The total differential

The total differential of the function of two variables df

of of
df = adx +@dy

The total differential gives the full information about rates of change of the
function in the x-direction and in the y-direction.



Second order partial derivatives: f(x,y)

0 (af) _0%f

ox \ox) = ax2 =

0 (af) _0%f

dy \0y o 0y?2 = fyy

2

i(%) = of = f \ mixed second
dy\ox/ 0dydx order
d (0f 0% f partial
a(@) - dx0y - fxy ) derivatives

Note: If the two mixed second order partial derivatives are continuous then they
will be equal.

0°f  0°f
dyox  0xdy Jry = Jyx

So, the order of taking partial derivatives of a function f(x,y) can be interchanged



Examples:

fr,y) = x°y —x%y?
fx = 3x%y = 2xy?, f, = x> = 2x%y

fex = 6xy — 2y2, fyy = —2x?

fry = 3x% — 4xy, fyx = 3x* —4xy



Local maxima and minima
At a local max ormin, f, =0and f, = 0
Definition of a critical point: (x,,y,) where f, = 0and f, = 0

A critical point may be a local minimum, local maximum, or saddle.



Second derivative test

Goal: determine type of a critical point, and find the local min/max.
Note: local min/max occur at critical points

General case: second derivative test.
We look at second derivatives:

% f % f %f %f
fxxz_z;fxyz = fyx = ;fyyz_z
dx dxdy dyodx dy

The Hessian matrix (or simply the Hessian) is the square matrix of second-
order partial derivatives of a function

02f  9%f

_ dx?  0xdy _ frx fxy
0=\ 3 57 |~ 5
dxdy 0dy?




Given is f and a critical point (xg, y,).

Define the second derivative test discriminant as

Then

D = fix (%0, Y0) * fyy (X0, ¥0) — fry (X0, ¥0) * fyx (X0, Yo)

It D > 0 and f,,(x9,vy) >0

It D >0 and £, (xq,vo) <0

IfD <0

IfD =0

> local minimum
> local maximum

> saddle

——> cannot be concluded



A saddle point is a point in the range of a function that is a critical point but
not a local extremum. The name derives from the fact that the prototypical
example in two dimensions is a surface that curves up in one direction, and
curves down in a different direction, resembling a saddle or a mountain pass.

http://en.wikipedia.org/wiki/Saddle_point




Example:
fo,y)=y3+x%(y+1)—12y + 11
fr=W+1)2x fy =3y* +x* - 12
fax = 2y + 2 fyy = 6y fox = fry = 2%
Critical points candidates: First derivative test applied
fi=+D2x=0 f,=3y*+x*—-12=0
We need to solve the following system of equations:

{ (y+1)2x=0
32 +x2—-12=0

The critical points are:
(xer1) = (3r_1); (XZIyZ) = (_3r_1); (XB;YB) = (0,—2), (x4;3’4) = (072)



Maximum, minimum or saddle? Second derivative test applied:
fex =2y +2 fyy = 6y; fyx =fxy = 2x

(x1,¥1) = (3,-1)

fx (X0, ¥0) * fyy (X0, ¥0) — fry (X0, Y0) * fyx (X0, ¥0) = 0 — 36 = =36 < 0 saddle
(x2,¥2) = (=3,-1)

fx (X0, ¥0) * fyy (X0, ¥0) — fry (X0, ¥0) * fyx (X0, ¥0) = 0 — 36 = =36 < 0 saddle
(x3,¥3) = (0,—-2)

frx (X0, Y0) * fyy (X0, Y0) — fry (X0, Y0) - fyx (X0, ¥0) =24 —-0=24>0

fox (X0, Vo) = —2 < 0 maximum
(x4-' }’4) — (Or 2)

frx (X0, Y0) * fyy (X0, Y0) — fry (X0, Y0) * fyx (X0, ¥0) =72 -0=72>0

fxx(xo; yo) =6 > 0minimum



The Integral of a Function. The Indefinite Integral

Undoing a derivative: Antiderivative = Indefinite Integral

Definition: A function F(x) is called an antiderivative of a function f(x) on same
interval I = [a, b], if

