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Two Dimensional Distributions and Linear Correlation 

In most applications we observe more than one variable at each individual or 

sampling unit. 

The first step of analysis: Scatterplot 
Scatterplot: DBH      vs. HEIGHT   (Casewise MD deletion)

Correlation: r = ,96347
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Correlation 

Is a measure of relationship between two variables or measured data. 

A measure of the strength and direction of linear dependence between two 

variables  

Height (y; m) vs. Diameter at Breast Height - DBH (x; cm):  
Scatterplot: DBH      vs. HEIGHT   (Casewise MD deletion)

Correlation: r = ,96347
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  The relationship is stochastic 

• Imperfect 

• Appears as a scatterplott . 
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A functional linear relationship 

• The equation : 

 

• Graph: All points ��� , ��� lie on the line 

 

•  

 

• If � � 0  


��� � ��� � 0 � ��� � ��� � 0��� � ��� � 0 � ��� � ��� � 0� �������!    
 

• If � � 0  


��� � ��� � 0 � ��� � ��� � 0��� � ��� � 0 � ��� � ��� � 0�  �������!    

Deviations of values of the variables � 

and � from the correspondent means 

have always the same sign  

Deviations of values of the variables � 

and � from the correspondent means 

have always different signs  

 

��� � ������ � ��� � � 

�� � � � ���;    � � ���� !�"�, � � ��#"� 
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A stochastic linear relationship 
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1.  

is different for different & 
2.  

Deviations of values of the 

variables � and � from the 

correspondent means do 

not have always the same 

signs 

Deviations of values of the variables � and � from the correspondent means do not 

have always the same signs  
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Covariance: A non-standardized measure of the linear relationship between two 

variables 

If the random variable X has the expectation 0���  

and the random variable Y has the expectation 0���  

then 

1#23�, �4 � 03�� � 03���4��� � 03���4�4 
is a covariance of X and Y.  

Note: 

1#23�, �4 � 03�� � 03���4��� � 03���4�4 � 5� 3���4 
|1#23�, �4| 7 85� 3���4 · 85� 3���4 
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Estimate of the covariance  

 

�:; � ∑ ��� � ���=�>$ ��� � ���� � 1 � ?@:;� � 1 

 

 

where ?@:; is the Sum of the cross-products. 
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• A covariance is positive, if the higher values of � are combined with higher 
values of  � und lower with lower.  

 

• A covariance is negative, if the higher values of � are combined with lower 
values of  �.  

 

• If a covariance equals 0, there is no linear relationship between variables � 
and � (nonlinear relationships are possible!). 
 

• A covariance is maximal, if ��  is proportional to ��  �� � � � � · �� 
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Covariance: not meaningful enough, because the absolute value of the 

covariance depends on the scaling of the variables. 

Correlation: Standardized Covariance: A dimensionless measure between -1 

(negative relationship) and 1 (positive relationship)  

Correlation coefficient ρρρρ    

((((more precisely: the Pearson’s Product moment correlation coefficient) 

A � BCD8BC.BD. 

where 

BCD = covariance of � and �  

BC.= variance of � 

BD.= variance of � 

The Correlation encompasses only linear relationships! 
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With help of a correlation we can conclude:  

 

• Whether a relationship between two metric variables exists.  
 
• How strong is this relationship. 
 
• What direction has this relationship. 
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The data are bivariate normally distributed. 

 

 

 

 

The greater the correlation coefficient A, the narrower the figure 

http://web.neuestatistik.de/demo/Demo_DE/MOD_100238/html/comp_100637.ht

E��, �� � 1
2FB$B.81 � A. · ��" G� 12�1 � A.� H�� � I$�.

B$. � 2A � � I$B$
� � I.B. � �� � I.�.

B.. JK 

Assumptions of correlation analysis: 
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The graph shows the bivariate density function with the centre at (0,0).  

So IC � 0; ID � 0   

 

  Each single variable has a univariate normal distribution. 

