# **Limits of Functions**



#### **Informal Definition:**

If the values of f(x) can be made as close to L as we like by taking values of x sufficiently close to a [but not equal to a] then we write

$$\lim_{x \to a} f(x) = L$$

or

$$f(x) \to L \text{ as } x \to a$$

#### Observe:

- " $x \rightarrow a$ " means x can approach a from either side
- On a sketch, the graph of f(x) approaches the 2-D plane location [destination] called (a, L), but the graph itself may have no point (a, f(a)) occupying that location!

L may not be f(a)

The language to describe how the outputs f(x) behave as the inputs x approaches a number L

$$\lim_{x \to a} f(x) = L$$

## **Example:**

$$\lim_{x \to 0} \left[ \frac{x}{\sqrt{x+1} - 1} \right] - ?$$

We examine the graph

Domain of f(x)

$$\sqrt{x+1} - 1 \neq 0, x \neq 0$$
$$x+1 \geq 0, x \geq -1$$
$$\{x \in \mathbb{R} | x \geq -1, x \neq 0\}$$



# Conjecture:

$$\lim_{x \to 0} \left[ \frac{x}{\sqrt{x+1} - 1} \right] = 2$$

#### General definition:

Let f(x) be a function and a a real number (that may be or may be not in the **domain of** f). We say that the limit as x approaches a of f(x) is L, written

$$\lim_{x \to a} f(x) = L$$

if f(x) can be made arbitrarily close to L by choosing x sufficiently close to (but not equal to) a.

If no such number exists, then we say that

 $\lim_{x\to a} f(x)$  does not exist.

Warning: Not all limits exist!

## **Example:**

$$f(x) = \frac{|x|}{x} = \begin{cases} 1 & \text{if } x > 0 \\ -1 & \text{if } x < 0 \end{cases}$$



- $x \to 0$  from the left,  $f(x) \to -1$
- $x \to 0$  from the right,  $f(x) \to 1$

So  $\lim_{x\to 0} f(x)$  has no meaning!

#### **Two-Sided and One-Sided Limits**

#### **Notation**

"x approaches a from the left"

 $x \to a^-$  [minus in a superscript position] or  $x \uparrow a$  [comes up to a] or  $x \nearrow a$ 

$$\lim_{x \to a^{-}} f(x) = L$$

$$x \to a$$

"x approaches a from the right"

 $x \to a^+$  [plus in a superscript position] or  $x \downarrow a$  [comes down to a] or  $x \searrow a$ 

$$\lim_{x \to a^+} f(x) = L$$

$$a \leftarrow x$$

## Relationship between Two-Sided and One-Side Limits: Theorem

$$\lim_{\substack{x \to a \\ \text{two-sided}}} f(x) = L$$

 $\Leftrightarrow$  [if and only if]:

- $\lim_{x \to a^{-}} f(x) = L$  exists
- $\lim_{x \to a^+} f(x) = L$  exists
- and both equal L

# **Example:**



$$\lim_{x \to a^{-}} f(x) = 1 = \lim_{x \to a^{+}} f(x)$$

#### The Algebra of Limits as $x \rightarrow a$

Basic Limits as  $x \to a$ ,  $a^+$ ,  $a^-$  used in polynomial functions and rational functions.

The constant function

$$\lim_{x \to a} (k) = k$$

The identity function: f(x)

$$\lim_{x \to a} (x) = a$$

The reciprocal ("flip over") function:  $f(x) = \frac{1}{x}$ 

$$\lim_{x \to 0^{-}} \left(\frac{1}{x}\right) = -\infty$$

$$\lim_{x \to 0^+} \left(\frac{1}{x}\right) = \infty$$

#### Limits of Sums, Differences, Products, Quotients and Roots

The "Rules" of Algebra for Limits

Let a be any real number and

$$\lim_{x \to a} f(x) = L_1$$
$$\lim_{x \to a} g(x) = L_2$$

then

$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = L_1 + L_2$$

$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x) = L_1 - L_2$$

$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = L_1 \cdot L_2$$

$$\lim_{x \to a} |f(x)| = \left| \lim_{x \to a} f(x) \right| = |L_1|$$

$$\lim_{x \to a} [kf(x)] = k \cdot \lim_{x \to a} f(x) = k \cdot L_1$$

$$\lim_{x \to a} [f(x)^n] = \left[ \lim_{x \to a} f(x) \right]^n = L_1^n$$

$$\lim_{x \to a} \left[ \frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L_1}{L_2}$$

Provided  $L_2 \neq 0$ 

$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)} = \sqrt[n]{L_1}$$

Provided when n= even then  $L_1 \ge 0$ 

## **Limits of Polynomial Function**

#### **Polynomial Expressions**



Two monomial with the same degree and same variable are called "like terms":  $a_n \cdot x^n$ ;  $b_n \cdot x^n$  - "like terms"

A polynomial in one variable has the standard form: [higher powers → lower powers]

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

 $a_n \neq 0$  leading coefficient

By the "Rules of Algebra" for Limits we can break down **polynomials** into simpler parts

