Computer Science and Mathematics

Part I: Fundamental Mathematical Concepts Winfried Kurth

http://www.uni-forst.gwdg.de/~wkurth/csm15_home.htm

1. Mathematical Logic

Propositions

- can be either true or false
- Examples: "Vienna is the capital of Austria",
 "Mary is pregnant", "3+4=8"
- can be combined by logical operators, e.g., "Today is Tuesday and the sun is shining".

Usual logical operators and their abbreviations:

```
a \wedge b a and b (And)

a \vee b a or b (latin: vel)

\neg a not a

a \Rightarrow b a implies b (if a then b)

a \Leftrightarrow b a is equivalent to b

(if and only if a then b; iff a then b)
```

Quantifiers

 $\forall x$ for all x holds ...

 $\exists x$ there exists an x for which ...

Further symbols

:= is equal by definition

:⇔ is equivalent by definition

2. Sets

A set is a collection of different objects, which are called the *elements* of the set.

The order in which the elements are listed does not matter.

A set can have a finite or an infinite number of elements. We speak of finite and infinite sets.

Examples:

The set of all human beings on earth (finite) The set of all prime numbers (infinite)

Sets are usually designated by upper-case letters, their elements by lower-case letters.

 $a \in M$ a is element of the set M

 $a \notin M$ a is not element of the set M

Two notations for sets:

- Listing of all elements, delimited by commas (or semicolons) and put in braces:

$$A = \{ 1; 2; 3; 4; 5 \}$$

 Usage of a variable symbol and specification of a proposition (containing the variable) which has to be fulfilled by the elements:

```
A = \{ x \mid x \text{ is a positive integer smaller than 6} \} (the vertical line is read: "... for which holds: ...")
```

alternative notation for the last one:

$$A = \{ x \in IN \mid x < 6 \}$$

(IN is the set of positive integer numbers, not including 0.)

Number of elements of a set M (also called *cardinality* of M): |M|

example:
$$|\{x \in \mathbb{N} \mid x < 12 \land x \text{ is even }\}| = 5$$

Propositions involving sets:

Example:
$$\exists n \in \mathbb{N}$$
 : $n^2 = 2^n$ (true, because it is fulfilled for $n = 2$)

A special set: The empty set

Notation: Ø

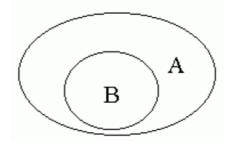
For the empty set, we have $|\emptyset| = 0$.

Subsets and supersets

If A contains all elements of B (and possibly some more), B is called a *subset* of A (and A a *superset* of B).

Notation: $B \subseteq A$ (or, equivalently, $A \supseteq B$)

Visualization by a so-called *Venn diagram*:



It holds: $A \subseteq B \land B \subseteq A \Leftrightarrow A = B$.

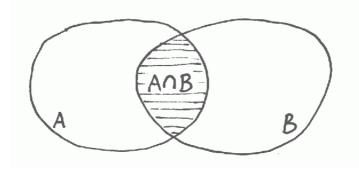
Intersection

The *intersection* of the sets A and B is the set of all elements which are elements of A and of B. Operator symbol: \cap

$$A \cap B = \{ x \mid x \in A \text{ and } x \in B \}.$$

Example:

$$\{ 1; 2; 3; 4 \} \cap \{ 2; 4; 6; 8 \} = \{ 2; 4 \}.$$



Two sets A and B are called disjoint if $A \cap B = \emptyset$.

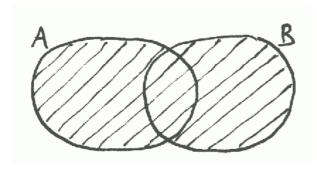
Union

The *union* of the sets A and B is the set of all elements which are element of A or of B. Operator symbol: \cup $(\cup = \mathbf{U} \text{nion})$

$$A \cup B = \{ x \mid x \in A \text{ or } x \in B \}.$$

Example:

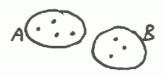
$$\{1; 2; 3; 4\} \cup \{2; 4; 6; 8\} = \{1; 2; 3; 4; 6; 8\}.$$



What is the number of elements $|A \cup B|$?