The contour plot of the joint probability density gives curves with constant density E��, �� � ! for different  ! values. 

http://web.neuestatistik.de/demo/Demo_DE/MOD_100238/html/comp_100637.ht

! � 0,24 

! � 0,02 
If the correlation 

between � and � is 

positive,  

then the slope of the 

main axis of ellipse is 

positive 
 

�LM, LN� 0 

0 � 

� 
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�� � � � ���  

03
�|�4 � 03�4 � A BCBD �� � 03�4� 

The conditional expectation of � given �  

is a linear function of �. 

03
�|�4 � 03�4 � A BDBC �� � 03�4� 

The conditional expectation of � given �  

is a linear function of �  

�OP � 1 � A.
A · BCBDBC. � BD.  

 

Q 

A � R1 S  P � 0! 

The ellipse becomes 

more and more 

elongated as the 

correlation approaches 

one. 
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Estimating the correlation coefficient 

��� , ��� is the &-th sampling pair 
 � �:;

T�:.�;.
 

�:;: Estimate of the covariance  

                        where ?@:; � ∑ ��� � ���=�>$ ��� � ��� (Sum of the cross-products) 

 

�:.  and �;.: Estimates of the variances: 

                        where ??: � ∑ ��� � ���.=�>$  (Sum of squared deviations of �) 

                            and ??; � ∑ ��� � ���.=�>$ (Sum of squared deviations of �) 

 U � �:;
T�:.�;.

� ?@:;
�� � 1�T VVW=X$ · VVY=X$

� Z[\]8ZZ\ · ZZ] 

�:; � ?@:;� � 1 

�:. � ??:� � 1 

�;. � ??;� � 1 
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Example.  

� - Variable: DBH  �� � 11.434 

�- Variable: Height  �� � 7.884 

 

` \` ]` \` � \/ �\` � \/�a ]` � ]/ �]` � ]�a �\` � \/� · �]` � ]� 
1 7.34 5.850 -4.094 16.759 -2.034 4.137 8.327 
2 10.08 7.470 -1.354 1.833 -0.415 0.172 0.561 
3 9.79 6.568 -1.644 2.702 -1.317 1.734 2.164 b b b b b b b b 

48 6.93 5.222 -4.504 20.284 -2.663 7.090 11.992 
49 10.91 7.854 -0.524 0.274 -0.031 0.001 0.016 
50 11.18 7.336 -0.254 0.064 -0.548 0.301 0.139 

    c � 425.305  c � 147.379 c � 241.217 

 

  

 � ?@:;8??: · ??; � 241.217√425.305 · 147.379 � 0.96347 
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Important: Correlation does not imply causation! 

The symbolic diagram of the relationship of two variables M and  N 

 

 �             �        (� causes �) 

Example: Fertilization causes yield 

 

 

 

 �             �        (� causes � and � causes �: bidirectional causation ) 

Example: Increased pressure is associated with increased temperature. 

Therefore pressure causes temperature; temperature causes temperature. 
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                � 

h                       (Third factor h (the common-causal variable) causes both � and �) 

                � 

There is some lurking variable, which is simply a hidden third variable that 

affects both causes of the correlation  

Example:  A city's ice cream sales. These sales are highest when the rate of 

drownings in city swimming pools is highest. To allege that ice cream sales 

cause drowning, or vice-versa, would be to imply a spurious relationship 

between the two.  

In reality, a heat wave may have caused both. The heat wave is an example of a 

hidden or unseen variable, also known as a confounding variable.  

 

Summary: A correlation can be taken as evidence for a possible causal 

relationship, but cannot indicate what the causal relationship, if any, might be.  
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Correlations don‘t indicate, which variable causes the other – both variables are 
equal (symmetry of variables). 
 

 

Correlation can only detect the strength (correlation coefficient value) and the 

direction (sign of the correlation coefficient) of the linear relationship between 

two variables. 

 

In General: 

Sampling is not appropriate for detecting the causation of a relationship. It is 

only an indicator of their existence and can be used to build hypotheses about 

causal relationships.    

These hypotheses must be tested in experiments, where the causal factor is 

systematically varied and all other factors are held constant. 
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Important: The correlation indicates the strength of a linear relationship 

between two variables, but its value generally does not completely characterize 

their relationship. 