F'(x) = f(x)

forall xinl

differentiation

F(x) fx)

p

,undo“

10



Note: Unlike derivatives, antiderivatives are note unique:

Example:

1 , e
F(x) = §x3 is an antiderivative of f(x) = x? on (—, )

because

F'(x) = %Eﬁ] = x? = f(x)

But also for any constant ¢
d

aEﬁ + c] =x% = f(x)

because



Theorem:

If F(x) is any antiderivative of f(x) on I,

then so is F(x) + ¢ « any constant

Every antiderivative of f(x) on I has the form |F(x) + c| for some c

e Differentiation produces one derivative

e Antidifferentiation produces an infinite family of antiderivatives

12



differentiation

- N

F(_x) fx) = F'(xl

one derivative

F(x)_+ 0

An infinite family
of antiderivatives

{F(x) + c:c constant} f(x)

antidifferentiation

A name for this family

13



jf(x)dsz(x)+c
o

The indefinite integral of f(x)

e [ — the integral sign [elongated “S”]

e f(x) - the integrand

e dx - indicates the independent variable
e ¢ - constant of integration

e ['(x) + c - one of many antiderivative of f(x)

The Indefinite Integral of f(x) represents the entire family of all antiderivatives of

fx)

14



Differentiation

x>

| f(x)dziﬂ F()

Antidifferentiation

[indefinite Integration]

2 | redx| = reo

jldxas jdx

1 dx
j—dx as | —

Note: Sometimes we write:

15



Finding Antiderivatives

(1)  Use derivatives we know to build a table

Derivative Corresponding antiderivative
d
—[x] =1 jldx=x+c
dx
d xr+1 xr+1
— r r —
dx[r+1] * jx dx [r+1]+c
where r # —1 “Add 1 to the power and divide by
this new power”
d .
— [sinx] = cosx j cosxdx =sinx + ¢
dx
d

d_ [cosx] = —sinx j sinxdx = — cosx + ¢
X

16



1
j > dx =tanx + ¢
COS*X

dx coS?x
d 1 1
T [cotx] = — . j . dx = — cotx + ¢
d 1 1
— larcsinx] = ——— j ————dx =—arcsinx +c
X V1 — x? V1 —x?
d 1 1
T larctanx] = T 22 j T 22 dx =arctanx + ¢
d 1 1
T larccotx] = — T 22 j T 22 dx = — arctanx + ¢
d
a[ex]zex jexdx=6x+c
d a*
— [a*] = a*lna jaxdx =—+cC
dx Ina

17




d 1 1
— [Inx] = - j—dlenx+c
dx b X

d[l | = 1 1 jld _lnx_l_ _ N
dx - oee M = g ma )] xF Tg T T 9Bt TE

j Inxdx =x(lnx) —x + ¢

1
jlogaxdx =%(x-(lnx)—x)+c

18




(2) Some Properties on Indefinite Integrals: ¢ a real number
jcf(x)dx =cjf(x)dx

() + g(0)ldx = f fG)dx + f g(0)dx

—

£ () — g(0)ldx = f f()dx — f g(0)dx

—

All applied earlier for limits + derivatives

19



Do not write:
X2
ijdx=2]xdx=2 7+c =x2+}/=x2+c
x> x>
j(1+x)dx:j1dx+jxdx:(x+f/1§+(7+ﬂ/>=x+7+c

Note on constant of integration

e Do not forget constants of integrations
e Do not introduce them too soon
e Combine multiple constant into one ¢

What integration technique so far?

