4. The World Wide Web

The World Wide Web (WWW) is
a hypertext system which is accessible via internet

(WWW is only one system using the internet —
others are e-mail, ftp, telnet, internet telephone ...)

Hypertext: Pages of text containing hyperlinks
(short: links) referring to other pages

Hypertext is viewed using a program called a web browser which retrieves pieces of information, called "documents”
or "web pages", from web servers and displays them, typically on a computer maonitar. One can then follow
hypetlinks on each page to other documents or even send information back to the server to interact with it. The act of
following hyperlinks is often called "swding” or "browsing” the web. WWeb pages are often arranged in callections of
related material called "web sites.”

(from www.wikipedia.org , the open www encyclopedia)

The link structure of the web forms a very large graph —

the following is a very small subgraph of it:

Library of Congress: Country
Studies

How SWff Works! | gcrorom Findar

Bt Alex Catalogu Bartleby.com: Strunk's
ictionary.com Tents Element of Style (1918)
The Library of Congress
The Weather Channel’" [The Online Books Page
http://wurr.thesaurus.com, ~ F -
Internet Public Library: Books
Merriam-Webster Doline. 7
Biography.com Free—r. Lh Librare?
Encyclopedia.comyia v iolgumanon Plesse LLTATT)
- MSNEC
- Washington Post
M E E}
The OIT Farmer’s Almanae!copedia
USA Today Google Image Search

Yahoo NewsNew 5 Angelas Times:

Web Search Home Page -
MetaCrawler (Gi0.com
Helcome [o fase2] Ask Teeves Oh o Local Guide, Ohia

GNU Project - Free Software q \Google News
Wiolations of the GPL, LGPL, p qundation (FSF) Hotels, Ohio Real 20097 News;

TesxiZhtml&=39:s Homepage

Hello : Welcome

ks = Blogarama
Micrssoft Networ,; (MSR) ate-Areaguides.net =

and GFDL - GNU Project - Free Nexs York Past paf <5.com [Rlogger: 404 - Page not faund o 4 Sailies
Telegraph.co.u Wel Search Home Page - =
MetaPad We' Crawl ‘HaloScan
Why There Are Not GIF Filestem - rree| CBSNews.com TChi Toib o ejCravler e
on GNU Pages 0o in (FSF) L hicago Tiibune (Blogger.com;

{¥ahoola¥ista - Creative Commons Deed
Financial Times) =T Lycos, TacMlagia Local Guide, Atlanta =
= By “Helels, Atlanta Real Ectate

AUBhTocopkst sl GNULE ree rveative Commons Dee{Dougal’s Slightly Less Funky

Software Foundation (FSF)! ~ain Page - Wikipadia The New York Times) 7 i
: Goagl =
WebMask help - Contents e - Wikip o NEws DI it gede Blogwise Aboutmedi Homepage
Ttaly Paper Money INDEX biutpe//cawikipediaorall Linux Today - Linux News On bletype.org : Get Movable;
Singapore Travel and Hotel antana LoCatNgl grana) — Internet Time. Tvpc/Personal _
)) ol " ToFapartaiIFoPortaling prinea Wikipediay, Hotels: Montaia 1/ e hﬂ ing Boing Alex Kinge Little®:h391s
Minnesota Encyclopadia : Maps Iberghi Ttalia & e T iikimedia Feunj |2, P age - Wikipedia, ¢ ‘Movable Type; T Journalized
- Weather - Travel - History .a su EO0E-, -im 2 free encyclopedia sinshdorr i = ! =
L1BHET B parale THauptseite - WikipediaMuaisse pAYdje - Wikipe” Frashme L I0e Registerfpiondly orderess, Level Double-A Conformance to
! iy ey ety K X Mozilla Firefox) | web Content Accessibility
g-_-:-‘;qlg-‘p_e_n_l‘-;a ol Onling, (Infoportal Kurot- o g Guidelines
§ ia 1 ariio i - .
Artspaci > Ivavers Hoter uue > Infonsoga Portada - Wikeionario hitp://validator.u:3.org/checkZillaorg
Weather > por! — e arizreferer
] - ather - Tom's Hardware Gi http://validator.ud.orgl chack/ | Sr i TF ECo0 o
w1 Welcome ro KikuMobile.com' /g ko Infoportal ia) CnEreferer e {I'A Conformance to Weh
m J Infoportal = s = 3 AE Paliintor tontent Accessibility
wp:/ Ffigsaviwdory /cre-valid —— cuidelines 1.
West Virginia Encyclopedia ¢ hetps/ Fsiwikipedia i ! ator Frotvs yaaktdliges 1.0
v < a ain_Page - = Bol Viewable With A Brpiicar?
Maps - Weather - Travel Glavns stran Wik ok Wiewable W o W Wik Consortiuny.
History Hafan - Wicipedia Ty PRt TP OCassor
afan - 1 F —
Main (Haofdpagina - Wikipadia NLjedia) [GNU General Public License
3 = T (GPL) WICHTML Home p oy List Apart
7 q ome Page
ina - Wiki i ftrzare [SourceForge B
Infoportal Infoportal,_ posine o Unang Pahina - Wikipedia Free Sol ; 9
KN Tnfoportal: —(GNU Free Documentation Li(ense*:;i':::;:ﬁk HIPElliRed HalFSF), GNU Project | Web snandar:l's'5r'3i££9'1“6"“=55i|'i|iw
- B ! Luigennes 1.
(Tnfoportal! li/Main_Page Debian/Best Practical Solutions, LLCE =

