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6. Numbers 
 
We do not give an axiomatic definition of the real 
numbers here. 
Intuitive meaning: Each point on the (infinite) line 
of numbers corresponds to a real number, i.e., an 
element of IR. 
 
The line of numbers: 

 
 
Important subsets of IR: 
 
IN the set of all natural numbers 
 (positive integers), does not contain the 0 

IN0 := IN ∪ {0}  the set of all non-negative integers 
ZZ the set of all integers { ... –2; –1; 0; 1; 2; ... } 
 Q the set of all rational numbers (representable 

 as fractions of integers p/q, where q ≠ 0) 
 
We have: 

IN ⊆ ZZ ⊆ Q ⊆ IR. 

 
Remark: 
Every rational number can be represented as 
decimal number with its expansion after the 
decimal dot either coming to an end or becoming 
periodic. 
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Examples: 
 

1/4 = 0.25 
 

1/7 =  0.142857   (periodic) 
 

1/6 =  0.16   (ultimately periodic) 
 
Example for a transformation in the other direction: 

 
 

(note the different notations: 
decimal dot in anglosaxon countries, comma in Germany) 
 
Irrational numbers are real numbers that are not 
rational, i.e., cannot be expressed as a fraction of 
integers. 
Their decimal expansion becomes never periodic. 
 

Examples: 
 

 
 

... 
 

 ... 
 
Arithmetic operations on IR: 
 
Addition 
 

Operation symbol: + 
 

a + b exists for every a, b ∈ IR. 
+ can be seen as a function with two arguments: 
a + b is in prefix notation +(a, b). 
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Rules for adding numbers: 
a + b = b + a    (commutativity) 
(a + b) + c = a + (b + c)  (associativity) 
a + 0 = a   (0 is the neutral element of addition) 
 

For every a, there is a number –a such that 
a + (–a) = 0 
 

We have always: –(–a) = a. 
 

Subtraction can be derived from addition: 
a – b = a + (–b). 
 
Multiplication 
 

Operation symbol:  ⋅   (often omitted!) (sometimes 

also * instead of  ⋅ ). 
 

a ⋅ b exists for every a, b ∈ IR. 
 

Rules for multiplication: 

a ⋅ b = b ⋅ a 

(a ⋅ b) ⋅ c = a ⋅ (b ⋅ c) 

a ⋅ 1 = a   (1 is the neutral element of multiplication) 
Rule combining addition and multiplication: 

a ⋅ (b + c) = a ⋅ b + a ⋅ c  (distributivity) 
 

Note: By convention,  ⋅  binds stronger than + 
 

For every a ≠ 0, there is a number 1/a such that 

a ⋅ 1/a = 1. 
 

We have always: 1/(1/a) = a. 

Other notations for 1/a :  
a

1
 , a

–1
. 

1/a  is called the inverse of a. 
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Division can be derived from multiplication: 

a : b  =  a ⋅ 1/b 

Another notation for a : b is  b

a
 . 

a : b is not defined for b = 0. 
 
The power of a number 
 

A power with a positive integer exponent is defined 
as an iterated multiplication: 

Example:  4
3
 = 4 ⋅ 4 ⋅ 4. 

4 is called the basis, 3 the exponent. 
 

By definition, a
0
 = 1 for all a ≠ 0. 

For n > 0,  we define as the power with negative 
exponent –n :  a

–n
 = 1/(a

n
)  ( = (a

n
)
–1

 ). 

Example:
   

 
The root of a number 
 

For every positive real number a and every positive 
integer n there exists a positive real number x 
which fulfills the equation  x

n
 = a. 

This (unique) x is called the n-th root of a. 
Two notations for x: 

 
 

For odd integers n and negative a we can extend 
this definition by  a

1/n
 = – (–a)

1/n
 . 
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For even n, the n-th root of a negative number is 
not defined in IR. 
 

To overcome this restriction, it is possible to extend 
the set of real numbers IR: 

The so-called imaginary unit 1−=i   is defined 
which fulfills  

i ⋅ i = –1. 
 

IR is extended to the set  C of complex numbers. 

