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Notation for Derivatives of Derivatives [Higher order Derivatives] 

1
st
 Derivative: 

�����,   ��� 	����
,   �� ,   ��� 	�
 � ����  , 
�, 
�� 

2
nd

 Derivative: 

������,   ��� � ��� ����� � ����� 	����
,   ��� ,   ��� � ��� ���� � ������ ,  
��, 
���   
The second derivative of � wrt �  

For higher derivatives 

�������,   ������ � ����� 	����
, 
��, 
���  
 

The differentiations rules are the same 
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Exercise: ���� � 3�� � 2�� � �� � 4� � 2 ����� � 12�� � 6�� � 2� � 4 ������ � 36�� � 12� � 2   ������� � 72� � 12 ������� � 72 ������� � 0 ��  !"" # � 5,6,7 … 
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Derivative Application 

 Local Linear Approximations of Non-Linear Functions 

 

 

 

 

 

Tangent line at ��&, ���&�� � � ���&� � ����&��� � �&� � � ���&� � ����&��� � �&� 

For value of � near �& then ���� ' ���&� � ����&��� � �&�())))*))))+,-�./�, -, �0
 

� � ���&� � ����&��� � �&� 

� � ���� 

� �& 

1�2� 
���&����&� � ����&��� � �&� 
1�2� ���&� � ����&��� � �&� 
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A local linear approximation of ���� near �& 

Another way of writing this:  

Let � � �& � ∆�, so � � �& � ∆� 

 

���& � ∆�� ' ���&� � ����&�∆� 
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Derivative Application 

Finding Limits Using Differentiation: L’Hôpital Rule 

Limits of Quotients That Appear to be “Indeterminate”: 
&& , 44 , 0 · ∞, ∞ � ∞ 

Remember: 

lim�:; <�� � 1� � 1 = 
has “

&"&  form. 

lim�:; <�� � 1� � 1 = � lim�:; ��� � 1��� � 1�� � 1 � � lim�:;�� � 1� � 2 

is doable. 

But this technique as well as the squeezing technique does not work always!  

Is there a general tool? 
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1. Assumption: Suppose 

 
has the      form 

meaning both: lim�:- ���� � 0 

and lim�:- ?��� � 0 

2. Assumption: Suppose �, ? are both differentiable at !,  

so �, ? are both continuous at ! 

meaning  

@ lim�:- ���� � ��!�lim�:- ?��� � ?�!�A   ��!� � ?�!� � 0 

 

00 

lim�:- �����?���� 
 



7 

 

Observe: 

 

 

 

 

 

So, 

lim�:- ����?��� � lim�:-
BC���DC�-��D- EB.���D.�-��D- E � lim�:- <�����?����= 

 

� : ! � : ! 

����?��� � ���� � ��!�FG&
?��� � ?�!�HG&

� BC���DC�-��D- EB.���D.�-��D- E 
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Theorem: L’Hôpital Rule (for       form) 

If �, ? are both differentiable on I, ! J I and both  lim�:- ���� � 0 and  lim�:- ?��� � 0 

Then 

lim�:- �����?���� � lim�:- <�����?����= 
A limit we hope exists and we hope it is easier to calculate 

 

Note, L’Hôpital Rule also applies to the            form 

  

00 

∞∞ 
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Examples: 

 lim�:& �KL#�� �())*))+"00"
� lim�:& BM�K�1 E � cos�0� � 1 

 

 

 

lim�:& �Q� � 1�� �()))*)))+"00"
� lim�:& � Q�3��� � lim�:& �Q�6�� � lim�:& �Q�6 � � 16 
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lim�:R/� �1 � KL#�M�K� �())))*))))+"00"
� lim�:R/� B�M�K��KL#�E � 0�1 � 0 

 

 

 

 

lim�:4 <��Q�=())*))+"TT"
� lim�:4 �2�Q� � � lim�:4 � 2Q�� � 0 
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Finding other “Indeterminate” Limits 

• L’Hôpital Rule applied directly to      and  

 

• Also apply to ∞ · 0, ∞ � ∞, 14, 0&, ∞& 

We have to reduce any indeterminate form to either      and  

 

 

Example: 

lim�:&	� · "#�
())*))+"&·�D4�"
� lim�:& U "#�;� V())*))+"WTT "

� lim�:& U ;���D� V � lim�:& <� ��� = � � lim�:&� � 0 

 