(1)  Use (create) a table
(2) Rewrite an integrand (in order to use the table)

20



Examples:

2
]Z-xzdx=2-jx2dx=§x3+c

3
X
(x? + 3sinx)dx = j x2dx + j 3sinxdx = e 3cosx + ¢

21



The Indefinite Integration by Parts
| £ 9@ ax =2

Recall the product rule for derivatives u = u(x), v = v(x)
[u(x) - v(x)]" = u'(x) - v(x) + ulx) - v'(x)
u'(x) - v(x) = [ulx) - vl —ulx) - v'(x)

Integrate both sides

ju'(x) cv(x) dx = j[u(x) -v(x)]'dx — j u(x) - v'(x) dx

]u'(x) cv(x) =ulx) - v(x) — j u(x) - v'(x) dx

22



Shorthand notation: The integration by part formula

jvdu:uv—judv

Generally try to choose v to be something that simplifies when you differentiate
it.

23



Integration by parts formula: [ u'(x) - v(x) = u(x) - v(x) — [ u(x) - v'(x) dx

Example 1: j 2xe*dx

How to choose u and v?
u'(x) =2x v(x) =e*

u(x) and v'(x) are easy to find: u(x) = x? und v'(x) = e*

But we cannot find the indefinite Integral of the product u(x)v (x) = x? - e*
Then:

u'(x) =e* v(x) =2x

u(x) = e*and v'(x) = 2, s0 [u(x)v (x)dx = 2e*

jexedx = 2xe* — 2 j e*dx =e*(2x—-2)+c

24



Integration by parts formula: [ u'(x) - v(x) = u(x) - v(x) — [ u(x) - v'(x) dx

Example 2:
P ]exxzdx

u'(x) = e* v(x) = x?

ulx) =e* v'(x) = 2x

]exxzdx = e¥x? — j(ex . 2x)dx =

= e*x? — <Zexx —2 j(ex : 1)dx)

= e*x? —2xe* —2e¥* =e*(x* - 2x+2)+c

25



Integration by parts formula: [ u'(x) - v(x) = u(x) - v(x) — [ u(x) - v'(x) dx

Example 3:
j coSXx - Sinxdx

j coSX - sinx dx = sinx - sinx — j sinx - cosxdx
N——— N———
u'(x) v

2 j cosx - sinxdx = sin® x

1
j cosx - sinxdx = Esinzx

26



The Indefinite Integration by Substitution

ldea: Suppose F' = f and g’ exists

Chain rule:
F'(g(x) =F'(g(x) - g'(x)
outer inner
[ Fo@) - g'crax = [ F(ge)
So,

j F(g()) - g' () dx = F(g()) + ¢
Let u = g(x), then:
F(900) = F@)
du

T g (x) - g'(x)dx =du

jf(u)du =F(u)+c
Substitution of u for g(x) makes (when it works!) integration easier.

27



Straightforward Substitution

e Always consider “Substitution” first

e |If on substitution fails, try another one!
Always make a total change from x to u! Never mix variables!

Substitution technique: Find something in the integrand to call u to simplifies the

appearance of the integral and whose du = Z—de is also present as a factor

28



Example:

j\/1+xdx
u=14+x
du
—=1 - dx=du
dx

2 3 2 3
j\/ﬂdu=§u2 5(1+x)2

29



Exercises:

function substitution Integral
— 2% = 1
fx)=e u = 2x F(x) = Eer +c
_ 2 — 1
fx)=(x+1) u=x+1 F(x)=§(x+1)3+c
f(x) = xin(x?) u = x*

F(x) = %(len(xz) —x¥) +c

30




Summary

A hard and fast set of rules for determining the method that should be used for
integration does not exist.

Some integrals can be done in more than one way.

It is possible that you will need to use more than one method to compute an
integral.

There are integrals that cannot be computed in terms of functions that we know.

31



The Sigma };

Greek ,S°
for sum

Area Defined as a Limit

shorthand for sums

Upper limit of
summation

k" term of the sum
(common form)

(integer): Index
of summation:
i,j, k1 ..

Lower limit of
summation

32




Definition of Area “under a Curve”

_ Continuous

T T T rm 20

f(xk)

v

e Partition into n equal subintervals
1
e Each width = - (b —a) = Ax

33



. _ 71

4 / | ’A!/
| |
.

f(x3) .