Each complex number has the form a + b⋅ i  with 

a, b ∈ IR. 
It is possible to calculate with complex numbers in 
the same way as with real numbers. 
Visualization as points in the plane (with real-
valued coordinates a, b). 
 
Back to the real numbers: 
 
The operation "n-th root of..." does invert the power 
operation. 
 

Attention: 

We have (by definition)  , 
 

but:
       

!
 

 
Here, |x| denotes the absolute value of x: 

|x| = x  if x ≥ 0   and  |x| = –x otherwise. 
 
|a – b| :  the distance between a and b.
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In the context of square roots, the solution formula 
for quadratic equations ("pq formula") is often a 
useful tool: 
 
For the equation  x

2
 + px + q = 0, 

the solutions (if they exist) are: 
 

 
 
Condition for the existence of the solution(s): 
 

 
 
For control purposes, Vieta's theorem can be 
useful: 
The two solutions fulfill  x1 + x2 = –p 

                              and  x1 ⋅ x2 = q. 
 
 
The power of real numbers with rational exponent: 
 

The power a
k/n

  is defined as 

. 
 

(By using limits of series of rational numbers – for the intro-
duction of limits see later – , the definition of a power can also 
be extended to irrational exponents.) 
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Rules for powers: 
 

a
r
 ⋅ as

 = a
r+s

 
a

r
 : a

s
 = a

r–s
 

(a
r
)
s
 = a

rs
 

a
r
 ⋅ br

 = (a ⋅ b)
r
 

 
Because the power operation a

n
 is not 

commutative, there are two different reverse 
operations: You can search for a basis or you can 
search for an exponent. The first case leads to the 
root, the second case to the logarithm. 
 

Definition: 
Let a, b > 0 be real numbers. The (unique) solution 
of  b

x
 = a  is  x = logb a  (logarithm of a to the base b). 

 
Often the so-called natural logarithm is used, which 
uses the Euler number e = 2.718281828... as its 
base:  ln a = loge a. 
Other frequent cases: binary logarithm (base 2); 
decimal logarithm (base 10). 
 

In general, we have:  logb a = ln a / ln b . 
 
Rules for logarithms (hold for arbitrary base): 
 

 log(x ⋅ y)  = log x  +  log y 
 log (x / y) = log x  –  log y 

 log (x
y
)     = y ⋅ log x 
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The order relation on IR 
 
Every two real numbers a, b can be ordered: 
 

Either  a < b,  or  a = b,  or a > b . 
 

a ≤ b  means  a < b  or  a = b. 
 
We have: 

a < b  ⇒  a + c < b + c    (analogously for ≤ ), 
 

for c > 0:   a < b  ⇒  a ⋅ c < b ⋅ c 
 

but for c < 0:  a < b  ⇒  a ⋅ c > b ⋅ c 
 
 
Bounded intervals 
 

An open, bounded interval  (a, b)  is the set of all 
real numbers x which are properly between a and 
b, i.e., which fulfill a < x < b. 
Attention! The same notation as for ordered pairs 
is used, but the meaning is different. 
If a < b,  (a, b) is an infinite set. 
 

       

(a, b)
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In a closed interval  [a, b], the end points are 

included:  [a, b] = { x ∈ IR | a ≤ x ≤ b }. 
 

   

[a, b]

 
 
 
An interval closed on the right-hand side: 
 

  

(a, b]

 
 
 
An interval closed on the left-hand side: 
 

  

[a, b)

 
 
 
Unbounded intervals 
 

(a, +∞) = { x ∈ IR | a < x  }. 
 

 

(a, +∞) 

[a, +∞) 
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analogously for intervals unbounded to the left: 
 

 
 
 
The neighbourhood of a number 
 

Let ε > 0 be a positive real number. 

The interval  ( b – ε, b + ε ) is called the  

ε-neighbourhood of the number b. 
 

We have ( b – ε, b + ε ) = { x ∈ IR | |x – b| < ε }. 

That means: The neighbourhood contains all 
numbers for which the distance to b is smaller than 

the given threshold ε. 
 

 
 

(–∞, a) 

(–∞, a] 
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Bounds 
 
An upper bound of a set M of real numbers is a 

number r  with r > x for all x ∈ M. 
 