 

A high correlation coefficient can be caused by outliers 

 
http://www.statistics4u.com/fundstat_germ/cc_correlation.html 
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Correlation: Characterizes the strength of a stochastic relationship.  

Regression: Characterizes the kind of a stochastic relationship.  

Regression analysis is also used to understand which amount of the dispersion 

of the independent variables is related to the dependent variable, and to explore 

the forms of these relationships. 

 

Tasks of regression analysis: 
 

• Interpretation of Scatterplot  
 

• Prediction and forecasting   
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The „Regression“ Notation – Regression toward the mean 

(see Annex, P. 52) 

 

Francis Galton: “Regression towards mediocrity in hereditary stature” 
 
• Height of parents and children (as adults)  
 
• Linear Relationship  
 
• The offspring of parents who lie at the tails of the distribution will tend to lie 
closer to the centre, the mean, of the distribution. 
 
• "Regression" (regress) toward the mean  
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Linear Regression 
Scatterplot: DBH      vs. HEIGHT   (Casewise MD deletion)

HEIGHT   = 1,3996 + ,56716 * DBH

Correlation: r = ,96347
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Regression Line Equation 
 

Equation of a line 

03�4 �  i �  j� 

 

where 

 

03�4 = Expectation of � 

α = Intercept 

β = Slope 

 

  

i 
1 

j 

� 

� 0 
0 
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In contrast to the correlation the variables M and N are not equal.  

There is a clear difference between the dependent and independent variable 
(asymmetry). 
 
 

 � = independent variable (endogenous variable, explanatory variable,  

      Regressor, Predictor):  

 � = dependent variable (exogenous variable, response variable, Regressand) 
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Linear Model �� � i � j�� � �� 
 
 

 

where 

�� = the &-th value of the dependent variable  

�� = the &-th value of the independent variable 

�� = Residual: Deviation of the &-th value of the dependent variable from the 

regression line  

Residuals are considered as realizations of the stochastically independent 

random variables 0�~l�0, B� 

 !  In regression model the independent variables have no error. 

  

Random deviations from the 

regression line  

Line equation – functional 

part of the model 
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Illustration of estimated deviations �̂� of an individual value �� from the estimated 

value �n� of the regression line 
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� – estimate of the parameter i  ;  � – estimate of the parameter j 

�̂- � �- � �� � ��-� 

� � � · �-

   - measured value 

 - estimated value  �-  

�-  

�n- � � � ��-  

�$  �.  �,  �%  
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Least squares method 

 

�� � �� � ���� – the deviation of an individual value from the regression line 

� – estimated value of i  

� – estimated value of j 

 

Sum of squares 

??oppqp � c3�� � �� � ����4.=
�>$

 

S Criterion S minimize!   

We search some line for the scatterplot, which runs possibly near to the 

measured values. 
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??oppqp � c3�� � �� � ����4. � r&�=
�>$

 

 

Estimate of � and �  to minimize the ??oppqp   

s??oppqps� � 2 c3�� � �� � ����4��1�=
�>$

�� � 0 

s??oppqps� � 2 c3�� � �� � ����4��1�=
�>$

� 0 

 

S normal equations 
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s??oppqps� � 2 c3�� � �� � ����4��1�=
�>$

� 0 

c3�� � �� � ����4=
�>$

�� � 0 

c ���� � ��=
�>$

c �� � �=
�>$

tc ��.
=

�>$
� �� c ��

=
�>$

u � 

� c ���� � �∑ ��=�>$ ��∑ ��=�>$ ��
=

�>$
� � tc ��.

=
�>$

� �∑ ��=�>$ ��
�� ?@:; � � · ??� � 0 

� � ?@��??�  

s??oppqps� � 2 c3�� � �� � ����4��1�=
�>$

�� � 0 

� � �� � ���  

� � �� � ���  

� c �� � vc � � � c ��
=

�>$
=

�>$
w=

�>$
� 

 

c3�� � �� � ����4 �=
�>$

 

��� � ��� � ���� � 0 
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Summary:  Estimate of the regression line  

(method of least squares): 

� � ?@��??�  

 � � �� � ���  
where 

?@:; � ∑ ��� � ������ � ���=�>$ � � 1  

and 

??: � ∑ ��� � ���.=�>$� � 1  

 

Estimated regression line: �n � � � �� 
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Exercise:  

� - variable: DBH  �� � 11.434 

�- variable: Height  �� � 7.884 

` \` ]` \` � \/ �\` � \/�a ]` � ]/ �]` � ]�a �\` � \/� · �]` � ]/� 
1 7.34 5.850 -4.094 16.759 -2.034 4.137 8.327 
2 10.08 7.470 -1.354 1.833 -0.415 0.172 0.561 
3 9.79 6.568 -1.644 2.702 -1.317 1.734 2.164 b b b b b b b b 

48 6.93 5.222 -4.504 20.284 -2.663 7.090 11.992 
49 10.91 7.854 -0.524 0.274 -0.031 0.001 0.016 
50 11.18 7.336 -0.254 0.064 -0.548 0.301 0.139 

    c � 425.305  c � 147.379 c � 241.217 

 

  � � 241.217425.305 � 0.567;     � � 7.884 � 0.567 · 11.434 � 1.40 

 

Estimated regression line:  �n � 1.40 � 0.567 · � 
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Scatterplot: DBH      vs. HEIGHT   (Casewise MD deletion)

HEIGHT   = 1,3996 + ,56716 * DBH

Correlation: r = ,96347
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Estimated regression line:  

Interpretation:  If  DBH increases by one cm then we expect an increase of HEIGHT 
by about 0,567 m  

 

Prediction: If DBH=10 cm we expect the HEIGHT� 1.40 � 0.567 · 10 � 7.07 r 

 

�n � 7.07  

� �  
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Relationship between the correlation coefficient   and the regression coefficient �: 

 � �x??:??; 

where 

??: � ∑ ��� � ���.=�>$� � 1  

and 

??; � ∑ ��� � ���.=�>$� � 1  

 

 � 0.567x425.305147.379 � 0.963 
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Decomposition of the total deviation from the mean (]` � ]/) 

into the part, that can be explained by regression (]y` � ]/) 

and the deviations from the regression line (Error) (]` � ]y`) 
 

Decomposition of the variance of N 

 

\` 

]/ 

]` 

]y` ]` � ]/ 
]` � ]y` 

]y` � ]/ 
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�� � �� � �� � �n� � �n� � �� � ��� � �n�� � ��n� � ��� 

 

where 

�n� � � � ��� – expected value at �� 
 

Deviations: 

 

�� � ��   =  Total deviation from the mean 

�� � �n�  =  Deviation of observed value from the regression line (Error) 

�n� � ��   =  Deviation of expected value from the mean (The part of deviation of 

the dependent variable �, that can be explained by the effect of the variable �). 
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Decomposition of the sum of squares 

    

??; � c��� � ���. � c v�� � �n�z{|{}oppqp
� �n� � ��z|}~��p����q=

w. �=
�>$

=
�>$

 

c��� � �n��.=
�>$

� 2 c��� � �n����n� � ���=
�>$

� c��n� � ���.=
�>$

 

 

where 

�n � � � �� 
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Sum of cross-products equals 0! 

�n� � � � ��� � �� � ���z{|{}�
� ��� � �� � ���� � ��� 

 

 

  

c��� � �n����n� � ���=
�>$

� c��� � �� � ���� � ������� � ���� � ��� � ��� �=
�>$

 

 � c3��� � ��� · ���� � ���4 � 3���� � ��� · ���� � ���4 �=
�>$

 

� c �3��� � ������ � ���4 � �.��� � ���. � � c��� � ������ � ��� � �. c��� � ���=
�>$

�=
�>$

=
�>$

 

� �?@:; � �.??: � ?@:;??: ?@:; � ?@.:;??.: ??: � 0 
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Decomposition of the sum of squares 

    

c��� � ���. � c��n� � ���.=
�>$

� c��� � �n��.=
�>$

=
�>$

    

    

 

 

From  �n� � �� � ���� � ���   
follows  �n� � �� � ���� � ��� 

So 

   

  

??;  � ??~��p����q=  

 

??oppqp  � 

??~��p����q= � c��n� � ���.=
�>$

� �. c��� � ���.=
�>$

� �.??:  
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Goodness of fit of the least squares method: 

Multiple correlation coefficient � 

Multiple correlation coefficient is a measure fort h correlationbetween observed 

values ��  and theyr’s estimates �n� : � �  ;;n  . 
For a sample regression  ;;n �  :;  

 

 

 

 

 

 

 

 

∑ ��� � ����� � ��� � � � ����=�>$8∑ ��� � ���. ∑ �� � ��� � � � ����.=�>$=�>$ � ∑ ��� � ������� � ���=�>$8∑ ��� � ���.� ∑ ��� � ���.=�>$=�>$ � 

 

 ;;n � ∑ ��� � �����n� � �n��=�>$
T∑ ��� � ���. ∑ ��n� � �n��.=�>$=�>$

� 

� ∑ ��� � ������ � ���=�>$�8∑ ��� � ���. ∑ ��� � ���.=�>$=�>$ � ?@:;?�:?�; �  :;  
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Coefficient of determination 

The most important measure of the strength of the regression relation is the 

squared correlation coefficient or coefficient of determination �.. 

The coefficient of determination gives the amount of the total variability of the 

dependent variables (�) that can be explained by the effect of the independent 

variable (��. 

 

 

 

 

 

 

�. �  ;;n. �  :;. � ?@:;.??: · ??; � ?@:;.??:. · ??:??; � �.??:??; � 

??~��p����q=??; � ∑ ��n� � �n��.=�>$∑ ��� � ���.=�>$ � ��"����� 2� &��&�&���#��� 2� &��&�&�� #E � 
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The coefficient of determination �. is a measure of how well the least squares 

equation 

�n � � � �� 

performs as a predictor of �. 

• The higher the �., the more useful the model 

• �.  takes on values between 0 and 1. 

• Essentially, �.  tells us how much better we can do in predicting � by using 

the model and computing �n than by just using the mean �� as a predictor. 

• The estimated value  �n depends on � because  �n � � � �� 

Thus, we act as if � contains information about �. 

• If we just use ��  to predict �, then we are saying that � does not contribute 

information about � and thus our predictions of � do not depend on �. 
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Example:  

�. � ??~��p����q=??; � 136.81147.38 � 0.928 � 0.963. 

92.8% of the total variance of Height can be explained by the effect of the 

variable DBH. 
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Regression towards the mean:  Where does the name come from?  

http://www-users.york.ac.uk/~mb55/talks/regmean.htm 

The name “regression” comes from a paper by the Victorian geneticist and 
polymath Francis Galton (Galton 1886) entitled “Regression towards mediocrity 
in hereditary stature”. Galton set up a stand at the Great Exhibition, where he 
measured the heights of families attending.  

He measured the heights of families attending. He adjusted the female heights 
by multiplying by 1.08. He then calculated the average height of the two parents, 
the “midheight”, and related it to the height of their adult children:  

 

Annex 
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This plot is based on Galton’s original. The area of the circle represents the 
number of coincident points. The line is the regression of child height on 
midparent height. The means of both are the same, 68.2 inches.  

Consider parents with midheight 70 inches. Their children had heights 
between 67 and 73 inches, and a mean height of 69.6 inches. The mean 
height of the subgroup of children was closer to the mean height of all children 
than the mean height of the subgroup of midparents was to the mean height of 
parents. Galton called this ‘regression towards mediocrity’.  

The same thing happens if we start with the children. For example, for the 
children with height 70 inches, the mean height of their midparents is 67.9 
inches. This is a statistical, not a genetic phenomenon.  

Galton called this “regression towards mediocrity”. Because the word 
“mediocrity” has acquired adverse connotations since Galton’s time, we now 
call it “regression towards the mean”.  

 