.
I |

* A4 | >

X0 Xn

e Choose any point in each interval to calculate rectangle heights

n
[Area under] ~ 2}(_1 £ Ax

Curve —
Area of one

L rectangle -

Definition: If f is continuous on [a, b] f(x) = 0 on [a, b]
Then

n

= lim f(xp)Ax

N=0 &d=1

y = f(x)

Area under]
over [a, b]

34



Net Area

A

Definition: Net ,Signed Area*“
flx) >

f(xp)Ax >0

.

+

v,
I
|
|
d

— @ JJ=Y

If £ is continuous on [a,b] f(x)= 0 Then

o Net signed
lim f(x,"i)Ax] = Area between
noet Lelk=1 y = f(x) and [a, b]

Approximating Area Numerically

For large n

lim f(xk)Ax ~ 2 f(xp)Ax

n—oo

35

Net! f(x) <0 DA

f(xp)Ax <0



The Definite Integral
The Definite Integral Defined

Extend our “Net Area” limit:
n

lim X)) Ax
n—oo k=1fT( ) ™
. Equal length

ContlanOUS subinterval
function

{k

y
! | >
a b x

To compute the area under the graph of f(x) and above the interval [a, b] we
proceed as follows:

36



1. Subdivide the interval [a, b] into n unequal subintervals with endpoints:
A=Xg <X <X, < < Xpr < Xp_1<X,=0>b

Foreachk =1,2,..n—1,n let Axy = x;, — xx_1 = lenght of [x}_1, Xx]

X{ X5 Xpy_q1 Xn
oo |—e—t-e
a b
Note: The largest of the Ax;, will be denoted Ax,; 4,

2. Inside each [x;_1, xi]select a point x;, evaluate f(x7), f(x3), ..., f (xn—1), f (x5)
and compute f(x71)Axq, f(x3)Axo, ..., f(xXh_1)Axy_q, f (x5)Axy,

faq|

| Xk |

I ' |

a Xk—1 Xk b
H_}

Axk
37



3. Form the Riemann Sum. A Riemann sum is a summation of a large number
of small partitions of a region.

n

fe)Axy + f(x2)Axp + o+ f(Xp_1)Axn_q + f(xn)Axy = kzlf(xii)AXk

4. Repeat Step 1-3 over and over with finer and finer subdivision of [a, b] (i.e.
smaller and smaller Ax,,,,,, and take a limit

n
lim 2 FO)Axy
k=1

Partition in equal subinterval: n - co means Ax — 0 guaranties each width
shrinks

Partition in unequal subinterval: maxAx;, — 0 guaranties each width shrinks

38



Notice that if f(x) < 0 on [a, b], then the result of this procedure will be minus
the area between the graph of f(x) and [a, b].

{_ >0 y=f@ )t f(x) <0
’ /77 1 J\ >
p A y = f(x) \

If £(x) takes both positive and negative value on [a, b], then the procedure
yields the net signed area between the graph of f(x) and the interval [a, b]

N L
a vb

y

X

39



Definite Integral: Definition

n

1.f is integrable on [a,b] if lim f(x)Axy,
maxAxy—0 k=1 )

T [Riemann

exists and does not depend on Sum

e the choice of partition
e or the choice of x;.* point

2.1f f is integrable, then the limit

n

lim [ (xp)Axy

maxAxy—0 k=1

is called the Definite Integral of f(x) over [a, b] [or from a to b] and is denoted

jbf(x)dx

40



| o

a: lower limit of integration
b: upper limit of integration

Be careful not to confuse f: f(x)dx and [ f(x)dx. They are entirely different
types of things. The first is a number, the second is a collection of functions.

Notation:

A- d

Ax - dx

X -

41




The definite Integral of a continuous Function = Net “Area” under a curve
Theorem: If f is continuous on [a, b]

then f is integrable on [a, b]

And
Net + Area
between the b
graph of f - L f(x)dx
and [a, b]
Notation:

X=b
j lintegrand]dx

X=a

42



We will need methods for evaluating the number

b
| reax
a
other than computing the limit that defines them.