Analogously:  lower bound  (exchange > by < ). 
 
A set of numbers is called bounded if there exists 
an upper bound and a lower bound for it. 
 
 
If a set has an upper bound, it has infinitely many 
upper bounds. We are interested in the smallest 
one: 
 

The smallest upper bound of a set M ⊆ IR is called 
the supremum of M, denoted sup M. 
 

Analogously:  

The largest lower bound of a set M ⊆ IR is called 
the infimum of M, denoted inf M. 
 
Examples: 
inf {1; 2; 3; 4} = 1,   sup {1; 2; 3; 4} = 4, 
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Number systems 
 
 

Question: How to represent numbers? 
We concentrate on positive integers here. 
 

 
     The additional digits in the hexadecimal system: 
     A = 10, B = 11, C = 12, D = 13, E = 14, F = 15. 
 

 

Transformation from one number system to the 
other: 
 

• Special case (easy): from binary to hexadecimal 
Every 4 binary digits correspond directly to a 
hexadecimal digit 
 

Example:   0000 0010 1100 0110 

 →                 0       2       C      6 
 
 



 36 

• from arbitrary system to decimal:  
    Horner scheme 

 

Input: zn–1 zn–2 ... z0  to base b 
start with hn–1 = zn–1 
calculate for k = n–1, n–2, ..., 1:    
                     hk–1 = hk * b + zk–1 
Output: z = h0 
 

Example: 
Input: binary number 1010   (n = 4, b = 2) 
Start:             hn–1 = h3 = z3 = 1 
k = n–1 = 3:   h2 = h3 * 2 + z2 = 1*2 + 0 = 2 
k = 2:             h1 = h2 * 2 + z1 = 2*2 + 1 = 5 
k = 1:             h0 = h1 * 2 + z0 = 2*5 + 0 = 10 = z 
 
 
 

• from decimal to arbitrary:  
    Inverse Horner scheme 

 

start with h0 = z  ( = input) 
calculate for k = 1, 2, 3, ... :   
             zk–1 = hk–1 mod b,    
             hk = hk–1 div b 
 

(mod: rest when dividing by b,  div: integral part from dividing by b) 
 

Output: zn–1 zn–2 ... z0  to base b   
 



 37 

Example: 
Input: decimal number 34, transform in ternary 
system (b = 3) 
Start:  h0 = 34 
k = 1:   z0 = h0 mod 3 = 34 mod 3 = 1,  
                     h1 = h0 div 3 = 34 div 3 = 11 
k = 2:   z1 = h1 mod 3 = 11 mod 3 = 2,  
                     h2 = h1 div 3 = 11 div 3 = 3 
k = 3:   z2 = h2 mod 3 = 3 mod 3 = 0,  
                     h3 = h2 div 3 = 3 div 3 = 1, 
k = 4:   z3 = h3 mod 3 = 1 mod 3 = 1,  
                     h4 = h3 div 3 = 1 div 3 = 0 (Stop) 

⇒  z = 1021 
 
 
 
Remark: 
Arbitrary real numbers can also be represented 
using an arbitrary integer b > 1 as base. 
Digits after the dot are interpreted as coefficients of 
b

–n
  (n = 1, 2, 3, ...). 

 

Example: 
0.1112 (base b=2) = 1/2 + 1/4 + 1/8 = 7/8 = 0.87510 
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7. Vectors 
 
We will work with elements from the set 

 
 
The elements are n-tuples of real numbers, 
we call them vectors. 
 

To distinguish vector-valued variables from 
variables standing for single numbers, often an 

arrowed letter ( a
r

) or printing in a different font is 
used. 
 
Two ways to write down a vector: 
 
row vector, e.g., (1; 5; –2) 
 

column vector

   
 

To distinguish real numbers from vectors, we call 
them also scalars: 
 

∈





















=

na

a

a

a
M

r 2

1

 IR
n     vector  

 

     (for n = 2; 3  geometrically: 
      representation by arrow ; “directed entity“) 
 

  m ∈ IR     scalar    (“undirected entity“) 
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 L

















3

2

1

a

a

a

  a1, a2, ...  are called components of the vector 

          (also: coordinates) 
 
special cases: 

 , can be represented as a plane: 

    each vector  corresponds to a point in the 
    plane. Often a vector is represented as an arrow 
    pointing from the origin to this point. 
 