X∞X∞ 

00 

00 

∞∞ 
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The Derivative Applied Analyzing the Graphs of Functions  

Increasing and Decreasing Functions  

Definition (Algebraic): A function � is increasing on same interval I, if for any �;, �� in I  �; Y  �� imply ���;� Y  ����� 

 

 

 

A function � is decreasing on same interval I, if for any �;, �� in I  �; Y  �� imply ���;� Z  ����� 

 

 

 

Constant function: not increasing, not decreasing 

� 

� 

� 

� 
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• � is increasing on an interval [ Graph is rising from left to right 

• � is decreasing on an interval [ Graph is falling from left to right 

 

Theorem: If � is continuous on 	!, \
 and differentiable on �!, \� 

Then ����� Z 0, !"" � J �!, \�               ]                  � L#M Q!KL#? �# 	!, \
 ����� Y 0, !"" � J �!, \�               ]                 � �QM Q!KL#? �# 	!, \
 ����� � 0, !"" � J �!, \�               ]                  � M�#K^!#^ �# 	!, \
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Local Maximums and Minimums 

• � changes from increasing to decreasing at a relative (or local) maximum 

point 

• � changes from decreasing to increasing at a relative (or local) minimum 

point 

Definition. A function � � ���� has a local maximum at "M" (some point) (in 

some interval I) if for all � in I ���� _ ��M�. 

 

Definition. A function � � ���� has a local minimum at "M" (some point) (in 

some interval I) if for all � in I ���� ` ��M�. 

 

 

• Local extremum means either (maximum and minimum) 

 

Called a local maximum value for � 

Called a local minimum value for � 
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Local =Relative 

  

� 
Minimum 

Maximum 

local 

minimum 

point 

local 

maximum 

point 

���� 
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Definition: �& in the Domain is a critical point for � 

If 

a ����&� � 0����&� ��QK #�^ Q�LK^@ 
Theorem.  

Let � be defined on I open, containing �&, � has a local max/min at �&: �& must be a critical point of � 

But ! 

��& ! M L^L!" b�L#^�� � �()))))*)))))+cdefgfdhij Ckl mkn-mop�/o-�
q � � r!K ! "�M!"Q�^ Qsts !^ �&� 

 

Extrema occur at critical points, but not every critical point is an extremum!  
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To determine the extrema we must do two things: 

 

1. Find the critical points (compute ����� and find out where it is either 0 or 

undefined) 

 

2. “Test” each critical point to determine if  it a  relative maximum, a relative 

minimum, or neither 

 

 

For the second, there are two “tests” available: The first derivative test and the 

second derivative test. 
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The 1st derivative Test for local Maximums and Minimums 

Observe: [� continuous at critical point �&]  

• Local maximum �� Z 0 �  �� Y 0 

• Local minimum �� Y 0 � �� Z 0 

 

Using these observations we have the 1
st
 derivative test for local extrema 

 

The 2nd Derivative Test for local Maximums and Minimums 

• An alternative to the 1
st
 derivative test. Use only if the 2

nd
 derivative is easy 

to calculate 

• Nice, because instead of looking to the left and right of �&, you just look 

directly at �& 

The derivative changes sign from � to � 

The derivative changes sign from � to � 
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Observe: Assume   �����&� exists. [Thus, ����&� must exist] 

So, 

� ����&� � 0!#� �����&� Z 0� ] � � r!K ! "�M!"sL#Lsts !^ �&� 
 

� ����&� � 0!#� �����&� Y 0� ] � � r!K ! "�M!"s!�Lsts !^ �&� 
 

� ����&� � 0!#� �����&� � 0� ] 	I#M�#M"tKLuQ
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Example: Find all local extrema of the function: ���� � �2�� � 3�� � 12� � 10 

Solution: �′��� � �6�� � 6� � 12 �6�� � 6� � 12 � 0 

�;,� � �6 X 18�12  

�; � 2, �� � �1 �′′��� � �12� � 6 

 �; � 2:    � ′′��� � �12 · 2 � 6 � �18 Y 0: "�M!" s!�Lsts  
 �� � �1:    � ′′��� � �12 · ��1� � 6 � 18 Z 0: "�M!" sL#Lsts 
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Example: ���� � |�� � �| 

 

