perpendicular) to each other iff  0=⋅ yx

rr
. 

 

Example:  
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Generally, in IRn  the angle formula holds: 
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in xy plane  on z axis 
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(b) The cross product of vectors in IR3 
 
Let there be given two 3-dimensional vectors 

 
 

The vector product or cross product  of both 
vectors is defined as the following new 3-
dimensional vector: 
 

 
 
Rule for memorizing the components of the cross 
product: 
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The cross product has the following properties: 
 

 (thus, in general, the factors must not 
                      be flipped) 
 

 linearly dependent 
 

 stands always orthogonal to a
r

 and b
r

 
      (so this is an easy way to find some vector 
       orthogonal to a plane if it is needed) 
 

 form in this order a "right-hand 
       system" (orientated like the first three fingers 
       of the right hand) 
 

 
           = area of the parallelogram which is 

              spanned by a
r

 and b
r

 
 
Attention: 
The cross product does only exist in IR3 ! 
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8. Linear mappings and matrices 
 
A mapping  f  from  IRn  to  IRm  is called linear  if it 
fulfills the following two properties: 
 

(1)   for all   
 

(2)    for all    and all   
 
Mappings of this sort appear frequently in the 
applications. E.g., some important geometrical 
mappings fall into the class of linear mappings: 
Rotations around the origin, reflections, 
projections, scalings, shear mappings... 
 
We show at the example of a shear mapping that 
such a mapping is completely determined (for all 
input vectors) if its effect on the vectors of the 
standard basis are known: 
 
Example 
 

Let  f  be the mapping from IR2 to IR2 which 
performs a shear along the x axis, 
i.e., the image of each point under f can be found 
at the same height as the original point, but shifted 
along the x axis by a length which is proportional 
(in our example: even equal) to the y coordinate. 
 
The figure illustrates the effect of  f  at the 
examples of the standard basis vectors and an 
arbitrary vector a

r
: 



 67 

 
 
We have: 

                   
 
f  is indeed a linear mapping, that means: 

  and 
  are fulfilled. 
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The general formula for this shear mapping is 
apparently: 

 
 

To get knowledge about the image
   

of an arbitrary vector
   

, it is sufficient
  

to know the images of the vectors of the standard 

basis, i.e.,
    

and
  

:
 

 

 
                              f  is linear 

 
 

Here:
  

,
 

confirming our formula above. 
 

That means:  These images, here
  

and
 

,
 

describe  f  completely. 
They are put together in a matrix: 

  
=  matrix of  f .
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In general:  
Matrix of a linear mapping   : 
 

 
 

The matrix describes its associated linear mapping 
completely. 
 

The result of the application of  f  to a vector  
can easily be calculated as the product of the 
matrix of  f  with the vector x

r
. 

 

In our example:  

 
 

In the general case: 
 

 

has m rows and n columns 
 

⇒  "matrix of type (m; n)" 
 
all entries  aij  are real numbers 
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Example:
   

 
 

General definition of a matrix: 
 

A matrix of type (m; n), also: m×n matrix ("m cross n"), 
is a system of m ⋅ n numbers aij,  i = 1, 2, ..., m and 
j = 1, ..., n, ordered in m rows and n columns: 

 
aij  is called the element or entry of the i-th row and 
the j-th column. The m ⋅ n numbers aij are the com-
ponents of the matrix.  
A matrix of type (m; n) has m rows and n columns. 
Each row is an n-dimensional vector (row vector), 
and each column is an m-dimensional column 
vector. 
The list of elements  aii   (i = 1, 2, ..., r  
with r = min(m, n)) is called the principal diagonal 
of the matrix. 
 
Example:  

  
A is of type (3; 4). 
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A has 3 row vectors: 

 
and four column vectors: 

 
Its principal diagonal is 1; 3; 1. 
 
Special forms of matrices: 
 
• square matrix: 
If  m = n,  i.e., if the matrix A has as many rows as 
it has columns, A is called a square matrix. 
 
• m = 1: A matrix of type (1; n) is a row vector. 
 
• n = 1:  A matrix of type (m; 1) is a column vector. 
 
• m = n = 1: A matrix of type (1; 1) can be identified  
with a single real number (i.e., its single entry). 
 
• diagonal matrix: 
If A is a square matrix and all elements outside the 
principal diagonal are 0, A is called a diagonal 
matrix. 
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• unit matrix: 
The unit matrix E is a diagonal matrix where all 
elements of the principal diagonal are 1. 
It plays an important role: Its associated linear 
mapping is the identical mapping xxf

rr =)( . 
 