Infoportal “s=Infoportal| Thttp:/ frwikipedia.org/) The Free Software Definition

‘Infoportalnfoportal

Tnfoportall oo (Wikipediai rontispicio - “GNU Project - Frae Softuare - torg/bobby/
Infoportal repa iaToports wikipedia B hitp:/ s Fsf.org/
Tnfoportalinfoportal f*fe_s(h_e..k** Tnformationen zu OpenOffice.org
**Kontaktlinsen HTTE; 10200 Ok —
P — The KDeskiop Environment] o
Fr Opera Software =
{Infoportal Welcome to SUSE LINUX

Python Language Website
Klingehtifne HFree86 (The GIMP

The Web can be seen as a sort of database —
but very different from relational databases:

highly distributed, decentralized,

based on the hypertext model instead of the
entity-relationship model;

with only very weak standards to restrict form
and content of the pages;

very large

without a universal query language.

(Search engines try to compensate the last item; see below.)

History of the WWW:

Idea of hypertext: Vannevar Bush 1945

Origin of WWW: a project at CERN (Geneva) in 1989
Tim Berners-Lee and Robert Cailliau

their system: ENQUIRE, realized core ideas of the
Web in order to enable access to library information
that was scattered on several different computers at
CERN

proposal for the WWW: published by Berners-Lee on
November 12, 1990

first web page on November 13 on a NeXT
workstation

Christmas 1990: Berners-Lee built the first web
browser and the first web server

August 6, 1991: summary of the WWW project
posted in a newsgroup in the internet

April 30, 1993: CERN annouced that the WWW
would be free to anyone

1993: Browser Mosaic (forerunner of Internet
Explorer or Firefox) starts to popularize the WWW

The three core standards of the Web:

» Uniform Resource Locator (URL): specifies how
each page of information is given a unigue address
at which it can be found (e.g.,
http://en.wikipedia.org/wiki/World_Wide_Web)

» Hypertext Transfer Protocol (HTTP): specifies
how the browser and server send the information
to each other

» Hypertext Markup Language (HTML): a webpage
description language used to encode the
iInformation so that it can be displayed on a variety
of devices and under different operating systems.

Later extensions:

e Cascading Style Sheets (CSS): define the appearance of
elements of a web page, separating appearance and
content

« XML: more general language than HTML, designed to
enable a better separation of appearance and content; also
applicable to other sorts of information

« ECMASCcript (also called JavaScript or JScript): a
programming language with commands for the browser,
enables embedding of programmes (scripts) into web
pages. Thus web pages can be changed dynamically.