����� � y 2� � 1 L� � Y 0�2� � 1 L� 0 Y � Y 12� � 1 L� � Z 1 @
 

!^ � � 0     �����  ��QK #�^ Q�LK^   !^ � � 1      �����  ��QK #�^ Q�LK^   

Critical points: 

 

 

!^ � � 0.5  ����� � 0  

Local 
Minimum 

Local 
Minimum 

Local 
Maximum 

0 1 0.5 
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Global (Absolute) Maximums and Minimums 

Consider: the function  ����  , I  is same Interval in the Domain of � and �& J I 

Definition: 

• � has a global maximum at �& if ���&� ` ���� at � J I 

• � has a global minimum at �& if ���&� _ ���� at � J I 

We say “global extremum” for either 
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Global extrema on (finite) closed Intervals 

Extreme Value Theorem 

If  � is continuous  
on closed I 	!, \
,  
then � has both a global maximum and global minimum [guaranteed!] – 

“Existence Theorem” 

 

Further Theorem: Suppose � has a global extremum on an Interval �!, \� open. 

Then that extremum must occur at a critical point. 

  

both hypothesis necessary 
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Summary: 

 

 

 

 

 

Finding global extrema: 

1. Find all the critical points of  � 	!, \
 
2. Evaluate  � as these points, and at ! and \ 

3. Largest value=global maximum 

Smallest value=global minimum 

�� M�#^L#t�tK �# 	!, \
 � { 

1. � r!K \�^r ?"�\!" Q�^ Qs! 

2. |rLK �MMt  !^ QL^rQ  !, \ 	Q#�b�L#^
 �  }rQ# ����� � 0 �  ����QK #�^ Q�LK^ 
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http://en.wikipedia.org/wiki/File:Extrema_example_original.svg 
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Applied Maximum and Minimum problem: Optimization Problem 

 

“Optimization” (find the best”) 

A strategy 

• Draw a sketch +label relevant quantities 

• Find a formula for the one quantity to be maximized or minimized 

• Use given information to write that formula as a function of one variable 

• Find the domain of that variable 

• Use the derivative to find the desired global max/min 
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Example: What is the biggest rectangle you can put inside a given 
triangle? 

Given a right triangle of altitude 3 Ms an base 4Ms 

Find a dimension of the rectangle of maximum area that can be inscribed in this 
triangle with one side along the base. 

• A sketch  

 

 

 

 

• A formula to be maximized  � � ! · \ 

We seek the maximum to the product ! · \ .We need to find ! so that � is 
maximized 

3 Ms 

4 Ms 
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• The formula as a function of one variable 

 

 
 34 � \4 � ! 

\ � 3�4 � !�4  

� � ! · \ � 3!�4 � !�4 � 3! � 0.75!� 

• Domain of !: 0 Y ! Y 4 
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• The derivative used 
 

 � ′�!� � 3 � 1.5! � 0 
 ! � 2 

 

maximum or minimum?  � ′′ � �1.5 Y 0   - maximum 
 

 \ � 3�4 � !�4 � 1.5 
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The 2nd Derivative Applied: 

Function Concave Up and Concave Down 

 � can increase (or decrease) in two different way: concave up and concave 

down 

 

 

 

 

 

 

A point at which � changes from concave up to concave down or from 

concave down to concave up is called an inflection point.  

concave down 

concave down concave up 

concave up 

�  is increasing 

� is decreasing 
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The 2nd Derivative Test 

Definition: Let � have a derivative on open interval I 

• � concave up on I means �� is increasing on I 

• � concave down on I means �� is decreasing on I 

To tell if a function (later �� � is increasing/decreasing, we check its first 

derivative of ����:  ����� � ��� 
Theorem: 

Suppose � is twice differentiable on I 

 

  
~������ Z 0!"" � J I @    { � LK M�#M!uQ tb L# I  

~������ Y 0!"" � J I @    { � LK M�#M!uQ ��}# L# I 
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When Concavity Changes: Inflection Points 

Definition: 

If � is continuous on open I and concavity changes at ��&, ���&�� 

then we say: � has an inflection point at �& and ��&, ���&�� is that inflection 

point. �����&� � 0  gives candidates for inflection points, but no guaranties:   

   

 

  

  

concave down 

� 

concave up 

2� 

Inflection 

point 

���� 
������&� � 0 : inflection point 

������&� � 0 : undefined 
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Examples: 

 

 

  

function 1.derivative 2. derivative Concave 
up/down? 