If A and B are disjoint, we have:

$$|A \cup B| = |A| + |B|$$



Generalization:

If A_1 , A_2 , ..., A_n are all pairwise disjoint, then $|A_1 \cup A_2 \cup ... \cup A_n| = |A_1| + ... + |A_n|$.

Remarks:

(1) $(A \cup B) \cup C = A \cup (B \cup C)$ ("associativity"), so we can omit the parentheses (the same holds for + and for \cap).

(2) Short notations for iterated operations:

for n sets $A_1, A_2, ..., A_n$:

$$\bigcup_{i=1}^n A_i = A_1 \cup \ldots \cup A_n$$

for *n* numbers $x_1, x_2, ..., x_n$:

$$\sum_{i=1}^{n} x_i = x_1 + \ldots + x_n$$

$$\prod_{i=1}^{n} x_i = x_1 \cdot \ldots \cdot x_n$$

(3) The formula $|A \cup B| = |A| + |B|$ does not hold if A and B are not disjoint. In the general case, we have:

$$|A \cup B| = |A| + |B| - |A \cap B|$$
.

Difference of sets

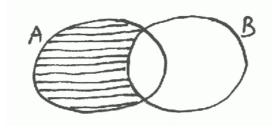
The difference set of the sets A and B is the set of all elements which are element of A but not of B. ("A without B")

Operator symbol: - (sometimes also used: \).

$$A - B = \{ x \mid x \in A \text{ and } x \notin B \}.$$

Example:

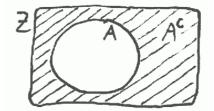
$$\{1; 2; 3; 4\} - \{2; 4; 6; 8\} = \{1; 3\}.$$



Complement

If all considered sets are subsets of a given basic set Z, the difference Z–A is often called the *complement* of A and is denoted A^C.

$$A^{\mathbb{C}} = \{ x \in \mathbb{Z} \mid x \notin A \}.$$



The power set

The set of all subsets of a given set S is called the *power set* of S and is denoted P(S).

$$P(S) = \{ A \mid A \subseteq S \}$$

Example:

$$S = \{ 1; 2; 3 \}$$

 $P(S) = \{ \emptyset; \{1\}; \{2\}; \{3\}; \{1; 2\}; \{1; 3\}; \{2; 3\}; \{1; 2; 3\} \}$

For the number of its elements, we have always:

$$| P(S) | = 2^{|S|}$$

Cartesian products of sets

The *cartesian product* of two sets A and B, denoted $A \times B$, is the set of all possible *ordered pairs* where the first component is an element of A and the second component an element of B.

$$A \times B = \{ (a, b) \mid a \in A \text{ and } b \in B \}$$

Remark: In an ordered pair, the order of the components is fixed. If $a \neq b$, then $(a, b) \neq (b, a)$.

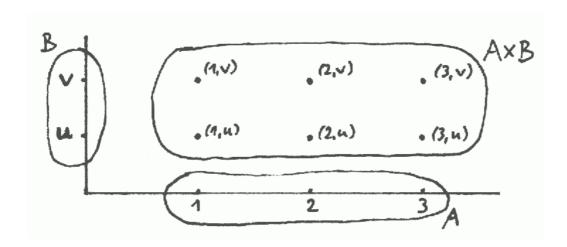
Example:
$$A = \{ 1; 2; 3 \}, B = \{ u, v \}:$$

 $A \times B = \{ (1, u); (2, u); (3, u); (1, v); (2, v); (3, v) \}.$

Attention: Usually it is $A \times B \neq B \times A$!

Number of elements: $|A \times B| = |A| \cdot |B|$.

Visualization of $A \times B$ in a coordinate system:



If A and B are subsets of the set IR of real numbers, we can use the well-known cartesian coordinate system.