 
 
 

  3-dimensional space. 
 
IRn is called an n-dimensional vector space. 
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Example of a vector in a higher-dimensional vector 
space IR

n
  (n > 3) : 

 

The age-class vector of a population  
(e.g., of a forest stand)  
 

                          




















8

7

2

5

 

 

 
 
 
 

1-10 years old  

5 ha 

� 
�

� 

� 
… 

� 

� 

� 
… 

11-20 years old 

2 ha 
21-30 years old 

31-40 years old 

7 ha 

8 ha  

� 

� 
� 

� 
� 
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Equality of vectors: 
 
Two vectors are equal iff all their corresponding 
components are equal. 
 

L
MM

^^ 2211

2

1

2

1

baba

b

b

b

a

a

a

nn

==⇔




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
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
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nn ba =^K
 

 
Addition of vectors: 
 

Definition of the sum of two vectors in IR
n   

 





















+

+

+

=





















+





















nnnn ba

ba

ba

b

b

b

a

a

a

MMM

22

11

2

1

2

1

 

 

Properties of the addition of vectors: 
 

abba
rrrr

+=+                     commutativity 

)()( cbacba
rrrrrr

++=++       associativity
 

,0 aa
rvr

=+         neutral element  0
r

 

where  
0
r

 is the zero vector: 
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

















=

0

0

0

0
M

r

  
∈

 

IR
n

   

 
 
Geometrical interpretation of vector addition: 
 
The arrows of both vectors are placed one after the 
other, and the origin is connected with the new end 
point. 
 
 

 
 
(in physics: "parallelogram of forces")
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The sum in the case of age-class vectors: 

aggregation of two forest stands into one.  

 
 

                              



















=




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
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
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












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8

9

13

8

4

4

11

3

4

5

2

 

                                                            age-class structure of the  
                                                                                     total area 

1-10  

2 11-20 

21-30 

31-40 

1-10 

11-20 

21-30 

31-40 

5 

4 

4 

8 

4 

11 

3 
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For all vectors a
r
 from IR

n
, there exists exactly one 

vector – a
r
 which fulfills  0)(

rrr
=−+ aa . 

       
          ↑ 
        inverse (negative) element  

?=−a
r

   
 

  
 

 

a
r

  
       

a
r

−
                                      

0)(
rrr

=−+ aa
                                                                 

                          =
















0

0

0

 
Difference of vectors: 

)( ba

ba
rr

rr

−+=

−
          (as in the case of real numbers) 

 

b
rb

r
−

a
r
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Geometrical interpretation of the difference of 
vectors: 
 

 
 

 
          inversion of the direction 
 
we get thus the "connecting vector" of the 
endpoints of both vectors. 
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Multiplication of a vector with a scalar  

(≠ „inner product“,   ≠ „vector product“ !)  
 

 

m∈IR ,   a
r

∈ IRn 
 

∈





















⋅

⋅

⋅
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

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










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



⋅=⋅
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a

a

a
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1

2

1

:
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n

 

Example: 
 

















−=













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−

⋅

⋅

⋅

=
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














−⋅

2

6

)5(

3

9

3

5

9

3
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3

2

3

2

3

2

3

2

 

 

geometrical meaning:  
expansion, resp. compression of      by the 
factor m  
 

                  

                                        a
r

⋅2  

    a
r

⋅
3
2

       a
r

         

   

 
The direction is inverted, if the factor m is < 0. 
 

a
r
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      |  | 

We have the following rules:  
 

amakamk

bmambam

amam

m

aa

a

aa

rrr

rrrr

rrrr

vr

rr

rr

rr

⋅+⋅=⋅+

⋅+⋅=+⋅

=∨=⇒=⋅

=⋅

−=⋅−

=⋅

=⋅

)(

)(

000

00

)1(

00

1

 

 

 

In the following, terms of the form  
 

n

iii

k

i

i

kk

amam

amamam

R,R),(
1

2211

∈∈⋅=

⋅++⋅+⋅

∑
=

rr

r
K

rr

 

are important. We speak of a  linear combination of 

the vectors ;,, ki aa
r

K
r

  the im  are called 

coefficients. 
 