Example: 
$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

$$\lim_{x \to a} [f(x)^n] = \left[\lim_{x \to a} f(x)\right]^n$$

$$\lim_{x \to a} [x^2 - 4x + 3] = \lim_{x \to 5} [x^2] - \lim_{x \to 5} [4x] + \lim_{x \to 5} [3] = \left(\lim_{x \to a} [x]\right)^2 - 4\lim_{x \to a} [x] + 3 = \lim_{x \to a} [kf(x)] = k \cdot \lim_{x \to a} f(x)$$

$$= 5^2 - 4 \cdot 5 + 3 = 8$$

For any polynomial function

$$\lim_{x \to a} p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = p(a)$$

For polynomial, this limit is the same as "substitution of a for x"

# Limits of Rational Functions $\frac{p(x)}{q(x)}$ and the appearance of $\frac{0}{0}$

There are 3 cases to consider

Case 1: 
$$q(a) \neq 0$$
 Limit =  $\frac{p(a)}{q(a)}$ 

**Example:** 

$$\lim_{x \to 2} \left[ \frac{5x^3 + 4}{x - 3} \right] \stackrel{\leftarrow}{\leftarrow} p(x) \quad a = 2$$

$$= \frac{\lim_{x \to 2} [5x^3 + 4]}{\lim_{x \to 2} [x - 3]} = \frac{\overbrace{5 \cdot 2^3 + 4}^{p(a)}}{\underbrace{2 - 3}_{q(a) \neq 0}} = -44$$

## **Case 2:** $p(a) \neq 0$ and q(a) = 0 Limit does not exist (division by 0!)

$$f(x) = \frac{\overbrace{1}^{p(x)}}{\underbrace{x - a}_{q(x)}}$$

$$\lim_{x \to a^{-}} \left[ \frac{1}{x - a} \right] = -\infty; \ \lim_{x \to a^{+}} \left[ \frac{1}{x - a} \right] = +\infty$$

#### **Classic Examples:**

$$f(x) = \frac{1}{x}$$

$$\lim_{x \to 0^{-}} \left[ \frac{1}{x} \right] = -\infty$$

$$\lim_{x \to 0^{+}} \left[ \frac{1}{x} \right] = +\infty$$



$$\lim_{x \to a} \left[ \frac{1}{(x-a)^2} \right] = \infty$$

$$\lim_{x \to a} \left[ \frac{-1}{(x-a)^2} \right] = -\infty$$





**Case 3:** p(a) = 0 and q(a) = 0 Limit  $\frac{p(a)}{q(a)} = \frac{0}{0}$  an indeterminate form: We cannot determine whether the limit exists or not, without more work!

#### **Example:**

$$\lim_{x \to 2} \left[ \frac{x^2 - 4}{x - 2} \right] \leftarrow p(x) + p(x) = 0 = q(2)$$

Factor + cancel
$$\lim_{x \to 2} \left[ \frac{(x-2)(x+2)}{x-2} \right] = \lim_{x \to 2} [(x+2)] = 4$$

This is only one particularly technique! Does not work always!

## The Algebra of Limits as $x \to \pm \infty$ : End Behavior

**Basic Limits:** 

The constant function

$$\lim_{x \to -\infty} (k) = k$$

and

$$\lim_{x \to \infty} (k) = k$$

The identity function: f(x)

$$\lim_{x \to -\infty} (x) = -\infty$$

$$\lim_{x\to\infty}(x)=\infty$$

The reciprocal ("flip over") function:  $f(x) = \frac{1}{x}$ 

$$\lim_{x \to -\infty} \left(\frac{1}{x}\right) = 0$$

$$\lim_{x \to \infty} \left(\frac{1}{x}\right) = 0$$

#### Limits of Sums, Differences, Products, Quotients and Roots

The "Rules" of Algebra for Limits applied to  $x \to -\infty$  or  $x \to \infty$ 

We only state for  $x \to \infty$  case

As before, suppose:

$$\lim_{x \to \infty} f(x) = L_1$$

$$\lim_{x\to\infty}g(x)=L_2$$

then

$$\lim_{x \to \infty} [f(x) + g(x)] = \lim_{x \to \infty} f(x) + \lim_{x \to \infty} g(x) = L_1 + L_2$$

$$\lim_{x \to \infty} [f(x) - g(x)] = \lim_{x \to \infty} f(x) - \lim_{x \to \infty} g(x) = L_1 - L_2$$

$$\lim_{x \to \infty} [f(x) \cdot g(x)] = \lim_{x \to \infty} f(x) \cdot \lim_{x \to \infty} g(x) = L_1 \cdot L_2$$

$$\lim_{x \to \infty} |f(x)| = \left| \lim_{x \to \infty} f(x) \right| = |L_1|$$

$$\lim_{x \to \infty} [kf(x)] = k \cdot \lim_{x \to \infty} f(x) = k \cdot L_1$$

$$\lim_{x \to \infty} [f(x)^n] = \left[\lim_{x \to \infty} f(x)\right]^n = L_1^n$$

$$\lim_{x \to \infty} \left[ \left(\frac{1}{x}\right)^n \right] = \left[\lim_{x \to \infty} \frac{1}{x}\right]^n = 0$$

$$\lim_{x \to \infty} \left[ \frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to \infty} f(x)}{\lim_{x \to \infty} g(x)} = \frac{L_1}{L_2}$$