Products of more than two sets

The elements of $(A \times B) \times C$ are "nested pairs" ((a, b), c); we identify them with the triples (a, b, c) and write $A \times B \times C$.

Analogously for quadruples, etc.

$$A_1 \times A_2 \times ... \times A_n = \{ (a_1, a_2, ..., a_n) \mid a_1 \in A_1 \land a_2 \in A_2 \land ... \land a_n \in A_n \}$$

If $A_1 = A_2 = \dots = A_n$, we write:

$$A^n = \underbrace{A \times A \times ... \times A}_{(n \text{ times})}$$

= set of all *n*-tuples with components from *A*.

Example:

$$B = \{ x, y \} \Rightarrow B^3 = \{ (x, x, x); (x, x, y); (x, y, x); (x, y, y); (y, x, x); (y, x, y); (y, y, x); (y, y, y) \}$$

If the components are letters, the parentheses and commas are often omitted:

$$B^3 = \{xxx; xxy; ...; yyy\}$$
 set of words of length 3

The set of arbitrary words (strings) over a set:

$$A^* = A^0 \cup A^1 \cup A^2 \cup A^3 \cup \dots$$

with $A^0 := \{ \epsilon \}$, where ϵ is the *empty word*.

Example:
$$\{x, y\}^* = \{\epsilon; x; y; xx; xy; yx; yy; xxx; ...\}$$

$$A^+ = A^1 \cup A^2 \cup A^3 \cup ...$$
 does not contain the empty word.

The cartesian product in the description of datasets

Frequently, informations regarding a measurement are put together in an *n*-tuple. Example:

S = set of time values

T = set of temperature values

U = set of laboratory identifiers

V =set of measurement values

A measurement is then represented by a 4-tuple

$$(s, t, u, v) \in S \times T \times U \times V$$

with s = time of measurement, t = current temperature, u = lab id, v = measured value.

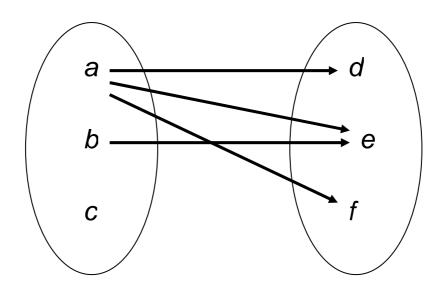
3. Relations

A (binary) relation R between two sets A and B is a subset of $A \times B$.

That means, a relation is represented by a set R of ordered pairs (a, b) with $a \in A$ and $b \in B$. If $(a, b) \in R$ we write also a R b (infix notation).

Graphical representation (if A and B are finite):

If $(a, b) \in R$, connect a and b by an arrow



The converse relation R^{-1} of R:

$$(b, a) \in R^{-1} \Leftrightarrow (a, b) \in R$$

 R^{-1} is a subset of $B \times A$.

In the graphical representation, switch the directions of all arrows to obtain the converse relation!

If A = B, we have a relation *in* a set A.

Example: A = IR (set of real numbers), R = < relation "smaller as". R consists of all number pairs (x, y) with x < y.

Generalization: n-ary relation: any subset of $A_1 \times A_2 \times ... \times A_n$.

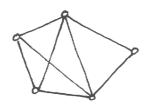
4. Graphs

A graph consists of a set V of vertices and a set E of edges. Each edge connects two vertices.

Different variants of graphs differ in the way how the edges are defined and what edges are allowed:

· Undirected graphs:

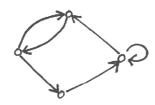
The edges are (unordered) 2-element subsets of V. Visualization by undirected arcs:



· Directed graphs:

The edges are ordered pairs, i.e., $E \subseteq V \times V$ (E is a relation in V)

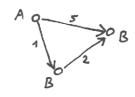
Visualization by directed arcs. "Loops" are allowed, multiple arcs between the same vertices are not allowed:



· Multigraphs:

Multiple directed edges are allowed

Labelled graphs:
 Vertices and/or edges have labels
 from a set of vertex/edge labels
 (names, numbers,...)