* Hypertext Transfer Protocol Secure (HTTPS): Extension of
HTTP where the protocol SSL is evoked to encrypt the
complete data transfer

e Java applets (small programmes) can be embedded in web
pages and run on the computer of the Web user

The World Wide Web Consortium (W3C) develops
and maintains some of these standards (HTML,
CSS) in order to enable computers to effectively
store and communicate different kinds of
information.

Problems with the Web:
 highly decentralized, no control of the content

- there is a lot of false and misleading information, hate
campaigns, promotion of sexual exploitation, of terrorism and of
other crimes...

* highly dynamic: Web pages change all the time!
Links point to nowhere when the target page was
removed...

— when you give a Web address in the
References section of a scientific paper or in your
thesis, you should add the date when you visited
that page!

Archive of (a part of) the Web:
http://archive.org/web/

- lost Web references can (in some cases)
be reconstructed if the date is known

 highly chaotic: no global index or table of
content is available; search for a certain content
Is complicated and time consuming

- development of specialized search engines,
the most well-known one: Google (http://www.google.de)

How does a search engine work?

« First component: a web crawler, visiting all
accessible web pages worldwide, one after the
other, following the hyperlinks

but: when you look for a certain keyword, this
process would take much too long!

—

« second component: a large database,
containing keywords and web addresses where
these keywords were already found

the web crawler is working in the background and
does only actualize the database

when you invoke Google, you search in Google's
database, not in the Web!

- hot all Web pages can be found, because not all
are in the database

Usually, you get many, many, many Web pages
containing a given keyword (often millions...)

first remedy: make more intelligent queries

e.g., combining several keywords by "and", or looking for
phrases instead of keywords (use quotation marks)

— Google provides such facilities under "extended
search"

still there are often too many results
— priorisation of the found web pages necessary

 third component of the search engine (and best
capital of the Google company): a ranking
algorithm for search results

Basic principles of Google ranking of web pages

(Attention: the exact algorithm is changing
continuously and is not published)

"Importance" of a web page:
recursively defined, using the hyperlink structure of
the Web
The importance of a page is the larger,
the more important pages refer to it!

More precisely:
Let FLinks(A) be the set of all outgoing links (forward
links) of a page A and BLinks(A) the set of all incoming
links (backward links) of A

A

FLinks(A) = {C}
FLinks(B) = {C)
BLinks(C) = {A, B}

TSI

* A has high page rank if the sum of the page ranks of its
incoming links is high,

e a page B distributes its importance in equal parts to all
pages which are referred by it:

1 PageRank(B)
PageRank(A) = - " '
ageRank(A) c Z |\FLinks(B)|

Be BLinks(A)

(c = normalisation factor)

lterative determination of the page rank:

« Initially, an arbitrary mapping of values to all
web pages is done (typically, the constant value
1 is used),

* iterate the calculation using the above formula
for all pages, until the values remain stable,

* they converge against the Eigenvectors of the
adjacency matrix of the graph consisting of the
web pages (nodes) and their links (edges).
(Adjacency matrix: aj = 1 iff nodes i and | are
connected by an edge.)

Additionally, the Google page rank utilizes:

e proximity of the given key words to each other
(in the text),

» the anchor texts of the links: these are the texts
which can be clicked upon. A page A gets
higher importance when the anchor texts of
links referring to A contain the keywords, too.

The underlying technology of the WWW:
the Internet (short for "Interconnected Networks")

predecessor (end of the 1960s): ARPANET (U.S. military
project)
was later used to connect universities and research labs

Internet today: A worldwide network of computer
networks

« Computers in this network communicate using
the standardized TCP/IP protocol (Transmission
Control Protocol / Internet Protocol: Rules
governing the communication)

 Transmission of the information in small
portions

« For identification, each computer in the net has
a unigue number, the IP address

* to get identifiers which can better be
memorized: Domain Name System (DNS)
— system of (textual) names,
association between names and IP addresses

 hierarchy: Domains, subdomains, sub-
subdomains..., e.qg.,
www.uni-forst.gwdg.de
(from right to left!)

e Top-level domains: Country abbreviations and
some others ("generics"): .de, .fr, .eu, .com, .edu,
.gov ...

Lowest level: host name of a single computer
(here: www, Web server of the forestry faculty)

domain name corresponds to IP address

transformation of domain names into IP
addresses and vice versa: Task of special
computers, so-called nameservers

this transformation takes place any time when
you click on a hyperlink on a web page!

each nameserver is responsible for a certain
part of the hierarchical name space

5. Foundations of programming

Paradigms of programming:

Different viewpoints and ways of thinking
about how to conceive a computer and a
programme

Imperative paradigm:

Computer = machine for the manipulation of
variables

Programme = sequence of commands which
change values of variables, together with
specifications of the control flow (telling which
command is executed next)

Languages: Fortran, Pascal, Basic, C ...

Example (works in C or Java or XL):

X =0;
while (x < 100)
X=X+ 2;

The variable x is used to produce the even
numbers from O to 100.

Attention: The assignment command X =X + 2 IS not
a mathematical equality!

Object-oriented paradigm:

Computer = environment for virtual objects which
are created and destroyed during runtime (and can
Interact)

Programme = collection of general descriptions of
objects (so-called classes), together with their
hierarchical dependencies (class hierarchy)
Objects can contain data and functionality
(methods)

Languages: Smalltalk, C++, Java, ...

Example (in Java):

public class Car extends Vehicle

{

public String name;
public int places;
public void print_data()

{

System.out.printin("The car is a " + name);
System.out.printin("lt has " + places + "places");

}
}

Typical: class (Car) with data (name, places) and
methods (print_data). The class Car inherits

further data and methods from a superclass,
Vehicle

Rule-based paradigm:

Computer = machine which transforms a given
structure according to given rules

Programme = set of transformation rules
(sometimes also called a grammar)

Each step of programme application consists of
two substeps: Finding an applicable rule (matching
step) and transformation of the current structure
according to that rule (rewriting step).

Languages: Prolog, Al-languages, L-system
languages, particularly XL

Example (in XL):

public void apply()

[

F(x) ==> F(x/3) RU(-60) F(x/3) RU(120)
F(x/3) RU(-60) F(x/3):

]

produces the so-called Koch curve:

Readability of programmes by humans

programmes: have to be executed by computers,
but also to be understood by humans

Executability can be checked automatically,
understandability not!

— Recommendations:

make frequent use of programme comments
(/*...% or /... in Java, C++ or XL)

use plenty of newlines and blanks

put braces { ... } in lines of their own, put
matching braces in same horizontal position:

)

indentation makes containment and nesting of
programme components visible

avoid long lines, insert line breaks for readability
avoid very long methods

use "speaking" variable and function names
(int iteration_counter IS better than
int x127 1)

do not use variable names twice for different
purposes, even if the language allows it

Initialise constants, default values etc. at the
beginning of a source code file, not somewhere
"deep in the code" where you don't find them
later on

« adhere to conventions used by competent
programmers!

Basic parts of Java and XL

Remark: The language XL is an extension of Java.
The following examples can be compiled and run
with GrolMP (see www.grogra.de), a modelling
platform which contains a development toolkit for
XL and possibilities for visualization.

A first demonstration programme:

[* A simple Java programme for execution
with the GrolMP software. */

protected void init()

{
printin("Hello World!");

}

(= example file prog_ex01.rgg)

Basic components

Comments, spaces, newline: For human readability, and for separa-
ting words (just like in normal written language).

Special symbols: To denote different kinds of groupings, to termi-
nate commands, to construct paths etc.

Examples: Braces {, }; parentheses (,) ; brackets [, 1; dot; double-
quotes "; semicolon

Literal values: character sequences representing a value directly,
like a digit sequence for a number, or a character sequence in dou-
ble quotes for a string.

Example: "Hello World!™

Sequences of letters or digits, starting with a letter: different cate-
gories: 1) Keywords, 2) predefined identifiers, 3) newly declared
identifiers.

1) Keywords: Are fixed in the language proper, can not be given a
new meaning

Examples: public, class, static, void | protected

2) Predeclared identifiers: Meaning fixed by a declaration in the
context, often can be “overwritten”, i.e. given a new meaning. Ex-
amples:

S2tring: data type for character sequences

println: predefined method — invoked with a string as its
argument, it writes the string to the GrolMP console (a special
output window) and adds a line feed.

3) newly declared identifiers: Their meaning is fixed by
(explicit or implicit) declarations in the programme itself.
Example: init is the name of the method which writes the
text to the console. It expects no arguments (init()).

Use of simple data types and the "while" loop

[* A simple demonstration program,
printing out the numbers from 0 to 10
and their squares, each pair
on an extra line. */

protected void init()

L
int i;
1 =0;
while (i <= 10)
{
println(i + ": " + (i*));
| = i+1;
}
printin("Finished!");
}

(example file prog ex02.rgg)

While loop

while starts a loop: A sequence of commands which, under some
condition, are executed repeatedly.

First, the condition given in parentheses is checked. Result must
be boolean. Our example: Comparison of the current value of 1 (0)
with 10.

0<=10 is true: Thus, the body of the loop is executed: Pair of values
0 and 0*0 are printed, and i is incremented by one.

Then, execution continues with the check of the condition, and the
loop is repeated until 1 has value 11, suchthati <= 10 becomes
false.

Then, the loop body is not repeated again, and the main method
finishes.

Assignments

In our example:
| = 0;
the variable named i gets the new value O

« fundamental operation in the imperative
programming paradigm

effect. content of a place in the memory is changed

Attention:
1 =0 In a Java programme does not have
the same meaning as in a mathematical formula!

E.g.,i=i+1 would mathematically be a contradiction
(it would imply 0 = 1)
— but makes sense in a programme (incrementi by 1).

Mathematical meaning of this assignment:
Inew = loild + 1.

In assignments, the order is relevant:
X1 = x2; has another effect as x2 = x1;

To underline the asymmetry, other languages (e.g.,
Pascal) use := Instead of = for assignments.

XL allows both notations
(but with a slightly different meaning: := denotes a

deferred assignment, i.e., it enables a quasi-
parallel execution with other assignments.)

Comparison (checking for equality) is expressed in
Java, Cand XL by ==

Java offers further assignment operators besides = :
a+=Db // add content of b to the content of a

—=, *=, /= etc. analogously.

Data types:

describe sets of values and the operations which
can be performed on them.

Example: integers, with arithmetical operations (+,
—, *, 1, %) and comparisons (<, <=, >, >=, ...).

In the example programme: int , String

Int : type of 32-bit two's complement integers.
The variable i used for running through the

argument list has this type.
| starts with value 0 and is incremented in the loop

until it has value 11.

String : type of character sequences. printin

expects a variable of this type as its argument.
Numbers are implicitly converted to strings here.
Concatenation of strings by +.

("Operator overloading": different meanings of + for
numbers and for strings.)

Literals

Literals denote values directly

String literals: Strings in quotes

Used character code for the string content: 16-bit Unicode

Special characters in strings: \: is used to introduce something “spe-
cial”. Examples:

\UXXXX (XXXX up to four hexadecimal digits):
The number of a Unicode character

\n: a line break; \ t: a tabulator; \xxx, xxx a three-digit n octal
number: The character with the given octal code.

Number literals: Signed digit sequence for integer types; for
float types: decimal point and “E"-Notation. Examples: +3453;
3.141592653; 1.17E-6

Primitive Java data types:

primitive data type defaults size (bits) min/max

boolean false 1 n.a./n.a.

Unicode characters:

char \uoooo 16 \ud000/\uFFFF

Two's complement integers:

byte 0 8 -128/127

short 0 16 -32768/32767

int 0 32 -2147483648/2147483647

long 0 64 -9223372036854775808/
9223372036854775807

IEEE 754 floating-point numbers:

(min/max are those of absolute values)

float 0.0 32 1.4023985E-45/3.40282347E+38

double 0.0 64 4.94065645841246544E-324/
1.79769313486231570E+308

void: quasi-type for methods which return no value

Non-primitive Java data types: Arrays and objects

Arrays. collections of elements of the same type, accessed by
number (from 0). Example declarations of integer arrays:

int[] p = {1,3,2,10};

int[] g = new int[5];

int[] r;

Values after these declarations:

p points to a memory block of four integers, with values 1, 3, 2 and
10.

g points to a memory block of five integers, all values 0.

r does not point anywhere (it has the special value null). This
can be changed by the allocation of a block of memory via the Java
operation new:

r = new 1int[1000];

Now, r points to a memory block of 1000 integers, all 0.

r = P;

Now, r points to the same memory block as p.

Array declarations and operations
Non-allocating declaration: int []1 a empty;

Allocated with room for 10 elements:
int[] a ten = new int[10];

Initialized array: int [1 lookup = {1,2,4,8,16,32,64,128};

Multiple dimensions: boolean[] [] bw screen =
new booclean[1024] [768] ;

Non-rectangular: int [] [] pascal triangle =

{{1},{1,1},{1,2,1},{1,3,3,1},{1,4,6,4,1},{1,5,10,10,5,1}};

Array access: by integer-index in brackets. Start at 0. Array-access
is checked (index may not be negative or too large)

Number of elements of array a: a.length

Objects: collections of elements of arbitrary types, plus associated
operations, accessed by name.

Object types must be declared before they can be used; example:

clases color |
String name;
float red;
float green;
float blue;

Use of object types

I

// Declare three color variables.
color r,w,b;

// Initialize the color wvariables to red, white and black.
r = new color;
r.name = "Red"; r.red = 1.0; r.green = 0.0; r.blue = 0.0
W = hnew color:
w.name = "White"; w.red = 1.0; w.green =1,0; w.blue = 1.0;
b = new color;
b.name = "Black"; b.red = 0.0; b.green = 0.0; b.blue = 0.0

Both non-primitive data types are handled by reference: The varia-
ble content is just the address of a memory block.

An assignment to such a variable only changes this address, not
the data of the memory block.

null is the default value for reference types

Java operators

Prec Operators types assoc. meaning
1 ++ arithmetic pre- or post-increment
- - arithmetic pre- or post-decrement
+,- arithmetic unary plus or minus
~ integral bit complement
! boolean logical not
(type) any typecast
2 * /% arithmetic L multiplication, division,
remainder
3 +,- arithmetic L addition, subtraction
+ String L concatenation
4 << integral L shift bits left
integral L shift bits right, filling with sign
>>: integral L shift bits right, filling with zero
5 < o=, >, e arithmetic comparisons
instancecof object, type type comparison
Prec Operators types assoc. meaning
§] ==, I= any L equality, inequality
7 & integral L bitwise AND
& boolean L boolean AND
8 ® integral L bitwise XOR
- boolean L boolean XOR
9 | integral L bitwise OR
| boolean L boolean OR
10 E& boolean L short-circuit AND
" || boolean L short-circuit OR
12 7 boolean,any,any conditional selection
13 = variable, any R assignment
=, [f=, %= variable, any R operation and assignment
+= -= =
e .

. |

("assoc" = order of association, i.e., evalutation from left (L) or right (R)
when several operators of the same level occur in the same expression)

Functional abstraction, self-defined methods

Phenomenon to deal with: repetition of identical or almost identi-
cal code fragments — especially if these fragments are quite long.

Problems:

(1) Changes in the code have to be repeated for each occurrence
of the code fragment.

(2) Code cannot occur in itself — recursive algorithms cannot be
coded directly.

Solution: methods (in OO-languages) and procedures and functi-
ons (in non-00 languages).

Methods can be used like extensions of the language.

Example: compute maximum of two integers

int maxi{int pl, int pZ)

{

return (pl=p2 ? pl : p2);

}

Use of the method:

int a, b:
int x:

¥ = maxia,b);

Example: compute the factorial of an integer
Reminder: "factorial" n'=n*(n-1)*...*3*2*1,

Recursion: Compute factorial

int faciint i}

{

if(1<=1)

{

return 1;

}

elae

{

return i*fac(i-1) ;

}
!

For this problem, nobody would use recursion! A simple while-
loop would suffice. Recursion can be unnecessarily inefficient.

Example (prog_ex03.rgg): Usage of compound
data structures (arrays)

[* Computation of the sum of elements of
an integer array. */

protected void init()

{

Int result = O;
intjp={4,3, 3,5, 15}
[* initialization of an array */

inti=0:
while (i < p.length)
{
result += p[i];
| = i+1;
}

printin("The sum is: " + result);

}

The same as an extra method:

Example: compute the sum of the elements of an array:

int computeSum(int[] p)

{

// This wvariable accumalates the result.
int r = 0;

// This wvariables pointe to the different positions in (p),
J/ starting at 0 and running to the end.
int 1 = O;

// Run with (i) through (p), accumulating the sum of elements in
_x'r _.f'r (r).

while(l <« p.length)

{

r+ plil;

i+ 1;

}

// Return result.
return r;

Questions regarding computeSum; Details are important!

Does it work for empty (p)?

Is < the right comparison in the condition of the while clause, or
would == be right?

Should i start with another value than 07

How could a solution look like in which i runs through p in the op-
posite direction?

General structure of method declaration (incomplete version)

<tvpes <methodName= (<parameterlist, empty for no parameterss |

{

<method bodv, including ' ‘return <expregssion=''=

}

Method interface: type of return value, name of method, and types
and names of parameters.

Method body: code fragment performing the work.

return statement: Execution leaves the method and returns the
value of the expression as result.

Problems solved:

(1) Similar code does not have to be repeated — where it is nee-
ded, it is just invoked or called with the proper parameters. Chan-
ges only have to be done once.

(2) Recursion can be coded directly.
Further consequences:

(3) Functionality of code fragments can be documented by giving
a symbolic name to a code fragment.

(4) Code fragments are usable without that all the details are
known — only knowledge about the interface and the I/0-behavior
is necessary. Consequence: Implementation can be changed.

Method call:
e.g. x = max(a, b);

Effects:

« control flow jumps from the place where the method
Is called to the place where the method is defined

» the method is executed

» the control flow jumps back to the place where the
method was called and the return value is assigned
to X.

Control structures of Java

control structures:

language concepts designed to control the flow of
operations

— typical for the imperative programming paradigm

particularly: branching of the programme; loops.

Variants of branching:

if (=condition=)

{

<Code for fulfilled condition=

}

(if the condition is false, nothing happens)

if (<condition>)

{

<Code for fulfilled condition>

}

else

{

<Code for unfulfilled condition>

}

Nesting of if...else possible:

if (<condls)

{
=Code for fulfilled =condls>=
1
elge ifi{<zcond2=)
{
<Code for non-fulfilled <condls, but fulfilled =condZ:>=
}
elee
{

«Code to be ewxecuted if WO condition isgs fulfilleds

Example application: Finding the solutions of a
guadratic equation ("pg-formula”)

prog_ex04.rgg

[* Computation of the solutions of a quadratic
equation, using a self-defined method */

public double[] solve_quadratic (double p,
double q)
{

double x = -p/2, y = x*x - (;
double[] result;

if (y <0)
{
/[term under the square root is
/[negative. No solution.
result = new doublel0];

}

else

if (y < 1e-20)
{
/[term under the square root is zero.
/l One solution.
result = new double[1];
result[0] = x;
}

else
{
// term under the square root is
/l positive. Two solutions.
double z = Math.sqrt(y);
result = new double[2];
result[0] = x + z;
result[1] = x - z;
}

return result;

}
module A(double p, double qg) extends Sphere(3);

protected void init()

{

[

Axiom ==> A(0, 0);

]

printin("Click on object for input (p,q)!");
}

public void calculate()

{

double[] res;
double p, q;

[
?A==>{p=amkq=aMLk

res = solve_quadratic (p, 9);

if (res.length == 0)

printin("There is no solution.");
if (res.length == 1)

printin("Single solution: " + res[0]);
if (res.length == 2)

{

printin("First solution: " + res[1]);
printin("Second solution: " + res[0]);

}

Loops:

We have already introduced the while loop.

The for loop:

fori(<Initialization=;<Conditions=;<Increment=)

<Code to be repeateds

}
Similar to:

<Initializations=;
while (<Condition=)
<Code to be repeateds

<lncrements=

Application example:

static public 1nt computefum(int[] p)

{

int result = 0;
for(int 1=0; iﬂp,length; ++1)

{

result += pli];

return result;