���� � �� 
 

 
2� 

 

 
2 Z 0 

 

 

 
concave up 
 

���� � ��� 
 

 
�2� 

 

 
�2 Y 0 

 

 

 
concave down 
 

���� � �Q�� � 4QD��� 
 

 
4Q�� � 8Q� � 32QD�� 
 

 
16Q�� � 8Q� � 64QD�� Z 0 
  

concave up 
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Example:       ���� � 0,5�� � 2�� � � � 2 

  

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -3 -1 1 3 5

f(
x

) 
=

 a
 x

³
+

 b
 x

²
+

 c
 x

 +
 d

x

3� � 4 Y 0:  � Y 43 ;        ��∞; 43� : M�#M!uQ ��}# 

� � 43 : L#�"QM^L�# b�L#^ 

 �′��� � 1,5�� � 4� � 1; � ′′��� � 3� � 4; � ′′′��� � 3 � 0 

 

 

3� � 4 Z 0:  � Z 43 ;        �43 ; �∞� : M�#M!uQ tb 



36 

 

What to look for in a graph: 

With Algebra: 

• Domain and Range 

• � intercepts 

• � intercepts 

• symmetrie 

With Limits: 

• Asymptotes 

• End Behavior � : �∞, � : ∞ 

With derivatives: 

• Increasing/decreasing 

• Local Extrema 

• Concave up/down 

• Inflection Points 
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Theorems for Derivatives  

The Mean Value Theorem  for Derivatives. A special Case: Rolle’s Theorem 

 

If � is continuous on 	!, \
 and  � is differentiable on �!, \�, and ��!� � ��\�,  

then there is at least one M in �!, \� such that 

 ���M� � 0 �  � K"�bQ �� KQM!#^ "L#Q \Q^}QQ#�!, ��!�� !#� �\, ��\��� 
 

 

 

  

! \ M 

� 

� 
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(1) Suppose ���� � 0 for all � in �!, \� [a constant function].  
Then ���M� � 0 for all M in �!, \� 
 

(2) Suppose ���� Z 0 for some points in �!, \�.  
 

Since � is continuous on 	!, \
  { [Extreme Value Theorem]  � has a global max on 	!, \
 in fact on �!, \�[because ��!� � 0 and ��\� � 0] 
 
Since � is differentiable on �!, \�,  
there must be a critical point M in �!, \�, where ���M� � 0 
 

(3) The ���� Y 0, is similar 

Proof for 1�d� � � � 1��� 

! \ 

horiz. tangent line = zero derivative 

M �2�  M �3�  ���� Y 0  
���� Z 0  
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The Full Mean Value Theorem of Derivatives 

If � is continuous on 	!, \
  and � is differentiable on �!, \� 

Then there is least one point M in �!, \� at which the tangent line is parallel to the 

secant line joining the points �!, ��!�� and �\, ��\��, i.e. at which 

���M�(*+,-�./�, �mk�/-, n
� ��\� � ��!�\ � !()))*)))+�/n-�, �mk�/�/,�//� �-,C�-��-�� ��,C����

 

 

 

 

 

 

 ! \ 

���� 

��!� 

��\� 

M 

secant 

tangent 
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Secant line equation: 

� � ��!� � ���\� � ��!�\ � !()))*)))+�mk�/
� �� � !�;   � � <��\� � ��!�\ � ! = �� � !� � ��!� 

Let  u  be a function: u=[height of �]-[hight of secant line] 

u��� � ���� � � � ���� � �<��\� � ��!�\ � ! = �� � !� � ��!��())))))))))))*))))))))))))+�pCC/l/�n/ kC ,�k �/.�,�
 

Proof of MVT for Derivatives 

! 