 
 

• zero matrix: 
The matrix where all entries are 0 is called the zero 
matrix. 
 

• triangular matrix: 
A matrix where all elements below the principal 
diagonal are 0 is called an upper triangular matrix. 
 

Example: 

 
 
Analogous: A matrix where all elements above the 
principal diagonal are 0 is called a lower triangular 
matrix. 
 
Addition of matrices and multiplication of a matrix 
with a scalar:  
These operations are defined in the same way as 
for vectors, i.e., component-wise. 
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Example: 
 

 
 
Attention: Only matrices of the same type can be 
added. 
 
Multiplication of a matrix with a column vector: 
Defined as above, i.e., 

. 
 

The result corresponds to the image of the vector 
under the corresponding linear mapping. 
 

Here, the matrix must have as many columns as 
the vector has components! 
 
Transposition of a matrix: 
 

Let A be a matrix of type (m; n). The matrix AT of 
type (n; m), where its k-th row is the k-th column of 
A (k = 1, ..., m), is called the transposed matrix of 
A. (Transposition = reflection at the principal 
diagonal.) 
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Example: 

  

of type (3; 2)  ⇒ 

 

 
of type (2; 3)

 
 
Special case: Transposition of a row vector (type 
(1; m)) gives a column vector (type (m; 1)), and 
vice versa. 
 
Submatrix: 
 

A submatrix of type (m–k; n–p) of a matrix A of 
type (m; n) is obtained by omitting k rows and  
p columns from A. 
The special submatrix derived from A by omitting 
the i-th row and the j-th column is sometimes 
denoted Aij . 
 
 
We now come back to linear mappings, which were our 
entrance point to motivate the introduction of matrices. 
Properties of linear mappings are reflected in 
numerical attributes of their corresponding 
matrices. 
 
An important example is the so-called rank of a 
linear mapping. 
 
We demonstrate it at two examples: 
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f : IR2 → IR2 shear 
mapping (= example from 
above) 
 

 
 

 
Matrix of f : 

 
The images 

 
(i.e., the column vectors of the 
matrix of f) 
are linearly independent, 
they span the whole plane IR2 
 

g : IR2 → IR2 projection 
along the principal 
diagonal onto the y axis 
 

 
 

 
Matrix of g : 

 
The images 

 
(i.e., the column vectors of the 
matrix of g) 
are linearly dependent, 
they are on the same line 
through 0  (i.e., on the y axis) 
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⇒ each vector is an image 
under f  (f is surjective) 
 

rank f  = 2 
 

( = dimension of the 
plane) 
 

⇒ only the y axis is the range 
of g  (g is not surjective) 
 

rank g  = 1 
 

( = dimension of the 
line) 

 
Definition: 
The rank of a matrix A is the maximal number of 
linearly independent column vectors of A. 
Notation:  rank (A),  r (A). 
 
This is consistent with our former definition: 
rank (A)  = rank of the system of column vectors  
of A (as a vector system). 
 
At the same time, it is the dimension of the range 
of the corresponding linear mapping of A. 
 
Theorem: 
rank (A) is also the maximal number of linearly 
independent row vectors of A. 
 

"column rank = row rank" ! 
 
Special cases: 
The rank of the zero matrix is 0 (= smallest 
possible rank of a matrix). 
The rank of E, the n×n unit matrix, is n  (= largest 
possible rank of an n×n matrix). 
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The rank of an m×n matrix A can be at most the 
number of rows and at most the number of 
columns:    
0 ≤ rank(A) ≤ min(m, n). 
 
 
For determining the rank of a matrix, it is useful to 
know that under certain elementary operations the 
rank of a matrix does not change: 
 
Elementary row operations 
 
(1)  Reordering of rows (particularly, switching of  
       two rows) 
 
(2)  multiplication of a complete row by a number 
       c ≠ 0 
 
(3)  addition or omission of a row which is a linear 
       combination of other rows 
 
(4)  addition of a linear combination of rows to  
       another row. 
 
Analogous for column operations. 
 
Example: 
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By applying elementary row operations, we 
transform A into an upper triangular matrix 
 

(parentheses are omitted for convenience): 
 

 
 
The rank of A must be the same as the rank of the 
matrix obtained in the end. 
 

The rank of this triangular matrix can easily seen to 
be 2   (one zero row;  zero rows are always linearly 
dependent!  – The other two rows must be independent 
because of the first components 1 and 0.) 
 
 