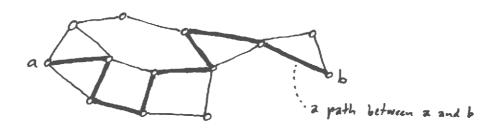
Examples:

- transport networks
- metabolic networks
- food webs
- class diagrams in software engineering
- genealogical trees
- structural formulae in chemistry

vertex-labelled multigraph

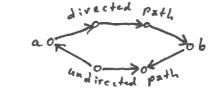
Paths in graphs

A path is a sequence of edges where two consecutive edges have one vertex in common:

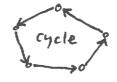


A path where start- and end vertex coincide is called a circle.

In directed graphs, we distinguish between directed and undirected paths.



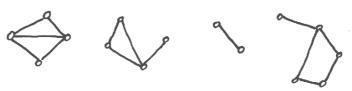
A directed circle is called a cycle.



Connectedness

If for every pair of vertices (a, b) in a graph, there is a path between a and b, the graph is called connected.

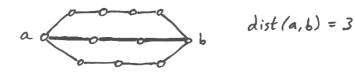
Every unconnected graph can be decomposed in connected components.



a graph with 4 connected components

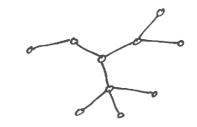
Graph-theoretical distance

The <u>distance</u> between two vertices a and b in a graph is the length, i.e., the number of edges, of the shortest path between a and b—
if such a path exists. Otherwise, the distance is undefined.



Trees

A tree is a graph without circles.



Atte

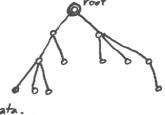
Example: phylogenetic trees,

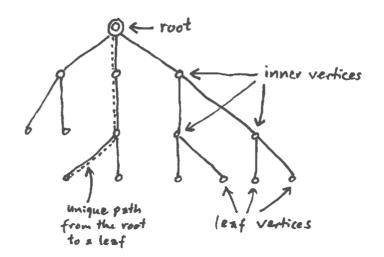
describing genetic kinship between species

A <u>rooted</u> tree is a tree in which one vertex, the root, is distinguished.

The root is often drawn at the top :

Rooted trees are used to describe hierarchies, e.g., in biological systematics, din organizations or in nested directories of data.





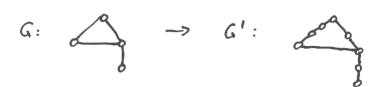
Degree

The number of edges to Which a vertex belongs is called the degree of the vertex.

In directed graphs we distinguish between indegree and outdegree of a vortex.

Subdivision

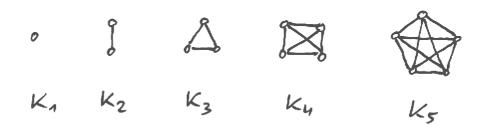
A <u>subdivision</u> G' of a graph G is obtained by inscrting vertices of degree 2 in the edges of G.



Complete graphs

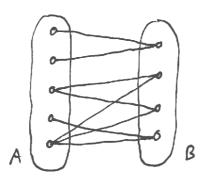
The complete graph Kn is the graph with n vertices where every pair of different vertices is connected by an edge.

(Blso called: Clique.)



Bipartite graphs

A bipartite graph can be split into two disjoint sets of vertices, A and B, such that all edges go from a vertex from A to a vertex from B.



(The edges then form a relation between A and B.)

The <u>Complete bipartite graph</u> Km,n is a bipartite graph with |A| = m, |B| = n, and edges go from every vertex of A to every vertex of B.

K2.3

K3,3

K2,4

Planarity

A graph is <u>planar</u> if its vertices and edges can be embedded in the plane, with edges as ares in the plane, such that no two different edges intersect in points different from their start- and end vertex.

non-planar embedding

planar embedding of the same graph

Kuratowski's theorem:

A graph is planar if and only if it does not contain any subdivision of K5 or K3,3.