Provided  $L_2 \neq 0$ 

$$\lim_{x \to \infty} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to \infty} f(x)} = \sqrt[n]{L_1}$$

Provided when n= even then  $L_1 \ge 0$ 

### **Limits of Polynomial Functions: Two End Behaviors**

A polynomial function

$$f(x) = c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0$$

Where  $c_n \neq 0$ 

The "two end behaviors" are that as  $x \to \infty$  (the rightward end) or  $x \to -\infty$  (the leftward end)

Then

$$\begin{cases}
f(x) \to \infty \\
f(x) \to -\infty
\end{cases}$$
 The two possibilities

Observe:

$$f(x) = c_n x^n + c_{n-1} x^{n-1} + c_1 x + c_0 = x^n \left[ c_n + \underbrace{\frac{c_{n-1}}{x} + \dots + \frac{c_1}{x^{n-1}} + \frac{c_0}{x^n}}_{go \ to \ 0} \right]$$

So, the "end behavior" of f(x) matches the "end behavior" of  $c_n x^n$ 

#### Theorem:

$$\lim_{x \to \pm \infty} [c_n x^n + c_{n-1} x^{n-1} + c_1 x + c_0] = \lim_{x \to \pm \infty} [c_n x^n]$$

#### **Example:**

$$\lim_{x \to -\infty} \left[ -4x^8 + 17x^5 + 3x^4 + 2x - 50 \right] = \lim_{x \to -\infty} \left[ -4x^8 \right] = -\infty$$

## **Limits of Rational Functions: Three Types of End Behavior**

$$f(x) = \frac{p(x)}{q(x)} \leftarrow top$$
$$\leftarrow botton$$

Remember: The Degree of a polynomial is the exponent of the highest power of x in the polynomial

#### Type 1. Deg(top)=Deg(bottom)

$$\lim_{x \to \infty} f(x) = \frac{leading \ coefficient \ of \ top}{leading \ coefficient \ of \ bottom}$$

## **Example:**

$$f(x) = \frac{-x}{7x+4}$$

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \left[ \frac{-x}{7x+4} \right] = \lim_{x \to \infty} \left[ \frac{-1}{7 + \frac{4}{x}} \right] = -\frac{1}{7} = \frac{l.c.of\ top}{l.c.of\ bottom}$$

## Type 2. Deg(top)<Deg(bottom)

$$\lim_{x \to \infty} f(x) = 0$$

#### **Example:**

$$f(x) = \frac{5x + 2}{2x^3 - 1}$$

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \left[ \frac{5x + 2}{2x^3 - 1} \right] = \lim_{x \to \infty} \left[ \frac{\frac{5}{x^2} + \frac{2}{x^3}}{2 - \frac{1}{x^3}} \right] = 0$$

### Always zero

y = 0 the (x-axis) is a horizontal asymptote

## Type 3. Deg(top)>Deg(bottom)

If leading coefficient of top > 0

$$\begin{array}{ccc} \infty & if & x \to \infty \\ -\infty & if & x \to -\infty \end{array}$$
 Always one of these

If leading coefficient of top < 0

$$\begin{array}{ccc}
\infty & if & x \to -\infty \\
-\infty & if & x \to \infty
\end{array}$$
 Always one of these

#### **Example:**

$$f(x) = \frac{x^2 + 4x + 5}{x - 1}$$

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \left[ \frac{x^2 + 4x + 5}{x - 1} \right] = \lim_{x \to \infty} \left[ \frac{1 + \frac{4}{x} + \frac{5}{x^2}}{\frac{1}{x} - \frac{1}{x^2}} \right] = \infty$$

## Limits of ln(x)



$$\lim_{x\to\infty}[lnx]=\infty$$

note, that  $\lim_{x\to-\infty} lnx$  makes no sense

$$\lim_{x \to 0^+} [lnx] = -\infty$$

## Limits of $e^x$



$$\lim_{x\to\infty}[e^x]=\infty$$

$$\lim_{x\to-\infty}[e^x]=0$$

$$\lim_{x\to\infty}[e^{-x}]=0$$

$$\lim_{x \to -\infty} [e^{-x}] = -\infty$$

# **Limits of Trigonometric Functions**



$$\lim_{x\to 0} cos x = cos 0 = 1$$

$$\lim_{x\to 0} sinx = sin0 = 0$$

## Limits of arctanx and arccotx



$$\lim_{x \to \infty} arctan x = \frac{\pi}{2}$$

$$\lim_{x\to -\infty} arctan x = -\frac{\pi}{2}$$

$$\lim_{x \to \infty} arccot x = 0$$

$$\lim_{x \to -\infty} arccot x = \pi$$