
 1

7. The World Wide Web

The World Wide Web (WWW) is
a hypertext system which is accessible via internet

(WWW is only one system using the internet –
others are e-mail, ftp, telnet, internet telephone ...)

Hypertext: Pages of text containing hyperlinks
(short: links) referring to other pages

(from www.wikipedia.org, the open www encyclopedia)

The link structure of the web forms a very large graph –

the following is a very small subgraph of it:

 2

The Web can be seen as a sort of database –
but very different from relational databases:

• highly distributed, decentralized;

• based on the hypertext model instead of the
entity-relationship model;

• with only very weak standards to restrict form
and content of the pages;

• very large

• without a universal query language.

(Search engines try to compensate the last item; see below.)

History of the WWW:

• Idea of hypertext: Vannevar Bush 1945

• Origin of WWW: a project at CERN (Geneva) in 1989

• Tim Berners-Lee and Robert Cailliau

• their system: ENQUIRE, realized core ideas of the
Web in order to enable access to library information
that was scattered on several different computers at
CERN

• proposal for the WWW: published by Berners-Lee on
November 12, 1990

• first web page on November 13 on a NeXT
workstation

• Christmas 1990: Berners-Lee built the first web
browser and the first web server

• August 6, 1991: summary of the WWW project
posted in a newsgroup in the internet

• April 30, 1993: CERN annouced that the WWW
would be free to anyone

• 1993: Browser Mosaic (forerunner of Internet
Explorer or Firefox) starts to popularize the WWW

 3

The three core standards of the Web:

• Uniform Resource Locator (URL): specifies how
each page of information is given a unique address
at which it can be found (e.g.,
http://en.wikipedia.org/wiki/World_Wide_Web)

• Hypertext Transfer Protocol (HTTP): specifies
how the browser and server send the information
to each other

• Hypertext Markup Language (HTML): a webpage
description language used to encode the
information so that it can be displayed on a variety
of devices and under different operating systems.

Later extensions:

• Cascading Style Sheets (CSS): define the appearance of
elements of a web page, separating appearance and
content

• XML: more general language than HTML, designed to
enable a better separation of appearance and content; also
applicable to other sorts of information

• ECMAScript (also called JavaScript or JScript): a
programming language with commands for the browser,
enables embedding of programmes (scripts) into web
pages. Thus web pages can be changed dynamically.

• Hypertext Transfer Protocol Secure (HTTPS): Extension of
HTTP where the protocol SSL is evoked to encrypt the
complete data transfer

• Java applets (small programmes) can be embedded in web
pages and run on the computer of the Web user

 4

The World Wide Web Consortium (W3C) develops
and maintains some of these standards (HTML,
CSS) in order to enable computers to effectively
store and communicate different kinds of
information.

Problems with the Web:

• highly decentralized, no control of the content

→ there is a lot of false and misleading information, hate
campaigns, promotion of sexual exploitation, of terrorism and of
other crimes...

• highly dynamic: Web pages change all the time!
Links point to nowhere when the target page was
removed...

→ when you give a Web address in the
References section of a scientific paper or in your
thesis, you should add the date when you visited
that page!

Archive of (a part of) the Web:

http://archive.org

→ lost Web references can (in some cases)
 be reconstructed if the date is known

• highly chaotic: no global index or table of
content is available; search for a certain content
is complicated and time consuming

→ development of specialized search engines,
the most well-known one: Google (http://www.google.de)

 5

How does a search engine work?

• First component: a web crawler, visiting all
accessible web pages worldwide, one after the
other, following the hyperlinks

but: when you look for a certain keyword, this
process would take much too long!

→

• second component: a large database,
containing keywords and web addresses where
these keywords were already found

the web crawler is working in the background and
does only actualize the database

when you invoke Google, you search in Google's
database, not in the Web!