 

Example (in 3-dimensional space): 

 
(here written as row vectors for convenience) 

 

}distributive laws 
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The vector 

 
is a linear combination of these four vectors. 
In column-vector notation, we calculate: 
 

 
 
The trivial linear combination 
 

A linear combination is called trivial if all 
coefficients m1, ..., mk are 0. 
It is called nontrivial if at least one coefficient is not 0. 

 
A trivial linear combination has the zero vector as 
its result. 
Can the zero vector also be the result of a 
nontrivial linear combination? 
 
An example: 3 vectors in a plane 
 

 
 
We can indeed construct a "cycle" of multiples of 
these vectors which gives as its sum the zero 
vector: 
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This is a nontrivial linear combination giving the 
zero vector! 

 would be trivial. 
 

We say:  cba
rrr

,,  are linearly dependent. 
 
Definition: 
Linear dependence / independence of vectors 
 

Given are k ∈ IN and the vectors 

. 
These vectors are called linearly dependent, if 
there exist real numbers m1, ..., mk , which are not 
all equal to zero, such that 

.
 

If the latter equation holds only if all coefficients are 
0, then the vectors are called linearly independent. 
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One can prove: Several vectors are linearly 
dependent if and only if one of them can be 
represented as a linear combination of the others. 
 
Special cases: 
 

IR
1
:  only sets with one element, { a }, with a ≠ 0 

        are linearly independent. 
 

IR
2
:  { }21,aa

rr
 is linearly dependent  ⇔  both vectors 

         are on a line through the origin. 
 

IR
3
:  { }321 ,, aaa

rrr
 is linearly dependent  ⇔ all three 

         vectors are in a plane going through the 
         origin of the coordinate system. 
 
 
How to test a set of vectors for linear dependence 
 
Example: Given are the three vectors (1; 2; 3), 
(0; –1; 0) and (–1; 2; –2). Are they linearly 
dependent? 
 

Approach: We have to assume ∑
=

=
3

1

0
i

iiam
rr
. 

Written with column vectors, this means: 
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For each component, we obtain an equation, 
giving together the following system of 3 linear 
equations: 
 

 
 

We can solve this step by step for the unknowns 
mi. In this case, we obtain quickly m1 = m2 = m3 = 
0. So the system can only be fulfilled if all 
coefficients are zero, and the 3 vectors have been 
proven als linearly independent. 
 
Examples for training: 
Linearly dependent or independent? Decide 
yourself! 
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Rank of a set of vectors 
 
The number of elements of the maximal linearly 
independent subset of a given set of vectors is 
called the rank of the set of vectors. 
 
 
The basis of a vector space 
 
IR

n
  has infinitely many elements. 

Is there a finite subset { }kaa
r

K
r

,,1 ,  

such that all vectors from IR
n
 

can be represented uniquely as a linear 

combination of the ia
r

 ?
 

 

YES!  
Such a set of vectors is called a  basis  of IR

n
. 

 

Most simple example of a basis: 
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M

r
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 , 

 

the standard basis of IR
n
. 

 

There are infinitely many bases, which have, 
however, all the same number of elements 
(namely, n).  This number is called the dimension 
of the vector space. 
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Example: 
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 has rank 2 

 
  lin. indep.   lin. dependent 

 

If we remove 

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 , we obtain a linearly independent 

vector system: 
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If we add now, e.g., 
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 , we obtain a basis of IR
3
,
  

i.e., a maximal linearly independent subset: 
 

































































0

0

1

,

1

0

0

,

0

1

1

 , rank 3. 

   
 

        lin. independent 
                

3 is the dimension of IR
3
. 
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If we add an arbitrary further element,  

e.g., 















0

1

0

, the set becomes linearly dependent:   

0

0

1

0

)1(

0

0

1

)1(

1

0

0

0

0

1

1

1
r

=
















⋅−+
















⋅−+
















⋅+
















⋅  . 

 
 
 
 
 
The coordinates of a vector with respect to a given 
basis 
 
When an arbitrary basis is given, every vector can 
be expressed uniquely as a linear combination of 
the elements of this basis (i.e., the coefficients are 
uniquely determined). 
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Example: 
 

 

 

 
 

{ }

21

2

2121

21
5

5

RI,,
1

2
,

3

1

uux

ofbasisuuuu

rrr

rrrr

⋅+⋅=







=









=








=

 

           (1; 2) are the coordinates of x
r

  

           w.r.t. { }21,uu
rr

. 

0 1 

1 

2 3 4 5 

2 

3 

4 

5 

22 u
r

⋅

1u
r

2u
r

x
r
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In the special case of the standard basis, we have 
always: 
 





















=























⋅++























⋅+





















⋅=

⋅++⋅+⋅

n

n

nn

a

a

a

aaa

eaeaea

M

MK

MM

r
K

rr

2

1

21

2211

1

0

0

0

0

0

1

0

0

0

0

1

 

 

The components a1,…, an  of a vector ∈a
r

 IR
n
  are 

exactly the coordinates  of a
r
 with respect to the 

standard basis. 
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The inner product of vectors and the norm of a 
vector 
 
The inner product of two vectors 

     
 a product of vectors which gives as result a scalar! 
 

Let there be given: 

.RI,
2

1

2

1

n

nn y

y

y

y

x

x

x

x ∈





















=





















=
M

r

M

r

 

 

We define: 
 

RI

:

1

2211

∈⋅=

⋅++⋅+⋅=⋅

∑
=

n

i

ii

nn

yx

yxyxyxyx K
rs

 

 

„inner product of x
r
 and y

r
“ 

 

yx
rr

⋅  is not a vector, thus, e.g., cba
rrr

+⋅ )(  is senseless. 
 

Example: 
 

41

4032

8531)1(2

8

3

1

5

1

2

=

++−=

⋅+⋅+−⋅=














−

•















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Significance: 
The inner product enables propositions about 
lengths and angles of vectors. 
 
The (Euclidean) norm of x

r
 ∈ IR

2
  is defined as  

 

22
ba

b

a
+=








 

= length of x
r

 according to Pythagoras.  
                                                                b                 x

r
 

analogously in IR³.                                                                                   
                                                                                             
            
geometrical interpretation is thus: 

norm = length of the vector (arrow). 
 

The vector )
||||

1
..(

||||
x

x
ei

x

x r
rr

r

⋅   has length 1. 

It is called normed. 
 
 

General definition of the norm (or length) of a 
vector: 

 
 
 
 

 

 

 

 

  a 
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Two vectors yx
rr

,  are mutually orthogonal 

(perpendicular) to each other iff  0=⋅ yx
rr

. 
 

Example:  
0100302

1

0

0

0

3

2

=⋅+⋅+⋅=
















⋅
















  

     
 
 
Generally, in IR

n
  the angle formula holds: 

 

       ||||||||
arccos),(

yx

yx
yx rr

rr
rr

⋅

⋅
=

 

 
 
 
 

in xy plane  on z axis 
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The cross product of vectors in IR
3
 

 
Let there be given two 3-dimensional vectors 

 
 

The vector product or cross product  of both 
vectors is defined as the following new 3-
dimensional vector: 
 

 
 
Rule for memorizing the components of the cross 
product: 
 

2

1

2

1

1221

3113

2332

3

2

1

3

2

1

b

b

a

a

baba

baba

baba

b

b

b

a

a

a

















−

−

−

=
















×















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The cross product has the following properties: 
 

 (thus, in general, the factors must not 
                      be flipped) 
 

 linearly dependent 
 

 stands always orthogonal to a
r

 and b
r

 
      (so this is an easy way to find some vector 
       orthogonal to a plane if it is needed) 
 

 form in this order a "right-hand 
       system" (orientated like the first three fingers 
       of the right hand) 
 

 
           = area of the parallelogram which is 

              spanned by a
r

 and b
r

 
 
Attention: 
The cross product does only exist in IR

3
 ! 

 
 