Secant line ���� 

��!� 

��\� u��� 

� 

\ 2 
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Since � is continuous on 	!, \
 so is u��� [a secant is just a line – continuous] 

Observe u�!� � 0 and u�\� � 0 

So u satisfied Rolle’s Theorem, meaning there is M in �!, \� with u��M� � 0 

Differentiation of 

u��� � ���� � �<��\� � ��!�\ � ! = �� � !� � ��!�� 

gives 

u���� � ����� � <��\� � ��!�\ � ! = 
0 � u��M� � ���M� � <��\� � ��!�\ � ! = 

 

  
So ���M� � ��\� � ��!�\ � !  
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Direct Consequences of the Mean value Theorem 

(1) Consequence: Theorem 

(Recall – previously not proven) 

Suppose � is continuous at 	!, \
, � differentiable on �!, \� 

a) � ����� Z 0!"" � L# �!, \�� ] � L#M Q!KQK �# 	!, \
 
b) � ����� Y 0!"" � L# �!, \�� ] � �QM Q!KQK �# 	!, \
 
c) � ����� � 0!"" � L# �!, \�� ] � M�#K^!#^ �# 	!, \
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Proof of Part (a) only 

Let �;, �� be in 	!, \
 with �; Y �� so [�� � �; Z 0
 
We must show ���;� Y ����� 

Since the MVT hypothesis holds on 	!, \
, the Theorem also holds on 	�;, ��
 
So there is a M in ��;, ��� such that 

���M� � <����� � ���;��� � �; = 
����� � ���;� � ���M�H�k�p,p�/ ��� � �;�())*))+�k�p,p�/())))*))))+�k�p,p�/

Z 0 

����� Z ���;� 
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(2) Consequence: Constant Difference Theorem 

If �, ? are differentiable on Interval I and ����� � ?���� for all � in I,  

Then for all � in I ���� � ?��� � � �M�#K^!#^� 

meaning ���� � ?��� � � 

Two function with the same derivative differ at most by a constant in I.  

Proof: 

Let �;, �� be different in I, say �; Y �� 

Since �, ? are differentiable in I, then �, ? continuous in I 

So, �, ? are differentiable on ��;, ��� and continuous on 	�;, ��
 
The same holds true for ���� � ���� � ?��� 
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Now [our hypothesis: ����� � ?����], 

 

 

 

By the previous Consequence, Theorem (1c)  

 

 

we know  ���� � � constant 

 

So, ���� � ?��� � � at both �; and �� 

 

Since �;, �� arbitrary in I ���� � ?��� � � for all �  in I. 

� ����� � 0!"" � L# �!, \�� ] � M�#K^!#^ �# 	!, \
 

����� � ����� � ?���� � 0 
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A Function Of Two Variables 

A function of two variables � and � is a rule which assigns  

to each ordered pair ��, �� of real numbers in some subset of the ��-plane, 

called the Domain of the function, 

exactly one real number � � ���, �� 
called the value of � at ��, ��. 
 

The value of � depends on two different parameters 

 

Example:  The temperature at the certain point on the surface of the 

earth ���, ��, where � and � are longitude and latitude.  
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The graph of 1 

The graph of � is a surface in space. So for each value of � and � we have �, � 

in the ��, �� �plane, then we plot the point in space at position �, �: � � ���, ��  

It is possible to obtain something like a “picture” of a function � � ���, �� without 

drawing its graph in space. It is the contour plot. The graph is sliced by 

horizontal planes. It is a representing the function of two variables by the map.  

 

  

���, �� � M 

� � ���, �� c 

� 

� 

� 
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There are a bunch of curves. A level curve for � � ���, �� is a curve in the �, � -
plane on which the function takes only one value, i.e. with an equation of the 
form  ���, �� � M 

for constant M 

Draw enough of these, label each with the M it came from (so that you know how 
height it should be lifted to get to the graph) and you have some idea what the 
surface looks like. 
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Limits and continuity for function of two variables. 

Recall:  lim�:�0 ���� � � 

If ���� can be made as close as we like to � by choosing � sufficiently close (but 

not equal ) to �& lim�:�0 ���� � � exists if and only if both lim�:�0W ���� � � 

and  lim�:�0� ���� � � 

are equal 
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For ���, �� the definition looks essentially the same: 

Given ���, �� an a point ��&, �&� in the plane with � defined at least “near” ��&, �&� 

 

 

We say that  lim��,��:��0,�0� ���, �� � � 

if ���, �� can be made as close as we like to � choosing ��, �� sufficiently close 
(but not equal) to (�&, �&�. 

This time, however, instead of just two there are infinitely many “approaches” to ��&,, �&,� and, in order for the limit to exist, they must all give the same result.  

 

  

��&,�&� 

� 

� 

��&,�&� 
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Continuity 

Recall: ���� is continuous at �& if lim�:�0 ���� � ���&�. 