→ not all Web pages can be found, because not all
are in the database

Usually, you get many, many, many Web pages
containing a given keyword (often millions...)
→
first remedy: make more intelligent queries
e.g., combining several keywords by "and", or looking for
phrases instead of keywords (use quotation marks)
– Google provides such facilities under "extended
search"

 6

still there are often too many results

→ priorisation of the found web pages necessary

• third component of the search engine (and best
capital of the Google company): a ranking
algorithm for search results

Basic principles of Google ranking of web pages

(Attention: the exact algorithm is changing
continuously and is not published)

"Importance" of a web page:
recursively defined, using the hyperlink structure of
the Web

The importance of a page is the larger,
the more important pages refer to it!

More precisely:
Let FLinks(A) be the set of all outgoing links (forward
links) of a page A and BLinks(A) the set of all incoming
links (backward links) of A

• A has high page rank if the sum of the page ranks of its
incoming links is high,

• a page B distributes its importance in equal parts to all
pages which are referred by it:

 7

(c = normalisation factor)

Iterative determination of the page rank:

• initially, an arbitrary mapping of values to all
web pages is done (typically, the constant value
1 is used),

• iterate the calculation using the above formula
for all pages, until the values remain stable,

• they converge against the Eigenvectors of the
adjacency matrix of the graph consisting of the
web pages (nodes) and their links (edges).
(Adjacency matrix: aij = 1 iff nodes i and j are
connected by an edge.)

Additionally, the Google page rank utilizes:

• proximity of the given key words to each other
(in the text),

• the anchor texts of the links: these are the texts
which can be clicked upon. A page A gets
higher importance when the anchor texts of
links referring to A contain the keywords, too.

 8

The underlying technology of the WWW:
the Internet (short for "Interconnected Networks")

predecessor (end of the 1960s): ARPANET (U.S. military
project)
was later used to connect universities and research labs

Internet today: A worldwide network of computer
networks

• Computers in this network communicate using
the standardized TCP/IP protocol (Transmission
Control Protocol / Internet Protocol: Rules
governing the communication)

• Transmission of the information in small
portions

• For identification, each computer in the net has
a unique number, the IP address

• IP address: 32 bit integer; for better
comprehensibility usually split in 4 bytes (these
4 bytes are often written as decimal integers,
separated by dots: e.g., 194.77.124.35)

 → more than 4 billion addresses

• to get identifiers which can better be
memorized: Domain Name System (DNS)

 – system of (textual) names,
 association between names and IP addresses

 9

• hierarchy: Domains, subdomains, sub-
subdomains..., e.g.,

 www.uni-forst.gwdg.de

 (from right to left!)

• Top-level domains: Country abbreviations and
some others ("generics"): .de, .fr, .eu, .com,
.edu, .gov ...

• Lowest level: host name of a single computer
(here: www, Web server of the forestry faculty)

• domain name corresponds to IP address

• transformation of domain names into IP
addresses and vice versa: Task of special
computers, so-called nameservers

• this transformation takes place any time when
you click on a hyperlink on a web page!

• each nameserver is responsible for a certain
part of the hierarchical name space

 10

8. Foundations of programming

First considerations when for a problem a
programme shall be designed:

WHAT – HOW – WITH WHAT

WHAT (which goal) shall
HOW (with what means) and
WITH WHAT (with which instruments) be
achieved?

WHAT: problem specification

functional specification:

• input / output and their interrelation,

• formal-mathematical and informal description

specification of requirements:

• ways of usage

• usage rights

• duration of use

• security requirements

• financial context
etc.

HOW:

• algorithm

• structure of programme

 11

WITH WHAT:

• hardware (computer, periphery, other technical
equipment)

• software (operating system, programming
language, development toolkit, programme
libraries, ...)

Paradigms of programming:

Different viewpoints and ways of thinking
about how to conceive a computer and a
programme

Imperative paradigm:
Computer = machine for the manipulation of
variables
Programme = sequence of commands which
change values of variables, together with
specifications of the control flow (telling which
command is executed next)
Languages: Fortran, Pascal, Basic, C ...

Example (works in C or Java or XL):

 x = 0;

 while (x < 100)

 x = x + 2;

The variable x is used to produce the even

numbers from 0 to 100.
Attention: The assignment command x = x + 2 is not

a mathematical equality!