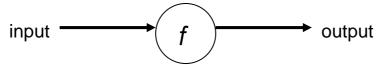
K5

K3,3

5. Functions

The *function* is a fundamental notion in mathematics. It is used to describe:

- a dependency between two variables (e.g., between measured sizes of the same objects)
- a transformation of data during some calculation or processing step



 a development of a variable in time or in space (e.g., height growth of a plant; magnetic field strength in space...)

Frequently used synonyms for *function*: *mapping*, *transformation*, *operator*

The precise definition of a function identifies it with the relation between "input" (argument(s)) and "output" (value), i.e., a function is defined as a special case of a relation:

A relation R between the sets A (= possible input values) and B (= possible values) is a *function* if for every $a \in A$ there is exactly one $b \in B$ with a R b. We write then f instead of R and use frequently the notation f(a) = b.

Further typical notations:

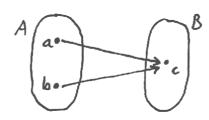
$$f: A \rightarrow B, a \mapsto b$$
.

The following situation is thus excluded for functions, because a would have two different "images" in B:



f(a) must be unique.

Allowed is:



$$f(a) = c$$

$$f(b) = c$$

Written as set: $f = \{(a,c), (b,c)\} \subseteq A \times B$

We say: "f maps a to c", "c is an image of a under f". f is the function, f(a) is a special value.

a is called the argument of f.

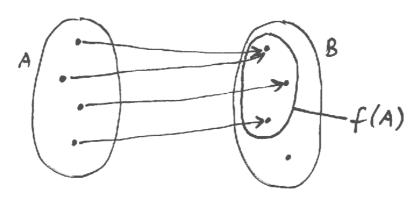
Different notations:

f(a) or fa af

prefix notation postfix notation

Domain and image of a function

 $f: A \rightarrow B$



A is called the domain of f

f(A) is called the image of A under f,

sometimes also range of f

Multivariate functions

Functions can have several arguments:

$$f: A \times B \rightarrow C$$

$$(a,b) \mapsto f(a,b) = c \in C$$

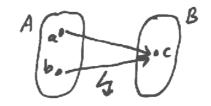
$$a \in A b \in B$$

Injective, surjective, bijective functions

Injectivity

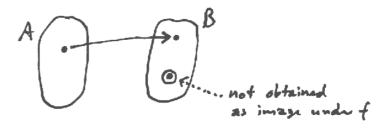
A function $f: A \rightarrow B$ is called <u>injective</u> if $\forall a,b \in A: a \neq b \Rightarrow f(a) \neq f(b).$

That means, two distinct clements of A have always distinct images. Not allowed is:



Surjectivity

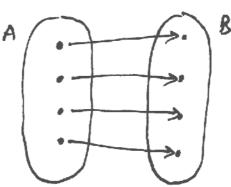
A function $f: A \rightarrow B$ is called <u>surjective</u> if $\forall b \in B \exists a \in A: f(a) = b$. All elements of B are images of elements of A. Not allowed is:



Bijectivity

f: A->B is called bijective if it is injective and

surjective.



Bijective functions can be <u>inverted</u>, i.e., the Converse relation $f^{-1}: B \to A$ is again a function. That means: $f^{-1}(b)$ is <u>unique</u> for every $b \in B$.

Example where this is not the case:

$$f(x) = x^2$$
 $A = B = IR$
 $f(2) = 4$ $\Rightarrow f^{-1}(4)$ not unique,
 $f^{-1}(-2) = 4$ $\Rightarrow f^{-1}(4)$ not unique,
 $f^{-1}(-2) = 4$ $\Rightarrow f^{-1}(4)$ not unique,
 $f^{-1}(-2) = 4$ $\Rightarrow f^{-1}(4)$ not unique,

How to obtain the inverse function of a bijective real-valued function (with one argument):

- solve f(x) = y for x, so you obtain $x = f^{-1}(y)$
- switch the names of the variables $(x \leftrightarrow y)$