Implicit in this is 

• �& is in the domain of ���� so ���&� exists 

• lim�:�0 ���� exists 

• these two are the same 

 

For function of two variables the definition is the same ���, �� is continuous at ��&, �&� if  lim��,��:��0,�0� ���, �� � ���&,�&� 

If this is true for every ��&,�&� in the domain of ���, �� we say simply that ���, �� 

is continuous 
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• Polynomials are continuous everywhere 

• Rational functions are continuous wherever the denominator is nonzero 

• Sums, differences and products of continuous functions are continuous 

• Quotients of continuous functions are continuous wherever the denominator 

is nonzero 

• If ���, ��  is continuous and ?�t� is a continuous function of one variable, 

then ?����, ��� is continuous 
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Partial Derivatives 

Recall: Given � � ���� and � in its Domain 

 

 

 

 

 

 

Now suppose � � ���, �� and ��, �� is a point in its domain. 

“Rate at which � is changed at ��, ��” makes no sense since � can change at 

different rate in different directions at  ��, �� 

 

� 

� 

� 

� � ���� K"�bQ � ����� � ���� � lim�:& ��� � r� � ����r  

Measure of the rate at which � is changing at � 
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Partial Derivatives: Rates of changes in the �-direction and in the �-direction 

 

Slope of a tangent line in �-direction = partial derivative of � with respect to � 

� ���� � lim�:& ��� � r, �� � ���, ��r  

- hold � fixed and differentiate with respect to � as usual. 

 

 

Slope of a tangent line in �-direction = partial derivative  of � with respect to � 

� ���� � lim�:& ���, � � r� � ���, ��r  

- hold � fixed  and differentiate  with respect to � with usual. 
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� ���� � lim�:& ��� � r, �� � ���, ��r  

Partial derivative of � with respect to � 

- hold � fixed and differentiate with 

respect to � as usual. 

� ���� � lim�:& ���, � � r� � ���, ��r  

Partial derivative of � with respect to � 

- hold � fixed and differentiate with 

respect to � as usual. 

@������  @������  

�
O�

O

 
O
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Short-hand Notation for Partial Derivatives  
 
If � � ���, ��, we can write the partial derivative functions as  
 ���� � ���� � ��� ���, �� � �� � ����, �� � 
�� � 
;� � ¡ ���� � ���� � ��� ���, �� � �� � ����, �� � 
�� � 
�� � ¡ 

 
We can define the partial derivatives at a point �!, \� as  
 ����, �� � @������-,�� 

����, �� � @������-,��  
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Examples: 

���, �� � � · KL#�, ���� � KL#�, ���� � � · M�K� 

 

���, �� � �� � �� , ���� � 2�, ���� � 2� 
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Gradient 
 

The gradient of a function � points in the direction of the greatest rate of 
increase of the function, and whose magnitude is that rate of increase.  
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The gradient of �: 

¢� � ? !� � � £
¤��������¥

¦ 

 
The gradient of � at the point ��&, �&�: 
 

¢���&, �&� � £
¤���� ��&, �&����� ��&, �&�¥

¦ 
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Tangent plane 
 

Let ��&, �&� be any point of a surface function � � ���, �� Then the surface has a 
nonvertical tangent plane at ��&, �&� with equation  
 

|��0,�0� � ���&, �&� � £
¤���� ��&, �&����� ��&, �&�¥

¦ · §� � �&� � �&¨
� ���&, �&� � ¢���&, �&�())*))+©l-�p/�, -, �kp�,��0,�0�

§� � �&� � �&¨ 

 

A tangent plane to a function ���&, �&� at the point ��&, �&� is a plane that just 

touches the graph of the function at the point ���&, �&�, ���&, �&��. 

Approximation formula = the graph is close to its tangent plane. 
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Tangent plane 

 

http://tutorial.math.lamar.edu/Classes/CalcIII/TangentPlanes.aspx 
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Example: Find the equation of a tangent plane to: 
 ���, �� � �� � �� 
At the point ��&, �&� � �1,2� 
 
 
Solution: ¢���&, �&� � �2� 2���1,2� � §24¨ 

 |��, �� � ��1,2� � ª��1,2� «� � 1� � 2¬ � 5 � �2 4� «� � 1� � 2¬
� 5 � 2�� � 1� � 4�� � 2� � �5 � 2� � 4� 