 12

Object-oriented paradigm:
Computer = environment for virtual objects which
are created and destroyed during runtime (and can
interact)
Programme = collection of general descriptions of
objects (so-called classes), together with their
hierarchical dependencies (class hierarchy)
Objects can contain data and functionality
(methods)
Languages: Smalltalk, C++, Java, ...

Example (in Java):

public class Car extends Vehicle

 {

 public String name;

 public int places;

 public void print_data()

 {

 System.out.println("The car is a " + name);

 System.out.println("It has " + places + "places");

 }

 }

Typical: class (Car) with data (name, places) and

methods (print_data). The class Car inherits

further data and methods from a superclass,
Vehicle.

 13

Rule-based paradigm:
Computer = machine which transforms a given
structure according to given rules

Programme = set of transformation rules
(sometimes also called a grammar)

Each step of programme application consists of
two substeps: Finding an applicable rule (matching
step) and transformation of the current structure
according to that rule (rewriting step).

Languages: Prolog, AI-languages, L-system
languages, particularly XL

Example (in XL):

public void apply()

 [
 F(x) ==> F(x/3) RU(-60) F(x/3) RU(120)

 F(x/3) RU(-60) F(x/3);
]

produces the so-called Koch curve:

 14

Readability of programmes by humans

programmes: have to be executed by computers,
but also to be understood by humans

Executability can be checked automatically,
understandability not!

⇒ Recommendations:

• make frequent use of programme comments
(/* ... */ or // ... in Java, C++ or XL)

• use plenty of newlines and blanks

• put braces { ... } in lines of their own, put
matching braces in same horizontal position:

{

}

• indentation makes containment and nesting of
programme components visible

• avoid long lines, insert line breaks for readability

• avoid very long methods

• use "speaking" variable and function names
 (int iteration_counter is better than

 int x127 !)

• do not use variable names twice for different
purposes, even if the language allows it

• Initialise constants, default values etc. at the
beginning of a source code file, not somewhere
"deep in the code" where you don't find them
later on

 15

• adhere to conventions used by competent
programmers!

Basic parts of Java and XL

Remark: The language XL is an extension of Java.
The following examples can be compiled and run
with GroIMP (see www.grogra.de), a modelling

platform which contains a development toolkit for
XL and possibilities for visualization.

A first demonstration programme:

/* A simple Java programme for execution

with the GroIMP software. */

protected void init()

 {

 println("Hello World!");

 }

(= example file prog_ex01.rgg)

 16

, protected

println: predefined method – invoked with a string as its
argument, it writes the string to the GroIMP console (a special
output window) and adds a line feed.

 17

3) newly declared identifiers: Their meaning is fixed by
(explicit or implicit) declarations in the programme itself.
Example: init is the name of the method which writes the

text to the console. It expects no arguments (init()).

Use of simple data types and the "while" loop

/* A simple demonstration program,

 printing out the numbers from 0 to 10

 and their squares, each pair

 on an extra line. */

protected void init()

 {

 int i;

 i = 0;

 while (i <= 10)

 {

 println(i + ": " + (i*i));

 i = i+1;

 }

 println("Finished!");

 }

(example file prog_ex02.rgg)

 18

Assignments

In our example:
i = 0;

the variable named i gets the new value 0

• fundamental operation in the imperative
programming paradigm

effect: content of a place in the memory is changed

Attention:
i = 0 in a Java programme does not have

the same meaning as in a mathematical formula!

 19

E.g., i = i+1 would mathematically be a contradiction

(it would imply 0 = 1)
– but makes sense in a programme (increment i by 1).

Mathematical meaning of this assignment:
inew = iold + 1.

In assignments, the order is relevant:
x1 = x2; has another effect as x2 = x1;

To underline the asymmetry, other languages (e.g.,
Pascal) use := instead of = for assignments.

XL allows both notations
(but with a slightly different meaning: := denotes a

deferred assignment, i.e., it enables a quasi-
parallel execution with other assignments.)