Some methods generally involve antidifferentiation, but some definite integrals

can be evaluated by thinking of them as area.
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Definite Integrals Using Geometry

y
fx) - 31 1 9
= X) =—x
g 2 j—xdx= 3(—-3)=—
: ) 2 4
3 xr
yA

4+ py=fx)=x+2 2 1 9
2)dx ==3-3+3:-1==-+3
/ j_l(x+ )dx > + 2+

|
|
i
|
1
L
-1 2 X

»
>
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Finding Definite Integrals: A new Definition and Properties

1.1f a is in Domain of f, define

jaf(x)dx =0

a

2.1f f is integrable on [a, b], define

jbaf(x)dx = —Lbf(x)dx
| Tefooldx = ¢ | e
ja ) + 9()]dx = ] e + j G0

b b b
j [F () — g(x)]dx = j f(x)dx — j g(0)dx

45



Theorem: If f is integrable on any closed Interval containing a, b, c
Then

jbf(x)dx = jcf(x)dx + jbf(x)dx

No matter, how a, b, ¢ are ordered!

Theorem: Suppose, f, g integrable on [a, b]
a.lf f(x) =0 forall xin [a,b], Then

b
] f(x)dx = 0

b.If f(x) = g(x) for all x in [a, b], Then

jbf(x)dx > jbg(x)dx

46



The Fundamental Theorem of Calculus
There are two parts to this.
The Fundamental Theorem of Calculus, Part |
Development:

Suppose: f is continuous on [a,b] and F' = f [F differentiable means F
continuous]

Partition




3 Tangent line

. F —% Secant line
on each interval:

v

X
Xk-1 Xk Xk

The Mean Value Theorem for derivatives applied to F on each interval

F(x) — F(xg-1)
Xk — Xk-1

F'(xp) =

F'(x) (% — xg—1) = F(xx) = F(xg—-1)
fla) A

f(xp)Axy, = F(xy) — F(x—1)

48



f(xp)Axy, = F(xy) — F(x—1)

| faan = N;)
f(a3)Ax, = F?»a—\>

+ .

L ;
f () Ax, = FM)
D F)bx, = F(b) = F(@)
k=1

Taking a limit as maxAx;, — 0 give us the definite Integral

49



FTC, Part |
If £ is continuous on [a,b] and F(x) is any antiderivative for f(x) on [a, b].

then

b
[ 1o =Fell = F) - F@

upper lower

Notice. If F is any antiderivative of f,

b
| 7 odx = 1FG) + 1P = [F() + €] - [F(@) + €] = F(b) - F(@)

So, we can always omit writing ¢ here. Thus

b b
j f ()dx = F(x)|°

50



The Fundamental Theorem of Calculus, Part Il

&

'a l X b ot
FTC.1 - provided
/ F'=f

jxf (t)dt = F(x) — F(a)

suggests

d|r* N
EUa f(t)dt] = Ff((:;) - Fz(gl) =f(x)

51



The Fundamental Theorem of Calculus says:

If £ is continuous on the Interval I, then f has an antiderivative on I

If a isin I then

F(x) = ] f (H)dt

IS one such antiderivative for f(x)

meaning

d|r* gl =
= [ 1 @] =re

52



Differentiation and Integration are Inverse Processes:
FTC, Partl

j £ (@©)dt = £(0) — f(a)

“Integral of derivative recovers original function”

FTC, Partll

d X gl =
aUaf(t) t]—f(x)

“Derivative of integral recovers original function”.
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Definite and Indefinite Integrals Related:

b
]f(x)dx ] f (x)dx
a
Is a function in x iS @ number —
no x involved!

So, the variable of integration in a definite integral doesn’t matter: The name of
the variable is irrelevant. For this reason the variable in a definite integral is often
referred to as dummy variable, place holder.

ja f ()dx = j f(dt = j F o)y

54



Some Examples:
1.
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4
j 2xdx =x?|T = 4% —-12 =15
1

2 4
j 2xdx+j 2xdx = x%|2 + x%|3 =22 —12+ 42 —-22 =15
1 2

56



Definite Integration by Substitution.

Extending the Substitution Method of Integration to definite Integrals
to evaluate the number

g'continuous on [a, b]
f continuous where g exists on [a, b]

b
j £ (900)g’ (X)dx

Substitution:
u=g(x)
du = g'(x)dx
Change x - limits to u -limits with the substitution:
u(a) = g(a)
u(b) = g(b)
To get
g(b)
| f @

g(a)

57



Examples:

1. Find
1
jezxdx
-1
1. x substitution of x: u(x) =2x=u Z—Z =2

2. limits substitution:
lower limit: u(—1) = -2

upper limit: u(1) = 2

eu =—(€2 _ 6_2)

N| =
I
N\N

N =

58



2. Find:

ijlnx2 dx
1

1. x substitution: u(x) =x2=u =2x dx=—du
dx 2x

2. limits substitution:
lower limit: u(1) =1

upper limit: u(2) = 4

4
j Inudu = ulnu —u|f = (4ln4 —4) — (In1 — 1) = 4ln4 — In1 — 3
1

59



Although

We can find that

The Definite Integral Applied

Total Area

b
j f (x)dx — "net area”
a

total] j £ ()| dx

Area

60



Example. Compute the area between (x) = 0,5x3 — 0,5x% — 2x + 2 , the x —axis
and the lines x; = —2,5 and x, = 2,5:

Nullpoints: f(x) =0,5x% - 0,5x* —2x +2 = 0,5(x + 2)(x — ) (x — 2)

f(x) =

ax3+bx2+cx+d

4 il
] X1 = —2
] , 01
| \ J X == 1
| I A 02 =
5 -3 -1-1 4 1 3 5
Xo3 = 2

B NERRE SRR
N I

Xo1 X02 Xo3




Function:

f(x) =0,5x3 —0,5x% — 2x + 2

Antiderivative:
1 1 1 1 1
_ A S .3 _ 9.2 _ T4 _ .3 _ .2
F(x)=0,5 4x 0,53x 22x + 2x 8x 6x x° + 2x

Area

—2 1 2 2,5

F = f(x)dx +] f(x)dx + jf(x)dx + f(x)dx
~2,5 —2 1 2

F=|F(=2)=F(=25)|+FQ) - F(=2)+ |F(2) = F(D)| + F(2,5) — F(2) =
= |—4,67 + 3,76| + 0,96 — (—4,66) + 0,67 — 0,96] + 1,03 — 0,67 =
= 0,90 + 5,625 + 0,29 + 0,36 = 7,175
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Area between Two Curves [one floor, one ceiling]

upper lower dx

one ceiling — one floor

b
[Area between =j
curves .
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Examples:
1. Compute the area of the region between the graphs of y = x and y = 6 — x?2.
To identify the top y = f(x) and the bottom y = g(x) and the interval [a, b] we

need a sketch.

. Intersections:
AN 6—x°=x
f) =6-—x/, N\— . ,
| | / ) i g(x)l=xl x“+x—-—6=0
' /,(// f E\\ e x+3)(x—-2)=0
T\ )
// : : \\ x=-3,2
S , [a,b] = [~3,2]
1
Area: j ((6—x2)—x)dx—j (6 — x* —x)dx—6x‘_ ——x ‘2 —Exz _23
125

=6(2-(- 3))——(8—( 27))——(4 9)——



2.Compute the area of the region between two graphs:

g(x) =x?*—4x+6 and h(x) = 3V/x

12

Intersections:
g(x) = x% — ax + 6/

10

x% —4x + 6 = 3x

8 /

x:1 =1 x, =4
° h(x)W 1 y X2
4

Area: j (3\/§—x2+4x—6)dx=2x5—§x3+2x2—6x‘1}=
1

—(16 64+32 24) (2 1+2 6)—8+7—5
B 3 3 3 3
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