Comparison (checking for equality) is expressed in
Java, C and XL by = =

Java offers further assignment operators besides = :
a += b // add content of b to the content of a

–=, *=, /= etc. analogously.

Data types:

describe sets of values and the operations which
can be performed on them.

Example: integers, with arithmetical operations (+,
–, *, /, %) and comparisons (<, <=, >, >=, ...).

In the example programme: int, String.

 20

int: type of 32-bit two's complement integers.

The variable i used for running through the

argument list has this type.
i starts with value 0 and is incremented in the loop

until it has value 11.

String: type of character sequences. println

expects a variable of this type as its argument.
Numbers are implicitly converted to strings here.
Concatenation of strings by +.
("Operator overloading": different meanings of + for
numbers and for strings.)

Ranges of declarations, visibility

 Example: In our last example, i can be checked and used

 inside the method init, from its declaration on.

 21

Literals

 \uXXXX (XXXX: up to four hexadecimal digits):

 The number of a Unicode character

Primitive Java data types:

 22

 23

1.0; 1.0;

 24

Java operators

("assoc" = order of association, i.e., evalutation from left (L) or right (R)
when several operators of the same level occur in the same expression)

 25

Functional abstraction, self-defined methods

 26

Example: compute the factorial of an integer
Reminder: "factorial" n! = n * (n–1) * ... * 3 * 2 * 1.

 27

Example (prog_ex03.rgg): Usage of compound

data structures (arrays)

/* Computation of the sum of elements of

an integer array. */

protected void init()

 {

 int result = 0;

 int[] p = { 4, 3, 3, 5, 15 };

 /* initialization of an array */

 int i = 0;

 while (i < p.length)

 {

 result += p[i];

 i = i+1;

 }

 println("The sum is: " + result);
 }

The same as an extra method:

 28

 29

Method call:
e.g. x = max(a, b);

Effects:

• control flow jumps from the place where the method
is called to the place where the method is defined

• the method is executed

• the control flow jumps back to the place where the
method was called and the return value is assigned
to x.

 30

Control structures of Java

control structures:
language concepts designed to control the flow of
operations
– typical for the imperative programming paradigm

particularly: branching of the programme; loops.

Variants of branching:

(if the condition is false, nothing happens)

if (<condition>)

 {

 <Code for fulfilled condition>
 }

else

 {

 <Code for unfulfilled condition>

 }

 31

Nesting of if...else possible:

Example application: Finding the solutions of a
quadratic equation ("pq-formula")

prog_ex04.rgg

/* Computation of the solutions of a quadratic

 equation, using a self-defined method */

public double[] solve_quadratic(double p,
 double q)

 {
 double x = -p/2, y = x*x - q;

 double[] result;

 if (y < 0)

 {
 // term under the square root is

 // negative. No solution.
 result = new double[0];

 }

 32

 else

 if (y < 1e-20)
 {

 // term under the square root is zero.
 // One solution.

 result = new double[1];
 result[0] = x;

 }
 else

 {
 // term under the square root is

 // positive. Two solutions.
 double z = Math.sqrt(y);

 result = new double[2];

 result[0] = x + z;
 result[1] = x - z;

 }
 return result;

 }

module A(double p, double q) extends Sphere(3);

protected void init()
{

 [
 Axiom ==> A(0, 0);

]
 println("Click on object for input (p,q)!");

}

public void calculate()
{

 double[] res;
 double p, q;

 [
 a:A ==> { p = a[p]; q = a[q]; };

]

 33

 res = solve_quadratic(p, q);

 if (res.length == 0)

 println("There is no solution.");
 if (res.length == 1)

 println("Single solution: " + res[0]);
 if (res.length == 2)

 {
 println("First solution: " + res[1]);

 println("Second solution: " + res[0]);
 }

}

Alternative to if-else:
switch construction

Branching not binary, but with several alternatives
at the same level

 34

Special form of branching for error handling:
the try construction

 35

Loops:
we have already used the while loop.

Second variant: "do ... while"

 36

The for loop

Application example:

